

An Efficient Near-Bank Processing Architecture for Personalized Recommendation System

Yuqing Yang, Weidong Yang, Qin Wang, Naifeng Jing, Jianfei Jiang, Zhigang Mao, Weiguang Sheng

Shanghai Jiao Tong University

Yuqing Yang

- A 3rd year M.S. student in integrated circuit engineering at Shanghai Jiao Tong Unversity.
- Education
 - Shanghai Jiao Tong Unviersity, China, B.S. (2020)
- Research Interest
 - Near-memory-processing architecture
 - Heterogeneous computing

Background & Motivations

Key Contributions

Architecture Design

Evaluation Results

Conclusion

Application Scenario of Recommendation Models

Personalized recommendation models are **widely** used in internet services!

Deep Learning for Personalized Recommendation

 Deep learning can maximize the recommendation accuracy and deliver better user experience.

User Candidate Movies

Deep learning-based recommendation models consume the **majority** (~79%^[1]) resources in AI data centers.

[1] Gupta U, Wu C J, Wang X, et al. The architectural implications of facebook's dnn-based personalized recommendation[C]//2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2020: 488-501.

Deep Learning Recommendation Model (DLRM)

Memory Challenges of Embedding Layers

Gather operations have **sparse and irregular** memory access patterns, reduction operations have **low compute intensity**.

Embedding operations are **memory-bound** and demand **more memory bandwidth**.

3D-Stacked Near-Memory-Processing Architecture

Integrate compute-logic closer to where data is stored:

- Greatly increase memory bandwidth (~8X)
- Reduce data movement

[2] Kal H, Lee S, Ko G, et al. SPACE: locality-aware processing in heterogeneous memory for personalized recommendations[C]//2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2021: 679-691.

- Deeping learning-based recommendation models consume the majority resources in AI data centers.
- Memory-bound embedding layers become the bottleneck of DLRM on traditional computing platforms due to irregular memory access patterns.
- Near-bank architecture can provide enormous bank-level bandwidth which is much higher than TSV can provide in 3D-stacked DRAMs.

Target: Design a near-bank processing architecture to accelerate the embedding layer of DLRM.

Background & Motivations

Key Contributions

Architecture Design

Evaluation Results

Conclusion

- An efficient near-bank architecture for recommendation models which exploits the enormous bank-level bandwidth of 3D-stacked memory
- A programming model for managing the memory allocation of embedding tables and embedding kernel offloading
- An optimized mapping scheme based on vector partition to improve the utilization of the bank-level bandwidth

Achieves up to **2.10x** performance gain and **31%** energy saving compared to SPACE (ISCA'21).

Background & Motivations

Key Contributions

Architecture Design

Evaluation Results

Conclusion

System Overview

Embedding instructions are **dispatched** and **decoded**, then gather and reduction operations are **performed** on logic units in HMC.

Embedding Instructions (Emb-Inst)

• Instruction Design

	Opcode	Source	Vector Size	Destination	Reduction Indicator	
NB-Inst	Add.NB	HMC Addr	vsize	Vault ID	Psum Tag	
DIMM-Inst	Add.D	DIMM Addr	vsize	Vault ID	Psum Tag	•

- Psum Tag: indicate which reduction operation the vector belongs to
 - Vault ID: indicate which vault the psum is sent to

According to the location of embedding items, **Opcode** is set as add.NB (item is stored in HMC) or add.D (item is stored in DIMM).

Instruction Dispatch

Near-bank Processing Logic Design

Gather

- ① Receive NB-Inst
- ② Instruction Decode
- ③ Send DDR.C/A
- ④ Load Emb. Vectors

Reduction

⑤ Element-Wise
 Summation for
 Emb. Vectors with
 Same Psum Tags

Finally, partial sum result with no more element-wise summation to be done are sent to the logic die for further reduction (If need).

Logic Die Design

After reduction operations, final outputs of embedding kernels would be sent back to the host processor.

