PAALM: Power Density Aware Approximate Logarithmic Multiplier Design

Shuyuan Yu and Sheldon Tan

VSCLAB Department of Electrical and Computer Engineering University of California, Riverside

Conservations

- Background
- Related Works & Motivation
- PAALM Design
- Results & Discussion
 - > Hardware Performance
 - Error Evaluation
 - DCT & CNN application
- Conclusion

Background

Emerging workloads and application are error tolerant

- Image process and computer vision (DCT, edge detection, contrast stretch, etc.)
- Machine learning (DNN, CNN, Transformer, Language model, etc.)
- Applications interfacing with human being do not need exact values

Approximate computing, which allows the trade-off between area, delay, and power, is more efficient for error tolerant applications.

Background

Approximate Multipliers

- Ad-hoc based
- Inexact adder based
- Smaller multiplication with reduced precision
- Log-based

Advantages for ALM:

- Scalability (similar Rel. error for 8bit, 16-bit, 32-bit)
- Area/Power/Energy efficient
- Acceptable accuracy: **3.76%** (Mean Rel.) & **11.11%** (Peak Rel.)

Approximate Log-based Multiplier (ALM [8])

Concept: $A = 2^{ka} \cdot (1+x)$ $B = 2^{kb} \cdot (1+y)$ $C_{ALM} = \begin{cases} 2^{k_a+k_b} \cdot (1+x) \cdot (1+y) \\ = 2^{k_a+k_b} \cdot (1+x+y), \quad x+y < 1, \\ 2^{k_a+k_b+1} \cdot (x+y), \quad x+y \ge 1 \end{cases}$

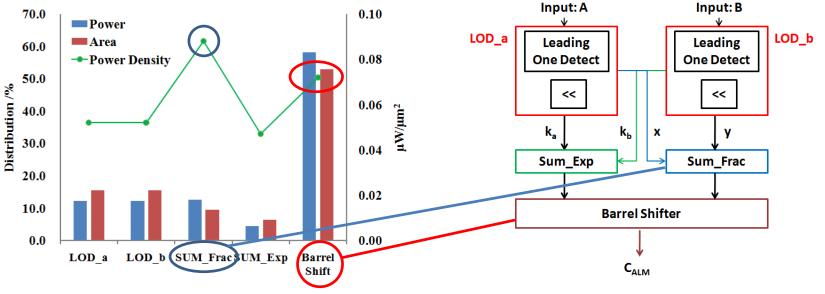
Related Work & Motivation

Problems

Approximate multipliers reduce the area & power consumption at the same time; however, the area usually decreases faster than the power, which leads to a much higher power density when compared with the FxP multiplier baseline.

Approaches	Area (μm^2)	Power Density ($\mu W/\mu m^2$)				
Approaches	Alea (µm)	same frequency	same throughput			
FxP (baseline)	1754.10	0.0512	0.0512			
ALM [8]	820.63	0.0853	0.0693			
LeAp [9]	1040.21	0.1023	0.0831			
REALM [10]	1235.14	0.1010	0.0821			
ILM-EA [11]	1221.92	0.0883	0.0718			
ILM-AA [11]	887.47	0.0871	0.0708			
HEALM-TA [12]	595.46	0.0863	0.0702			
HEALM-SOA [12]	664.33	0.0896	0.0729			

8-bit multipliers power density of ALM and improved state of art works


Motivation: propose approximate logarithmic multiplier design with reduced power density and improve the hardware performance at the same time.

Power Dense Unit in the Conventional ALM Design

Unit power density in an ALM design

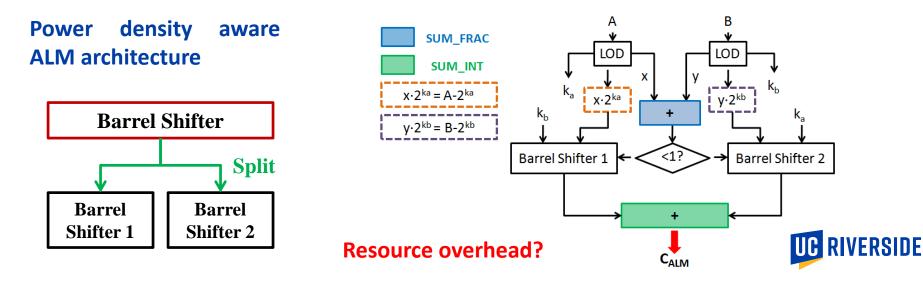
Conservations

ALM architecture

Power density are different for different units in ALM!

