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Application Scenario of Recommendation Models

Search Engine

Online Shopping

Video/Music

Social Network

Personalized recommendation models are widely used in 
internet services!
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Deep Learning for Personalized Recommendation

Candidate MoviesUser

Neural Network Prediction
(0-1)

Recommendation

• Deep learning can maximize the recommendation accuracy
and deliver better user experience.

Deep learning-based recommendation models consume the 
majority (~79%[1]) resources in AI data centers. 

[1] Gupta U, Wu C J, Wang X, et al. The architectural implications of facebook's dnn-based personalized 
recommendation[C]//2020 IEEE International Symposium on High Performance Computer Architecture 
(HPCA). IEEE, 2020: 488-501.
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Deep Learning Recommendation Model (DLRM)
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Feature Interaction

Fully-connected layers have highly 
regular computational patterns, 
and they can take advantage of 
multi-core CPU or GPU.

Embedding layers have different operation characteristics with FC! 
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Memory Challenges of Embedding Layers

Embedding Table

v1
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vN-1

vN

...

v1

v3

v5

vN-1

Reduced Vector

(Millions of Vectors)

[Gather Operation] [Reduction Operation]

(Tens of Vectors)

...

Gather operations have sparse and irregular memory access 
patterns, reduction operations have low compute intensity. 

Embedding Operation

Embedding operations are memory-bound and demand 
more memory bandwidth.
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3D-Stacked Near-Memory-Processing Architecture

[2] Kal H, Lee S, Ko G, et al. SPACE: locality-aware processing in heterogeneous memory for personalized 
recommendations[C]//2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture 
(ISCA). IEEE, 2021: 679-691.

3D-Stacked Memory

Process on Logic Die[2] Near-Bank Logic

DRAM Die

Logic Die

DRAM Die

DRAM Die
DRAM Die

Vault

TSV I/O Bound Higher Bank-Level Bandwidth

Integrate compute-logic closer to where data is stored:
• Greatly increase memory bandwidth (~8X) 
• Reduce data movement  

Bank

Bank Logic

Logic

32 Vaults

Bank

Bank

Logic

TSV
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Summary

• Deeping learning-based recommendation models consume
the majority resources in AI data centers.

• Memory-bound embedding layers become the bottleneck of
DLRM on traditional computing platforms due to irregular
memory access patterns.

• Near-bank architecture can provide enormous bank-level
bandwidth which is much higher than TSV can provide in
3D-stacked DRAMs.

Target: Design a near-bank processing architecture to
accelerate the embedding layer of DLRM.
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Key Contributions

• An efficient near-bank architecture for recommendation
models which exploits the enormous bank-level bandwidth
of 3D-stacked memory

• A programming model for managing the memory allocation
of embedding tables and embedding kernel offloading

• An optimized mapping scheme based on vector partition to
improve the utilization of the bank-level bandwidth

Achieves up to 2.10x performance gain and 31% energy

saving compared to SPACE (ISCA’21).
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System Overview

CORE 0

L1/L2 Cache

CORE N

L1/L2 Cache

Last-Level Cache

Memory Controller

...

DIMM

DIMM

DIMM

HMC

Host Processor:

• Allocate embedding items between 

HMC and DIMMs

• Offload embedding kernels 

1. encode embedding instructions

2. send instructions to HMC

Bank

Control
Logic

Compute
Logic

... Vault

TSVs

 

 

 

 

 

DRAM Die

DRAM Die

DRAM Die

DRAM Die

Logic Die

Embedding instructions are dispatched and decoded, then gather and

reduction operations are performed on logic units in HMC.
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Embedding Instructions (Emb-Inst)

• Instruction Design

• Instruction Dispatch

Opcode

Add.NB HMC Addr vsize Vault ID Psum Tag

Source
Vector

Size
Destination

Reduction

Indicator

Add.D DIMM Addr vsize Vault ID Psum Tag

NB-Inst

DIMM-Inst

According to the location of embedding items, Opcode is set as add.NB

(item is stored in HMC) or add.D (item is stored in DIMM) .

