
Exploring Architectural
Implications to Boost Performance

for in-NVM B+-tree
Yanpeng Hu; Qisheng Jiang; Chundong Wang

ShanghaiTech University, Shanghai, China

1

Outline

• Introduction & Background

• Motivation

• Design of Conan

• VIPT cache’s architectural implication

• Conflict-aware node allocation

• Implementation and discussion

• Evaluation

• Conclusion

2

Introduction & Background

• Non-Volatile Memory (NVM) :

• A recent significant change at the CPU side is the availability of eADR

• eADR could flush cache lines back to NVM on a power fail with an uninterruptible power supply

• B+ tree in NVM:

• FAST-FAIR

• LB+-tree

• Circ-Tree

3

Outline

• Introduction & Background

• Motivation

• Design of Conan

• VIPT cache’s architectural implication

• Conflict-aware node allocation

• Implementation and discussion

• Evaluation

• Conclusion

4

Motivation

• eADR frees programmers from explicit cache line flushes

5

Motivation

• eADR frees programmers from explicit cache line flushes

• The no need of flushing cache lines results in a change in the proportions of time
cost

6

Motivation

• eADR frees programmers from explicit cache line flushes

• The no need of flushing cache lines results in a change in the proportions of time
cost

• Consequently, we place our emphasis on minimizing cache misses

7

Outline

• Introduction & Background

• Motivation

• Design of Conan

• VIPT cache’s architectural implication

• Conflict-aware node allocation

• Implementation and discussion

• Evaluation

• Conclusion

8

Design of CONAN

• Conan : Conflict-Aware-Node-Allocation

• Aim to minimize the conflict cache misses

• Leverage architectural implications from the modern VIPT cache

• Conan is at the application level without any change to OS

9

VIPT cache’s architectural implication

• Researchers generally create a big file for data structures on NVM

• However, past researchers have not particularly considered cache conflicts
• libpmemobj of Intel PMDK

• We utilize modern VIPT cache
• We memory-map a big file with a base virtual address aligned at the cache line boundary

• Virtual address determines memory location which cache set maps to

10

Outline

• Introduction & Background

• Motivation

• Design of Conan

• VIPT cache’s architectural implication

• Conflict-aware node allocation

• Implementation and discussion

• Evaluation

• Conclusion

11

Implementation: Overview

12

Metadata

Segment 0 Segment 1 Segment (ξ − 1)Segment 2 Segment 233

NVM
space

Mmap a big file of NVM and separate it into several logical segments

Conflict-Aware Node Allocation

• Assume that the number of cache sets in the LLC is 2𝑛(𝑛>0),

• Assume that the size of a cache line is 2𝑙 bytes (𝑙>0)

• 𝑛 = 11 and 𝑙 = 6 for below example

13

056161763

In-cache line offset
(𝑙 bits)Cache set index (𝑛 bits)

64-bit VA

08

In-B+-tree node offset
(𝛽 bits)

916

Segment index (𝜂 bits)

VIPT cache’s perspective

Conan’s perspective

Implementation: Overview

14

Metadata

Segment 0 Segment 1 Segment (ξ − 1)Segment 2 Segment 233

Root

… …… …

Leaf Nodes (LNs)

Index
Nodes
(INs)

In-NVM B+-tree

NVM
space

Allocate each new leaf node to the corresponding Segment

Implementation: Overview

15

Metadata

Segment 0 Segment 1 Segment (ξ − 1)Segment 2 Segment 233

Root

… …… …

Leaf Nodes (LNs)

Index
Nodes
(INs)

In-NVM B+-tree

Reserved
for INs

NVM
space

Reserve space in each segment for Index Nodes to accelerate searching

and insertions

Conflict-Aware Node Allocation

• Theorem 1 (Intra-Segment Non-Conflict)

• One single B+-tree node or any two B+-tree nodes allocated from the same segment

• =>incur no conflict into any cache set

16

NVM Space Cache Set

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Segment 0

……

……

Node 0

Node 1

……

Conflict-Aware Node Allocation

• Theorem 2 (Inter-Segment Conflict)

• Two B+-tree nodes allocated from different segments

• =>may conflict in the same cache set

17

NVM Space(Conflict) Cache Set
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

…… ……

……

……

Segment i Segment 0

Node i Node 0

Node i+1 Node 1

NVM Space(No Conflict) Cache Set
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

…… ……

……

……

Segment i Segment 0

Node i Node 0

Node i+1 Node 1

Conflict-Aware Node Allocation

• Cache line is 2𝑙 bytes (𝑙>0)

• B+ tree node size is 2β bytes (β>0)

• Theorem 3

• The expected probability of conflict for Inter-Segment is small.