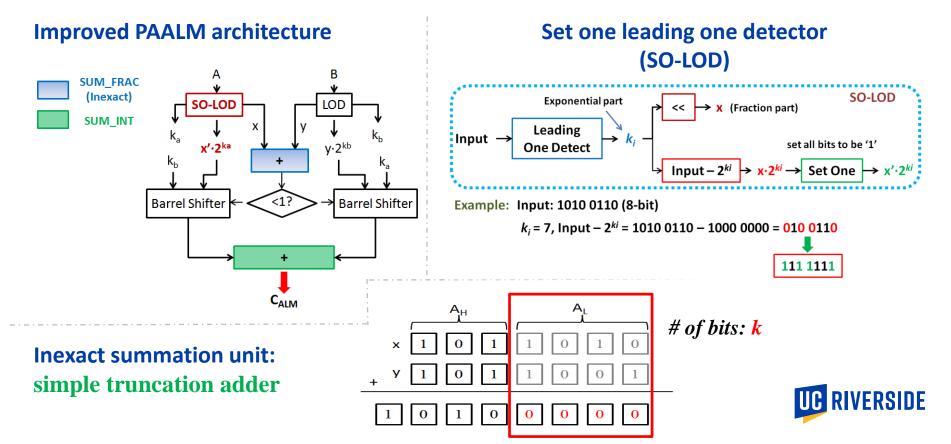
PAALM Design

Rewrite the math expression of ALM


Math equation of ALM:

$$C_{ALM} = \begin{cases} 2^{k_a + k_b} \cdot (1 + x + y), & x + y < 1, \\ 2^{k_a + k_b + 1} \cdot (x + y), & x + y \ge 1 \end{cases}$$

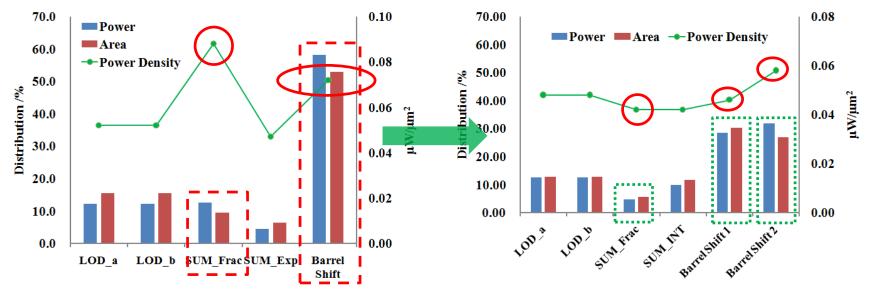
Where inputs: $A = 2^{ka} \cdot (1+x)$ $B = 2^{kb} \cdot (1+y)$


When $x+y < 1: 2^{ka+kb} \cdot (1+x+y) = 2^{ka} \cdot (1+x) \cdot 2^{kb} + 2^{kb} \cdot y \cdot 2^{ka} = A \cdot 2^{kb} + (B - 2^{kb}) \cdot 2^{ka}$

When $x+y \ge 1: 2^{ka+kb+1} \cdot (x+y) = 2^{ka} \cdot (1+x) \cdot 2^{kb+1} + 2^{kb} \cdot y \cdot 2^{ka+1} = (A-2^{ka}) \cdot 2^{kb+1} + (B-2^{kb}) \cdot 2^{ka+1}$

Introducing Inexact Summation & Error Compensation Scheme

Commencest



More Balanced Component Power Density

Unit power density in an ALM design

L Sensessiers

Unit power density in a PAALM design

The unit with the highest power density now is reduced from $88 nW/\mu m^2$ to $58 nW/\mu m^2$.