• Psum Tag: indicate which 
reduction operation the 
vector belongs to

• Vault ID: indicate which 
vault the psum is sent to

 

 

 

 

 

DRAM Die

DRAM Die

DRAM Die

DRAM Die

Logic Die

Emb-Inst Packets 

from Host Processor
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Unit
Mem. Ctrl
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NB-Inst
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Packets
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Logic
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Near-bank Processing Logic Design

 Instruction Decode

 Send DDR.C/A

 Receive NB-Inst

Finally, partial sum result with no more element-wise summation to be

done are sent to the logic die for further reduction (If need).

 Load Emb. Vectors

• Gather

• Reduction

 Element-Wise 
Summation for 
Emb. Vectors with 
Same Psum Tags

Inst

Decoder
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③
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Logic Die Design

After reduction operations, final outputs of embedding kernels

would be sent back to the host processor.

• Dispatch Emb-Insts

• Gather Emb. Vectors 
from DIMMs

• Reduction
1. Local/Remote Psum

from DRAM Dies
2. Emb. Vectors from 

DIMMs

(a)

Dispatch

Unit
Vault Ctrl

Local

NB-Inst

Remote NB-Inst
NoC Router

TSV

DIMM-Inst

Emb-Inst 

Packets

Remote Vault

Inst

Decoder

Mem Req

DIMMs

Logic Die

PE
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Psum

Emb. Vectors

Host

Ouput of Emb. Kernels
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Programming Model: Purposes

• Memory Allocation of Embedding Tables

1. Rearrange embedding tables according to item accesses

2. Set border line of embedding tables according to HMC 

bandwidth (bank-level) ratio of the total memory bandwidth

3. Distribute embedding items between HMC (index < border 

line) and DIMMs (index >= border line) 

• Embedding Kernels Offloading

1. Initialization

2. Embedding instructions generation
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Programming Model: Embedding Table Allocation

• count_access(): Count number of accesses per embedding item

• rearrange_emb(): Rearrange embedding tables by ranking items 

according to number of accesses

// Embedding Table Allocation

access_hash_table = count_access(past_inference_set);

Emb = rearrange_emb(Emb, access_hash_table);

distribution_ratio = HMC_bandwidth / total_bandwidth;

border_line = set_border_line(Emb, access_hash_table, distribution_ratio);

Emb-HMC, Emb-DIMM = Emb_Alloc(Emb, border_line);

σi=1
𝑀 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 𝑜𝑓 𝑖𝑡𝑒𝑚𝑖 / σ𝑗=1

𝑁 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 𝑜𝑓 𝑖𝑡𝑒𝑚𝑗set_border_line():

Emb_Alloc()Store in HMC

Rearranged Table

(N Items)

border line = M

Store in DIMMs

=

distribution_ratio
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// Initialization
n = batch_size * reduction_num
Lengths = vector<int>(batch_size, reduction_num) 

Indices = [idx1, idx2,  , idxn]    
Output = matrix<float>(batch_size, vector_size, 0.0) 

// Embedding Kernels
EmbeddingBag(Emb-HMC,Emb-DIMM,Indices,Lengths,Output) {
    k = 0, m = border_line
    parallel_for (int i = 0; i < batch_size; i++) {
        reduction_num = Lengths[i]
        idx_arr = Indices[k:k+reduction_num]
        for (int j = 0; j < reduction_num; j++) { 
           if (idx_arr[j] <= m) { 
              Output[i] = Element_Wise_Sum(Output[i],Emb-HMC[idx_arr[j]]);
           }
           else {
              Output[i] = Element_Wise_Sum(Output[i],Emb-DIMM[idx_arr[j]-m]);
           }
        }
        k+=reduction_num
    }

