
Page .

1

An Efficient Near-Bank Processing Architecture

for Personalized Recommendation System

Yuqing Yang, Weidong Yang, Qin Wang, Naifeng

Jing, Jianfei Jiang, Zhigang Mao, Weiguang Sheng

Page .

2

Bio

Yuqing Yang

• A 3rd year M.S. student in integrated

circuit engineering at Shanghai Jiao

Tong Unversity.

• Education

- Shanghai Jiao Tong Unviersity, China, B.S.

(2020)

• Research Interest

- Near-memory-processing architecture

- Heterogeneous computing

Page .

3

Outline

Background & Motivations

Key Contributions

Architecture Design

Evaluation Results

Conclusion

Page .

4

Application Scenario of Recommendation Models

Search Engine

Online Shopping

Video/Music

Social Network

Personalized recommendation models are widely used in
internet services!

Page .

5

Deep Learning for Personalized Recommendation

Candidate MoviesUser

Neural Network Prediction
(0-1)

Recommendation

• Deep learning can maximize the recommendation accuracy
and deliver better user experience.

Deep learning-based recommendation models consume the
majority (~79%[1]) resources in AI data centers.

[1] Gupta U, Wu C J, Wang X, et al. The architectural implications of facebook's dnn-based personalized
recommendation[C]//2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020: 488-501.

Page .

6

Deep Learning Recommendation Model (DLRM)

Bottom-FC

Top-FC

User's

Characteristics User's Past Interactions

Click Through Rate

E
m

b
e

d
d

in
g

 L
a

y
e
r

ReductionGather

...

Embedding Table

Indices Indices

Embedding Table

... ...

Feature Interaction

Fully-connected layers have highly
regular computational patterns,
and they can take advantage of
multi-core CPU or GPU.

Embedding layers have different operation characteristics with FC!

Page .

7

Memory Challenges of Embedding Layers

Embedding Table

v1

v2

v3

v4

v5

vN-1

vN

...

v1

v3

v5

vN-1

Reduced Vector

(Millions of Vectors)

[Gather Operation] [Reduction Operation]

(Tens of Vectors)

...

Gather operations have sparse and irregular memory access
patterns, reduction operations have low compute intensity.

Embedding Operation

Embedding operations are memory-bound and demand
more memory bandwidth.

Page .

8

3D-Stacked Near-Memory-Processing Architecture

[2] Kal H, Lee S, Ko G, et al. SPACE: locality-aware processing in heterogeneous memory for personalized
recommendations[C]//2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 2021: 679-691.

3D-Stacked Memory

Process on Logic Die[2] Near-Bank Logic

DRAM Die

Logic Die

DRAM Die

DRAM Die
DRAM Die

Vault

TSV I/O Bound Higher Bank-Level Bandwidth

Integrate compute-logic closer to where data is stored:
• Greatly increase memory bandwidth (~8X)
• Reduce data movement

Bank

Bank Logic

Logic

32 Vaults

Bank

Bank

Logic

TSV

Page .

9

Summary

• Deeping learning-based recommendation models consume
the majority resources in AI data centers.

• Memory-bound embedding layers become the bottleneck of
DLRM on traditional computing platforms due to irregular
memory access patterns.

• Near-bank architecture can provide enormous bank-level
bandwidth which is much higher than TSV can provide in
3D-stacked DRAMs.

Target: Design a near-bank processing architecture to
accelerate the embedding layer of DLRM.

Page .

10

Outline

Background & Motivations

Key Contributions

Architecture Design

Evaluation Results

Conclusion

Page .

11

Key Contributions

• An efficient near-bank architecture for recommendation
models which exploits the enormous bank-level bandwidth
of 3D-stacked memory

• A programming model for managing the memory allocation
of embedding tables and embedding kernel offloading

• An optimized mapping scheme based on vector partition to
improve the utilization of the bank-level bandwidth

Achieves up to 2.10x performance gain and 31% energy

saving compared to SPACE (ISCA’21).

Page .

12

Outline

Background & Motivations

Key Contributions

Architecture Design

Evaluation Results

Conclusion

Page .

13

System Overview

CORE 0

L1/L2 Cache

CORE N

L1/L2 Cache

Last-Level Cache

Memory Controller

...

DIMM

DIMM

DIMM

HMC

Host Processor:

• Allocate embedding items between

HMC and DIMMs

• Offload embedding kernels

1. encode embedding instructions

2. send instructions to HMC

Bank

Control
Logic

Compute
Logic

... Vault

TSVs

DRAM Die

DRAM Die

DRAM Die

DRAM Die

Logic Die

Embedding instructions are dispatched and decoded, then gather and

reduction operations are performed on logic units in HMC.

Page .

14

Embedding Instructions (Emb-Inst)

• Instruction Design

• Instruction Dispatch

Opcode

Add.NB HMC Addr vsize Vault ID Psum Tag

Source
Vector

Size
Destination

Reduction

Indicator

Add.D DIMM Addr vsize Vault ID Psum Tag

NB-Inst

DIMM-Inst

According to the location of embedding items, Opcode is set as add.NB

(item is stored in HMC) or add.D (item is stored in DIMM) .