• It could be calculated from below formula

• When B+ tree node size is 512B and a segment is 128KB

• => probability is < 0.4%

18

Outline

• Introduction & Background

• Motivation

• Design of Conan

• VIPT cache’s architectural implication

• Conflict-aware node allocation

• Implementation and discussion

• Evaluation

• Conclusion

19

Implementation and Discussion

• Allocation and deallocation occasions
• Use in-DRAM skiplists to accelerate allocations and deallocations

• A bitmap in NVM to make skiplists durable

20

Metadata

Segment 0 Segment 1 Segment (ξ − 1)Segment 2 Segment 233

Root

… …… …

Leaf Nodes (LNs)

Index
nodes
(INs)

0 1 … 0 01 … Node bitmap

In-NVM B+-tree

Main Metadata

In-DRAM Free list
of recycled LNs

Reserved
for INs

In-DRAM Free list of recycled INs

Implementation and Discussion

• Crash consistency of Conan
• Utilize the bitmap to track

• Modern 64-bit CPUs allow an atomic write of 64 bits

• => Rule out inconsistency issue for node allocation/deallocation

21

Metadata

Segment 0 Segment 1 Segment (ξ − 1)Segment 2 Segment 233

Root

… …… …

Leaf Nodes (LNs)

Index
nodes
(INs)

0 1 … 0 01 … Node bitmap

Normal
shutdown flag 512B Node

size

In-NVM B+-tree

Main Metadata

128KB Segment
size

In-DRAM Free list
of recycled LNs

Reserved
for INs

In-DRAM Free list of recycled INs

Implementation and Discussion

• Concurrency of Conan
• A fine-grained lock per segment in DRAM to support concurrency

22

Metadata

Segment 0 Segment 1 Segment (ξ − 1)Segment 2 Segment 233

Root

… …… …

Leaf Nodes (LNs)

Index
nodes
(INs)

0 1 … 0 01 … Node bitmap

Normal
shutdown flag 512B Node

size

In-NVM B+-tree

Main Metadata

128KB Segment
size

233 Active
segment

In-DRAM Free list
of recycled LNs

Reserved
for INs

In-DRAM Free list of recycled INs

Outline

• Introduction & Background

• Motivation

• Design of CONAN

• VIPT cache’s architectural implication

• Conflict-aware node allocation

• Implementation and discussion

• Evaluation

• Conclusion

23

Evaluation: Setup

• CPU:
• 48-core Intel Xeon Gold 6342 with eADR feature
• To eliminate the impact of NUMA, only use NVM space in node 0 and CPU in socket 0

• CACHE:
• L1D, L2 and L3 caches are 2.3MB, 60MB and 72MB, respectively
• 2048 cache sets in the shared last-level L3 cache with 12-way associativity
• Size per cache line is 64B

• DRAM & NVM:
• The size of DRAM: 256GB
• Intel Optane persistent memory: 1024GB

• PLATFORM:
• Ubuntu 21.04 with kernel version 5.13.2 ; GCC/G++ 10.3.0
• Ext4-DAX

24

Evaluation: Micro-Benchmark

• Insertion: Saves the execution time by 15.7% on average and achieves
highest boost by 22.0%

25

0

1

2

3

4

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
)

Node Size (Bytes)

PMDK Conan

Evaluation: Micro-Benchmark

• Insertion: Saves the execution time by 15.7% on average and achieves
highest boost by 22.0%

• Search: Conan spends 13.8% less time compared to PMDK

26

0

1

2

3

4

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
)

Node Size (Bytes)

PMDK Conan

0

0.2

0.4

0.6

0.8

1

1.2

Node Size (Bytes)

PMDK Conan

Evaluation: Reason

• Nodes allocated by PMDK might not be cache line-aligned

• Recorded virtual addresses in-NVM roots for three times:
• 0x7f25403c0558

• 0x7fcdc03c0558

• 0x7fe5803c0558

• Virtual addresses are misaligned at a cache line boundary

27

Evaluation: Reason

• Nodes allocated by PMDK might not be cache line-aligned

• Recorded virtual addresses in-NVM roots for three times:
• 0x7f25403c0558

• 0x7fcdc03c0558

• 0x7fe5803c0558

• Virtual addresses are misaligned at a cache line boundary

• Higher LLC hit rate of Conan

28

Evaluation: Multi-thread

• Insertion: ten million KV pairs with the node size of 1024B

29

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 2 4 8 16 32

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
)

Number of Threads

PMDK Conan

Evaluation: Multi-thread

• Search: ten million KV pairs with the node size of 1024B

30

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
)

Number of Threads

PMDK Conan

Evaluation: YCSB

• YCSB: Improvement up to 19.8% with YCSB workloads

31

0

1

2

3

4

LOAD A B C D E F

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
)

YCSB Workloads

PMDK Conan

Outline

• Introduction & Background

• Motivation

• Design of CONAN

• VIPT cache’s architectural implication

• Conflict-aware node allocation

• Implementation and discussion

• Evaluation

• Conclusion

32

Conclusion

• Conan takes into account the minimization of conflict cache

• Conan mainly explores the mapping between VIPT cache and NVM
space exposed with virtual addresses

• Conan saves the execution time in writing and reading by up to 22.0% and 13.8%,
respectively

• Conan is simplistic and realistically effectual

33

34

Thanks :-)

https://toast-lab.tech

Presenter: Yanpeng Hu

Email: huyp@Shanghaitech.edu.cn