Results & Discussion

Experimental setup

- Baseline: FxP

L Sensession

8-bit Hardware & Error Metrics

Approach	k	Lat.	Area (µm ²)	Power Density ($\mu W/\mu m^2$)	Err. Comp.	Mean Error /%	Peak Error /	
FxP (baseline)	1	5	1754.10	0.0512	/	/	/	
ALM [8]	0	3	820.63	0.0693	w/o	3.76	11.11	
	0	2	1391.44	0.0507	w/o	3.76	11.11	
	3	2	1326.89	0.0508	w/o	3.77	11.77	
	3	2	1339.85	0.0505	w/t	2.96	11.77	
PAALM	4	2	1274.79	0.0466	% w/o	3.83	12.59	
	4	2	1287.24	0.0455	w/t	3.27	12.59	
(proposed)	5	2	1212.52	0.0453	w/o	4.09	14.05	
31.6%	5	2	1245.50	0.0505	w/t	3.52	14.05	
J1.0 /0	6	2	1199.81	0.0453	w/o	5.13	16.43	
	6	2	1201.08	0.0467	w/t	4.42	16.43	
			Other stat	e of art improved logarithn	nic multiplier	S		
LeAp [9]	0	3	1040.21	0.0831	w/t	1.38	4.71	
REALM [10]	0	3	1235.14	0.0821	w/t	0.90	3.96	
KEALW [10]	4	3	709.57	0.0752	w/t	6.58	23.07	
ILM-EA [11]	0	3	1221.92	0.0718	w/o	2.84	11.11	
ILM-AA [11]	4	3	887.47	0.0708	w/o	5.47	23.47	
HEALM-TA [12]	4	3	595.46	0.0702	w/t	3.66	13.77	
HEALM-SOA [12]	4	3	664.33	0.0729	w/t	3.12	12.17	

EDK 32nm standard
cell library (SNPS DC)
Same throughput
(different latency will
lead to different working

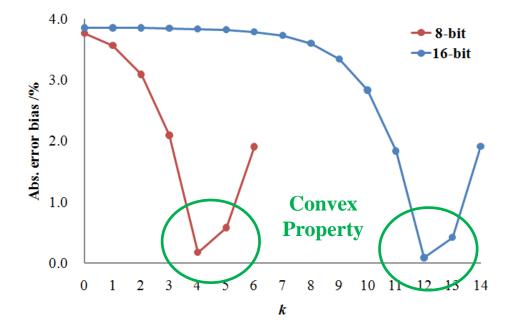
frequency)

1 million random input
pairs (Matlab) for 8-bit;
10 million random input
pairs for 16-bit

Results & Discussion

Experimental setup

Compensation


16-bit Hardware & Error Metrics

- Baseline: FxP	Approach	k	Lat.	Area (µm ²)	Power Density ($\mu W/\mu m^2$)	Err. Comp.	Mean Error /%	Peak Error /%	
- basenne: FxP	FxP (baseline)	1	7	8753.48	0.0369	/	/	/	
- EDK 32nm standard	ALM [8]	0	3 1714.20		0.0407	w/o	3.85	11.11	
EDIX 52iiii Standaru		0	2	3296.25	0.0360	w/o	3.85	11.11	
cell library (SNPS DC)		9	2	2939.18	0.0369	w/o	3.85	11.34	
		9	2	2978.31	0.0365	w/t	3.43	11.34	
- Same throughput		10	2	2836.50	0.0363	w/o	3.85	11.56	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PAALM	10	2	2957.98	0.0361	w/t	3.15	11.56	
(different latency will		11	2	2733.06	0.0368	w/o	3.88	12.00	
	(proposed)	11	2	2898.26	0.0368	w/t	2.92	12.00	
lead to different working	(proposed)	12 2 2678.93 0.0365 w/o 3	3.96	12.82					
B		12	2	2798.89	0.0361	<b>547.9 w</b> /t <b>w</b> /t	3.43	12.82	
frequency)		13	2	2642.34	0.0363	<b>0</b> 0 w/o	4.29	14.28	
	70.8%	13	2	2743.48	0.0357	w/t	3.70	14.28	
- 1 million random input	10.0 /0	14		2553.89	0.0348	w/o	5.48	16.67	
<b>L</b>		14	2	2619.46	0.0359	w/t	4.62	16.67	
pairs (Matlab) for 8-bit;	Other state of art improved logarithmic multipliers								
10	LeAp [9]	0	3	1990.71	0.0455	w/t	0.98	4.76	
10 million random input	REALM [10]	0	3	2383.36	0.0488	w/t	0.75	3.70	
		9	3	1572.90	0.0423	w/t	1.06	5.27	
pairs for 16-bit	HEALM-TA [12]	9	2	1511.39	0.0410	w/t	1.64	5.83	
	HEALM-SOA [12]	9	2	1577.47	0.0412	w/t	1.38	5.15	

