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Background - Fast Fourier Transform (FFT)

« Fast Fourier Transform (FFT) is a fundamental algorithm in digital
communication and signal processing

» For FFT accelerators in resource-constrained systems, they need to
achieve both high performance and energy efficiency
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Background - Approximate FFT Accelerator

* The requirements of full precision and exactness are not always
necessary for FFT operations

« Explore approximate design of FFT to achieve sufficient instead of
excessively accurate computational precision
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Background - Related Work

Circuit Level Approximation
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« Method: directly approximate the
underlying circuits to replace exact units

« Limitation: ineffective optimization due
to missing link between FFT algorithm
precision and introduced approximation

[A. K. Y. Reddy, et al., IEEE ICCES, 2018]

Algorithm Level Approximation
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* Method: fine-tune the value of the rotation
factor to reduce multiplication complexity

« Limitation: low flexibility to support
versatile applications

[V. Ariyarathna, et al., IEEE TAP, 2019]
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Background - Challenges

 Ineffective optimization due to missing link between the FFT algorithm
precision and the introduced approximation

» Explore the relationship between the introduced circuit level approximations
and the algorithm level precision requirements
» Optimize the designed FFT to maximize the benefits of approximate computing

* Low flexibility to support versatile applications
» Design configurable circuit to support different applications
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« Overview
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Overview - Baseline of Our Work

* R2-SDF pipeline FFT based on DIF
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* Piecewise-linearly-Approximated
floating-point Multiplier (PAM)
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[Chuangtao Chen, et al., ICCAD, 2020]
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Overview - A Top-down Approximate FFT Design Methodology

Exploit the error-tolerance nature with the FFT precision specification
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Overview - Methodology Details

Error Modeling Approximation Design
Optimization Implementation
Error Characteristics . Satisfy accuracy « Approximation
Analysis specification Error Tolerance
* Minimize hardware * Approximation
Error Appr. |
Error Model Model overhead Level Balance
Construction Minimize Z Rtage Delay
Subject to: PSNRp,q > PSNRgpec
Appr. Level
FFT PreCiSion P(x | x € Setyy,x = PSNRppq) > Probgp,. HES |
CaICUIation NstagelS integer, ngrqqe € [0,11] C 3
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Error Modeling - Error Characteristics Analysis

« [Calculate the exact error

» An FP number: E, = sign, X x X 2Ex
» Error introduced by the approximate multiplier PAM:

n — ' ' Ex+E
error™ = —sign,sign, X (x — k,)(y — ky,) X 27%7%y
k, =10.5+ floor(x x 2™)] x 27" Depend on F,, E, and
ky =[0.5 + floor(y x 2™)] x 27" approximate level n

 |Find a conservative error measure
» If FP numbers FE, F, € [—-bnd, bnd] and bnd happens to be the power of 2

error™ < |error] 4| = 4Epma~™~1  Dpepend on bnd and n

How to make error™ only depend on the approximate level n?

13/25



Error Modeling - Error Model Construction

 |Eliminate all the parameters except the approximate level n
» The relative error for the product of F.E, :

n _error™ _ —(x—kyx)(y—ky) 1
rel_err (Fx» Fy) = TR, . < an+1  Only depend onn

- |Use the error at a particular percentile g%, for estimation
» The distribution of rel_err™ with x, y uniformly selected in [1,2):

ot
N
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an+1 E.E, + error™
= F,E,(1 + rel_err™(Fy E,))
~ FE, (1 + B35 5)
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Why we replace error™ with 85,,?
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Error Modeling - Error Model Construction

. N \nyi 2 10% & ' '
Why we replace error™ with p; , | —o—sigma=85%

~P—=sigma=90%
102} sigma=95% |

» P&, can be pre-characterized with
certain n and g, while error™ cannot

» Bs, effectively simplifies the error
estimation, while error™ is complex

ratio value
S
S

) .. -6 L
» Sometimes it is hard to calculate the 10
exact error™, while Bz, is much
easier to calculate 108 L
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Error Modeling - FFT Precision Calculation

« A 64-point R2DIF algorithm is used as a demonstration example:

Os[i] = (Ds—1[i] + Ds_1[i + 267~V 4 02_ YW [i] + 62

62: the introduced approximate error
W' the rotation factor which is always less than 1

» 62, may get reduced by W and hence we can assign larger approximations in
prior stages = Approximation error tolerance

» If 2, is a large error and dominates the entire FFT, it will be meaningless to
reduce 62 for improving the overall accuracy
- Approximation balance
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Approximation Optimization

* Formulate the problem as a Mixed-Integer Nonlinear Optimization Problem
(MINLP):

Minimize Z Nstage Maximize the possible
approximation

Subject to: PSNRy,;,,g > PSNRspec
P(x | x € Setm, x 2 PSNRy,q) > Probspec

Nstage € [0, 11]

et

Ensure the algorithm accuracy of the optimized design
to satisfy the precision specification
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Design Implementation

« Two principles to guide the design implementation:

» Approximation error tolerance
PSNR decreases less if the earlier stage is assigned with a low approximate level

» Approximation balance
The accuracy increase In the last stage does not help the overall accuracy
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Performance of Error Model

 Validate the accuracy of the proposed error model on a 256-point R2DIF FFT

» Small deviations to accurate PSNR
» Controllable conservativeness with an optional o
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Performance of Optimization

- Validate the proposed optimization flow with different PSNR specifications
for a 256-point R2-DIF FP FFT

» Solutions are close to the optimal combinations
» Significantly decrease design time
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Approximate FFT Design Comparison

« Comparison between the approximate FFT and an exact FFT

» Satisfy the PSNR requirements with smaller than 6.5% difference
» 20% area saving » 40% speed improvement » 15% energy saving

PSNRSpeC (dB) 60 Exact
PSNR_ (dB) 62.8 73.8 85 95.6 145.7
Deviation 4.67% 5.42% 5.88% 6.22% -
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Approximate FFT Design Comparison

« Comparison between the approximate FFT and prior state-of-the-art
approximate FFT designs

» Wider precision range
» Higher energy efficiency with tight PSNR constraint
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Conclusions

A top-down approximate FFT design methodology

» Fully exploit the error-tolerance nature of the FFT algorithm
» Automatically determine the appropriate approximate levels

An FFT approximation error model
» Bound the impact of circuit approximation on the FFT algorithm precision

An FFT approximation optimization flow
» Maximize the energy efficiency while meeting the design specifications

Achieve almost 2 X wider precision-range and higher energy-efficiency
when compared to the prior approximate FFT designs
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