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Introduction & Background

• Non-Volatile Memory (NVM) :

• A recent significant change at the CPU side is the availability of eADR 

• eADR could flush cache lines back to NVM on a power fail with an uninterruptible power supply 

• B+ tree in NVM:

• FAST-FAIR

• LB+-tree

• Circ-Tree
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Motivation

• eADR frees programmers from explicit cache line flushes 
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Motivation

• eADR frees programmers from explicit cache line flushes 

• The no need of flushing cache lines results in a change in the proportions of time 
cost

• Consequently, we place our emphasis on minimizing cache misses 
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Design of CONAN

• Conan : Conflict-Aware-Node-Allocation

• Aim to minimize the conflict cache misses

• Leverage architectural implications from the modern VIPT cache

• Conan is at the application level without any change to OS
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VIPT cache’s architectural implication

• Researchers generally create a big file for data structures on NVM

• However, past researchers have not particularly considered cache conflicts
• libpmemobj of Intel PMDK

• We utilize modern VIPT cache
• We memory-map a big file  with a base virtual address aligned at the cache line boundary

• Virtual address determines memory location which cache set maps to
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Implementation: Overview
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Conflict-Aware Node Allocation

• Assume that the number of cache sets in the LLC is 2𝑛(𝑛>0), 

• Assume that the size of a cache line is 2𝑙 bytes (𝑙>0)

• 𝑛 = 11 and 𝑙 = 6 for below example
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Implementation: Overview
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Implementation: Overview
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Conflict-Aware Node Allocation

• Theorem 1 (Intra-Segment Non-Conflict)

• One single B+-tree node or any two B+-tree nodes allocated from the same segment 

• =>incur no conflict into any cache set
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Conflict-Aware Node Allocation

• Theorem 2 (Inter-Segment Conflict)

• Two B+-tree nodes allocated from different segments 

• =>may conflict  in the same cache set
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Conflict-Aware Node Allocation

• Cache line is 2𝑙 bytes (𝑙>0)

• B+ tree node size is 2β bytes (β>0)

• Theorem 3

• The expected probability of conflict for Inter-Segment is small. 

• It could be calculated from below formula

• When  B+ tree node size is 512B and a segment is 128KB 

• =>  probability is < 0.4%
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Implementation and Discussion

• Allocation and deallocation occasions
• Use in-DRAM skiplists to accelerate allocations and deallocations

• A bitmap in NVM to make skiplists durable
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Implementation and Discussion

• Crash consistency of Conan
• Utilize the bitmap to track

• Modern 64-bit CPUs allow an atomic write of 64 bits

• =>  Rule out inconsistency issue for node allocation/deallocation
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Implementation and Discussion

• Concurrency of Conan 
• A fine-grained lock per segment in DRAM to support concurrency
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Evaluation: Setup

• CPU:
• 48-core Intel Xeon Gold 6342 with eADR feature
• To eliminate the impact of NUMA,  only use NVM space in node 0 and CPU in socket 0

• CACHE: 
• L1D, L2 and L3 caches are 2.3MB, 60MB and 72MB, respectively
• 2048 cache sets in the shared last-level L3 cache with 12-way associativity 
• Size per cache line is 64B

• DRAM & NVM:
• The size of DRAM: 256GB
• Intel Optane persistent memory: 1024GB 

• PLATFORM:
• Ubuntu 21.04 with kernel version 5.13.2 ; GCC/G++ 10.3.0
• Ext4-DAX
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Evaluation: Micro-Benchmark

• Insertion: Saves the execution time by 15.7% on average and achieves 
highest boost by 22.0%
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Evaluation: Micro-Benchmark

• Insertion: Saves the execution time by 15.7% on average and achieves 
highest boost by 22.0%

• Search: Conan spends 13.8% less time compared to PMDK
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Evaluation: Reason

• Nodes allocated by PMDK might not be cache line-aligned

• Recorded virtual addresses in-NVM roots for three times:
• 0x7f25403c0558 

• 0x7fcdc03c0558 

• 0x7fe5803c0558 

• Virtual addresses are misaligned at a cache line boundary
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Evaluation: Reason

• Nodes allocated by PMDK might not be cache line-aligned

• Recorded virtual addresses in-NVM roots for three times:
• 0x7f25403c0558 

• 0x7fcdc03c0558 

• 0x7fe5803c0558 

• Virtual addresses are misaligned at a cache line boundary

• Higher LLC hit rate of Conan
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Evaluation: Multi-thread

• Insertion: ten million KV pairs with the node size of 1024B
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Evaluation: Multi-thread

• Search: ten million KV pairs with the node size of 1024B
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Evaluation: YCSB

• YCSB: Improvement up to 19.8% with YCSB workloads
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Conclusion

• Conan takes into account the minimization of conflict cache

• Conan mainly explores the mapping between VIPT cache and NVM
space exposed with virtual addresses

• Conan saves the execution time in writing and reading by up to 22.0% and 13.8%, 
respectively

• Conan is simplistic and realistically effectual
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Thanks :-)

https://toast-lab.tech
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