• Psum Tag: indicate which
reduction operation the
vector belongs to

• Vault ID: indicate which
vault the psum is sent to

DRAM Die

DRAM Die

DRAM Die

DRAM Die

Logic Die

Emb-Inst Packets

from Host Processor

(a)

Dispatch

Unit
Mem. Ctrl

Local

NB-Inst

Remote NB-Inst
NoC Router

TSV

DIMM-Inst

Emb-Inst

Packets

Remote

Vault

NB-Inst

Logic

NB-Inst

Page .

15

Near-bank Processing Logic Design

 Instruction Decode

 Send DDR.C/A

 Receive NB-Inst

Finally, partial sum result with no more element-wise summation to be

done are sent to the logic die for further reduction (If need).

 Load Emb. Vectors

• Gather

• Reduction

 Element-Wise
Summation for
Emb. Vectors with
Same Psum Tags

Inst

Decoder

Bank0

NB-Inst

Emb. VectorsDDR.C/A

Bank1

TSV
NB-Inst

Bank Group

Controller

Mem Req

Psum

RegFile

Emb. Vector Buffer

Vector ALU

Partial Sum Result

PE

DDR.C/A

Controller

Inst

Decoder

Mem Req

⑤

①

②

③
④④

①

②

③

Page .

16

Logic Die Design

After reduction operations, final outputs of embedding kernels

would be sent back to the host processor.

• Dispatch Emb-Insts

• Gather Emb. Vectors
from DIMMs

• Reduction
1. Local/Remote Psum

from DRAM Dies
2. Emb. Vectors from

DIMMs

(a)

Dispatch

Unit
Vault Ctrl

Local

NB-Inst

Remote NB-Inst
NoC Router

TSV

DIMM-Inst

Emb-Inst

Packets

Remote Vault

Inst

Decoder

Mem Req

DIMMs

Logic Die

PE

Remote Psum

Local

Psum

Emb. Vectors

Host

Ouput of Emb. Kernels

Page .

17

Programming Model: Purposes

• Memory Allocation of Embedding Tables

1. Rearrange embedding tables according to item accesses

2. Set border line of embedding tables according to HMC

bandwidth (bank-level) ratio of the total memory bandwidth

3. Distribute embedding items between HMC (index < border

line) and DIMMs (index >= border line)

• Embedding Kernels Offloading

1. Initialization

2. Embedding instructions generation

Page .

18

Programming Model: Embedding Table Allocation

• count_access(): Count number of accesses per embedding item

• rearrange_emb(): Rearrange embedding tables by ranking items

according to number of accesses

// Embedding Table Allocation

access_hash_table = count_access(past_inference_set);

Emb = rearrange_emb(Emb, access_hash_table);

distribution_ratio = HMC_bandwidth / total_bandwidth;

border_line = set_border_line(Emb, access_hash_table, distribution_ratio);

Emb-HMC, Emb-DIMM = Emb_Alloc(Emb, border_line);

σi=1
𝑀 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 𝑜𝑓 𝑖𝑡𝑒𝑚𝑖 / σ𝑗=1

𝑁 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 𝑜𝑓 𝑖𝑡𝑒𝑚𝑗set_border_line():

Emb_Alloc()Store in HMC

Rearranged Table

(N Items)

border line = M

Store in DIMMs

=

distribution_ratio

Page .

19

// Initialization
n = batch_size * reduction_num
Lengths = vector<int>(batch_size, reduction_num)

Indices = [idx1, idx2, , idxn]
Output = matrix<float>(batch_size, vector_size, 0.0)

// Embedding Kernels
EmbeddingBag(Emb-HMC,Emb-DIMM,Indices,Lengths,Output) {
 k = 0, m = border_line
 parallel_for (int i = 0; i < batch_size; i++) {
 reduction_num = Lengths[i]
 idx_arr = Indices[k:k+reduction_num]
 for (int j = 0; j < reduction_num; j++) {
 if (idx_arr[j] <= m) {
 Output[i] = Element_Wise_Sum(Output[i],Emb-HMC[idx_arr[j]]);
 }
 else {
 Output[i] = Element_Wise_Sum(Output[i],Emb-DIMM[idx_arr[j]-m]);
 }
 }
 k+=reduction_num
 }

}

Programming Model: Embedding Kernel Offloading

Embedding Kernel

NB-Inst

DIMM-Inst

Emb-Inst Packet

Send to HMC
（Offload）

…

Kernel Offloading Stage: Embedding kernels are compiled into

embedding instructions which are packed into packets to be sent to HMC.

Page .

20

Mapping Scheme: Problem Analysis

Vault (2D Display)

Bank Group

Bank Group

Bank Group

Bank Group

v4

TSV

v3

v2

v1

Typical Case

Problem

• Embedding vectors can not be reduced

on near-bank logic

• All the vectors are transferred to the

logic die to perform reduction operations

through TSVs

1. TSV bandwidth becomes the limit.

2. Bank-level bandwidth can not be

exploited.