}

Programming Model: Embedding Kernel Offloading

Embedding Kernel

NB-Inst

DIMM-Inst

Emb-Inst Packet

Send to HMC
（Offload）

…

Kernel Offloading Stage: Embedding kernels are compiled into 

embedding instructions which are packed into packets to be sent to HMC.
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Mapping Scheme: Problem Analysis

Vault (2D Display)

Bank Group

Bank Group

Bank Group

Bank Group

v4

TSV

v3

v2

v1

Typical Case

Problem

• Embedding vectors can not be reduced

on near-bank logic

• All the vectors are transferred to the 

logic die to perform reduction operations 

through TSVs

1. TSV bandwidth becomes the limit.

2. Bank-level bandwidth can not be 

exploited.

(v1, v2, v3, v4 need to be reduced)
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Mapping Scheme: Partition and Mapping

Vault (2D Display)

Bank Group

TSV

Reduction

Bank Group

Reduction

Bank Group

Reduction

Bank Group

Reduction

v1-1

v2-1

v3-1

v4-1

v1-3

v2-3

v3-3

v4-3

v1-2

v2-2

v3-2

v4-2

v1-4

v2-4

v3-4

v4-4

[Partition] [Map]

v1

v1-1 v1-2 v1-3 v1-4

v3

v3-1 v3-2 v3-3 v3-4

v4

v4-1 v4-2 v4-3 v4-4

v2

v2-1 v2-2 v2-3 v2-4

• Embedding operations are executed

on near-bank logic in parallel.

• Less data (1/4) is transferred

through TSVs, bank-level bandwidth

is fully exploited.
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Experiment Setup

• Recommendation System

- Model: DLRM

- Datasets: Anime, MovieLens, LastFM

• System Simulation

- Develop a cycle-accurate model for near-bank processing architecture 

based on Ramulator[3]

- Use Cacti-3DD[4] to estimate the energy consumption

• Baseline

- SPACE (ISCA’21) for recommendation models

[3] Kim Y, Yang W, Mutlu O. Ramulator: A fast and extensible DRAM simulator[J]. IEEE Computer architecture 
letters, 2015, 15(1): 45-49.
[4] Chen K, Li S, Muralimanohar N, et al. CACTI-3DD: Architecture-level modeling for 3D die-stacked DRAM 

main memory[C]//2012 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2012: 33-38.
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Performance Evaluation

Our Work (NB) V.S. SPACE
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2.08x
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Compared to SPACE, our work can achieve 1.97x speedup on 
average and up to 2.10x speedup (vsize = 256B) .
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Effectiveness of Mapping Scheme
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- NB (Near-Bank Arch): Our work

- NB_x: Apply mapping scheme (x is the partition number)

As the partition number increases, the ratio of near-bank 

reduction rises and bank-level parallelism is exploited. 
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Effectiveness of Mapping Scheme

- NB (Near-Bank Arch): Our work

- NB_x: Apply mapping scheme (x is the partition number)
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Near-bank reduction ratio: 16% 30% 52% 77%

Mapping scheme effectively improves the utilization of bank-level

bandwidth and thus performance of near-bank architecture is improved.
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Energy Consumption Evaluation

Our Work (NB) V.S. SPACE

- NB_x: Apply mapping scheme (x is the partition number)
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• Advantages of near-bank processing for reducing data movement

1. Less amount of data is transferred through TSVs

2. Off-chip data movement between HMC and DIMMs decreases

as more items are stored in HMC

Our work can save at most 31% energy for data movement.
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Conclusion

• We propose an efficient near-bank architecture for 

DLRM that provides:

- Bank-level parallelism in processing embedding layers

- A specialized programming model 

- An optimized mapping scheme 

• We evaluate our design for DLRM using three different 

real-world recommendation datasets:

- Compared to SPACE, our design achieves 2.10x speedup.

- Compared to SPACE, our design saves 31% energy consumption.

- Our mapping scheme improves near-bank reduction ratio from 16% 

to 77%.
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An Efficient Near-Bank Processing Architecture 

for Personalized Recommendation System
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