Programming Model: Purposes

- Memory Allocation of Embedding Tables
- 1. Rearrange embedding tables according to item accesses
- Set border line of embedding tables according to HMC bandwidth (bank-level) ratio of the total memory bandwidth
- Distribute embedding items between HMC (index < border line) and DIMMs (index >= border line)

- Embedding Kernels Offloading
- 1. Initialization
- 2. Embedding instructions generation

Programming Model: Embedding Table Allocation

// Embedding Table Allocation

```
access_hash_table = count_access(past_inference_set);
```

```
Emb = rearrange_emb(Emb, access_hash_table);
```

```
distribution_ratio = HMC_bandwidth / total_bandwidth;
```

border_line = set_border_line(Emb, access_hash_table, distribution_ratio);

Emb-HMC, Emb-DIMM = Emb_Alloc(Emb, border_line);

- count_access(): Count number of accesses per embedding item
- rearrange_emb(): Rearrange embedding tables by ranking items according to number of accesses

Programming Model: Embedding Kernel Offloading

Kernel Offloading Stage: Embedding kernels are compiled into

embedding instructions which are packed into packets to be sent to HMC.

Mapping Scheme: Problem Analysis

Problem

- Embedding vectors can not be reduced on near-bank logic
 - All the vectors are transferred to the logic die to perform reduction operations through TSVs

TSV bandwidth becomes the limit.
 Bank-level bandwidth can not be exploited.

Mapping Scheme: Partition and Mapping

- Embedding operations are executed on near-bank logic in parallel.
- Less data (1/4) is transferred through TSVs, bank-level bandwidth is fully exploited.

Background & Motivations

Key Contributions

Architecture Design

Evaluation Results

Conclusion

Experiment Setup

Ð

- Recommendation System
 - Model: DLRM
 - Datasets: Anime, MovieLens, LastFM
- System Simulation
 - Develop a cycle-accurate model for near-bank processing architecture

based on Ramulator^[3]

- Use Cacti-3DD^[4] to estimate the energy consumption
- Baseline
 - SPACE (ISCA'21) for recommendation models

[3] Kim Y, Yang W, Mutlu O. Ramulator: A fast and extensible DRAM simulator[J]. IEEE Computer architecture letters, 2015, 15(1): 45-49.
[4] Chen K, Li S, Muralimanohar N, et al. CACTI-3DD: Architecture-level modeling for 3D die-stacked DRAM main memory[C]//2012 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2012: 33-38.

Performance Evaluation

Our Work (NB) V.S. SPACE

- NB_x: Apply mapping scheme (x is the partition number)

Effectiveness of Mapping Scheme

- NB (Near-Bank Arch): Our work
- NB_x: Apply mapping scheme (x is the partition number)

As the partition number increases, the ratio of near-bank reduction rises and bank-level parallelism is exploited.

Effectiveness of Mapping Scheme

- NB (Near-Bank Arch): Our work
- NB_x: Apply mapping scheme (x is the partition number)

Mapping scheme effectively improves the utilization of bank-level bandwidth and thus performance of near-bank architecture is improved.

Energy Consumption Evaluation

Ð

27

Our Work (NB) V.S. SPACE

- NB_x: Apply mapping scheme (x is the partition number)

• Advantages of near-bank processing for reducing data movement

- 1. Less amount of data is transferred through TSVs
- 2. **Off-chip data movement** between HMC and DIMMs **decreases** as more items are stored in HMC

Background & Motivations

Key Contributions

Architecture Design

Evaluation Results

Conclusion

- We propose an efficient near-bank architecture for DLRM that provides:
 - Bank-level parallelism in processing embedding layers
 - A specialized programming model
 - An optimized mapping scheme
- We evaluate our design for DLRM using three different real-world recommendation datasets:
 - Compared to SPACE, our design achieves **2.10x** speedup.
 - Compared to SPACE, our design saves **31%** energy consumption.
 - Our mapping scheme improves near-bank reduction ratio from 16%

to **77%.**

An Efficient Near-Bank Processing Architecture

for Personalized Recommendation System

Thank you !

Q&A

Presenter: Yuqing Yang

Email: yangyuqing@sjtu.edu.cn

Shanghai Jiao Tong University