(v1, v2, v3, v4 need to be reduced)

Page .

21

Mapping Scheme: Partition and Mapping

Vault (2D Display)

Bank Group

TSV

Reduction

Bank Group

Reduction

Bank Group

Reduction

Bank Group

Reduction

v1-1

v2-1

v3-1

v4-1

v1-3

v2-3

v3-3

v4-3

v1-2

v2-2

v3-2

v4-2

v1-4

v2-4

v3-4

v4-4

[Partition] [Map]

v1

v1-1 v1-2 v1-3 v1-4

v3

v3-1 v3-2 v3-3 v3-4

v4

v4-1 v4-2 v4-3 v4-4

v2

v2-1 v2-2 v2-3 v2-4

• Embedding operations are executed

on near-bank logic in parallel.

• Less data (1/4) is transferred

through TSVs, bank-level bandwidth

is fully exploited.

Page .

22

Outline

Background & Motivations

Key Contributions

Architecture Design

Evaluation Results

Conclusion

Page .

23

Experiment Setup

• Recommendation System

- Model: DLRM

- Datasets: Anime, MovieLens, LastFM

• System Simulation

- Develop a cycle-accurate model for near-bank processing architecture

based on Ramulator[3]

- Use Cacti-3DD[4] to estimate the energy consumption

• Baseline

- SPACE (ISCA’21) for recommendation models

[3] Kim Y, Yang W, Mutlu O. Ramulator: A fast and extensible DRAM simulator[J]. IEEE Computer architecture
letters, 2015, 15(1): 45-49.
[4] Chen K, Li S, Muralimanohar N, et al. CACTI-3DD: Architecture-level modeling for 3D die-stacked DRAM

main memory[C]//2012 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2012: 33-38.

Page .

24

Performance Evaluation

Our Work (NB) V.S. SPACE

0

0.5

1

1.5

2

2.5

vsize=128B vsize=256B vsize=512B

S
p
e
e

d
u
p

SPACE NB NB_2 NB_4 NB_8 2.10x

- NB_x: Apply mapping scheme (x is the partition number)

2.08x

1.72x

Compared to SPACE, our work can achieve 1.97x speedup on
average and up to 2.10x speedup (vsize = 256B) .

Page .

25

Effectiveness of Mapping Scheme

16.1%

29.9%

52.0%

76.7%

0%

20%

40%

60%

80%

100%

NB NB_2 NB_4 NB_8

N
e

a
r-

b
a

n
k
 r

e
d

u
c
ti
o

n
 r

a
ti
o

Lastfm Anime Movielens Avg.

- NB (Near-Bank Arch): Our work

- NB_x: Apply mapping scheme (x is the partition number)

As the partition number increases, the ratio of near-bank

reduction rises and bank-level parallelism is exploited.

Page .

26

Effectiveness of Mapping Scheme

- NB (Near-Bank Arch): Our work

- NB_x: Apply mapping scheme (x is the partition number)

1 1 1 1

1.16

1.29 1.29
1.25

1.46
1.50

1.40
1.45

1.69
1.65 1.67 1.67

0.5

1

1.5

2

LastFM Anime MovieLens Avg.

P
e
rf

o
rm

a
n

c
e
 I

m
p

ro
v
e

m
e
n

t
(N

o
rm

.
to

 N
B

)

NB NB_2 NB_4 NB_8

Near-bank reduction ratio: 16% 30% 52% 77%

Mapping scheme effectively improves the utilization of bank-level

bandwidth and thus performance of near-bank architecture is improved.

Page .

27

Energy Consumption Evaluation

Our Work (NB) V.S. SPACE

- NB_x: Apply mapping scheme (x is the partition number)

100.00%

90.75%

84.39%

75.36%

69.04%

0.5

0.6

0.7

0.8

0.9

1

1.1

SPACE NB NB_2 NB_4 NB_8

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

(N
o

rm
.
to

 S
P

A
C

E
)

• Advantages of near-bank processing for reducing data movement

1. Less amount of data is transferred through TSVs

2. Off-chip data movement between HMC and DIMMs decreases

as more items are stored in HMC

Our work can save at most 31% energy for data movement.

Page .

28

Outline

Background & Motivations

Key Contributions

Architecture Design

Evaluation Results

Conclusion

Page .

29

Conclusion

• We propose an efficient near-bank architecture for

DLRM that provides:

- Bank-level parallelism in processing embedding layers

- A specialized programming model

- An optimized mapping scheme

• We evaluate our design for DLRM using three different

real-world recommendation datasets:

- Compared to SPACE, our design achieves 2.10x speedup.

- Compared to SPACE, our design saves 31% energy consumption.

- Our mapping scheme improves near-bank reduction ratio from 16%

to 77%.

Page .

30

An Efficient Near-Bank Processing Architecture

for Personalized Recommendation System

Thank you！

Q&A

Presenter: Yuqing Yang

Email: yangyuqing@sjtu.edu.cn