### **Results & Discussion**

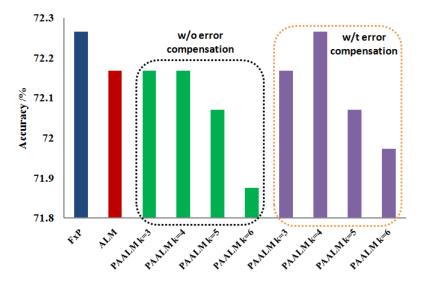
Conservations

#### **Error Bias Improvement**



A "**rebound**" in both 8-bit and 16-bit PAALM error bias curves.

The "set one" error compensation tends to introduce larger and larger positive error to balance the negative error due to the log-based approximation.




## **Application: Convolutional Neural Network**

#### Dataset: CIFAR10

- 2 CONV (convolution) layers
  + 3 FC (fully connected) layers
- Trained with 3000 steps using double-precision floating point
- Batch size: 128
- Inference: 8-bit
- Accuracy verify: 1024 images

#### CIFAR10 dataset inference accuracy based on different approximate multipliers





## **Application: Discrete Cosine Transform**

Companyates

#### **Image quality: PSNR (dB)**

Approach	k	Err. Comp.	Lena	Boat	Barbara	House	Pepper	Avg.	
FxP (baseline)	/	/	40.3	39.7	39.6	40.1	38.5	39.6	
ALM	0	w/o	19.1	18.7	19.3	18.4	18.7	18.8	
PAALM (proposed)	0	w/o	19.1	18.7	19.3	18.4	18.7	18.8	
	3	w/o	19.0	18.6	19.3	18.4	18.6	18.8	
	3	w/t	21.7	21.2	21.9	21.3	21.5	21.5	
	4	w/o	19.1	18.7	19.3	18.4	18.7	18.8	1 <b>1</b> 8.6dB
	4	w/t	27.5	26.5	27.0	28.8	27.0	27.4	8.00D
	5	w/o	18.4	18.1	18.6	17.1	17.9	18.0	-
	5	w/t	24.8	23.5	24.5	27.4	24.7	25.0	
	6	w/o	w/o 16.3 16.1	16.1	16.4	14.9	15.9	15.9	
	6	w/t	20.5	20.0	20.2	17.4	19.2	19.5	

UC RIVERSIDE

## Conclusion

• Propose a power density aware approximate logarithmic multiplier design (PAALM) by redesigning the components with high power density in the conventional ALM design.

• Experimental results show that the proposed 8/16-bit PAALM design can improve 11.5%/5.7% of power density and 31.6%/70.8% of area when compared to the fixed-point multiplier baseline, respectively.

• By introducing inexact summation and error compensation, PAALM can achieve extremely low error bias of -0.17/0.08 with 8/16-bit precision, respectively.

• Furthermore, we implement the PAALM design in a CNN workload and test it on CIFAR10 dataset, showing that with error compensation, PAALM can achieve the same inference accuracy as the fixed-point multiplier. Besides, we evaluate the PAALM in a DCT application. The results show that with error compensation, PAALM can improve the image quality of 8.6dB in average when compared to the ALM design.

