

Depth-optimal Buffer and Splitter Insertion and Optimization in AQFP Circuits

Alessandro Tempia Calvino

Giovanni De Micheli

ASP-DAC 2023

Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

alessandro.tempiacalvino@epfl.ch

17th January 2023

Adiabatic Quantum-Flux Parametron

- Superconducting device [1]
- Operates at few degrees Kelvin ≈4K
- Very low energy consumption \rightarrow 10⁻² compared to CMOS

[1] M. Hosoya *et al.*, "Quantum flux parametron: a single quantum flux device for Josephson supercomputer," in *IEEE Transactions on Applied Superconductivity*, vol. 1, no. 2, pp. 77-89, June 1991.

Adiabatic Quantum-Flux Parametron

- Driven by AC power $(I_x) \rightarrow$ adiabatic operation
 - Serves also as a clock signal
 - Synchronizes the computation
- Every gate is clocked
- Clock at ≈5 GHz
- Majority-based logic
 - Free inversion

Majority-3 gate

and Optimization in AQFP Circuits

Insertion

and Splitter

Depth-optimal Buffer

AQFP: technology constraints

Fanout branching:

- Limited driving capacity of 1 gate
- Need splitting elements for multiple fanout
- A technology library contains a 1-to-s_b clocked splitter (s_b typically 3 or 4)

Path balancing:

- Gates are clocked
- Need operations to be synchronized
- Insert clocked buffers to delay fast paths

AQFP: technology constraints example

AQFP: EDA challenges

- A large portion of the area is occupied by buffers and splitters
- How do we synthesize the logic to reduce imbalances and fanout
- How do we insert buffers and splitters to minimize:
 - Area (NP-hard)
 - Delay
- Area is related to delay \rightarrow path balancing

AQFP: related works

Main research problems:

- 1) Logic optimization for AQFP
- 2) Buffer and splitter insertion and optimization
- 3) Complete flow for AQFP [2]

[2] Christopher L Ayala, Ro Saito, Tomoyuki Tanaka, Olivia Chen, Naoki Takeuchi, Yuxing He, and Nobuyuki Yoshikawa, "A semi-custom design methodology and environment for implementing superconductor adiabatic quantum-flux-parametron microprocessors", Superconductor Science and Technology 33, 5 (2020).

AQFP: related works

Logic optimization for AQFP:

- Majority-inverter-graph (MIG) optimization [3]
- MIG optimization considering fanout branching and path balancing [4][5]
 - Limit the gate fanout
 - Prefer balanced logic

[3] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli, "Majority-Inverter Graph: A New Paradigm for Logic Optimization," IEEE Trans. CAD 2016
[4] Eleonora Testa, Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli, "Algebraic and Boolean Optimization Methods for AQFP Superconducting Circuits," In Proc. ASPDAC 2021
[5] G. Meuli *et al.*, "Majority-based Design Flow for AQFP Superconducting Family," *DATE* 2022

AQFP: related works

Buffer and splitter insertion and optimization:

- First automated insertion with local optimization [6]
- Optimal insertion for a single wire and local optimization [7]
- Formulation as a scheduling problem [8]

[6] R. Cai, O. Chen, A. Ren, N. Liu, N. Yoshikawa and Y. Wang, "A Buffer and Splitter Insertion Framework for Adiabatic Quantum-Flux-Parametron Superconducting Circuits," ICCD 2019

[7] Chao-Yuan Huang, Yi-Chen Chang, Ming-Jer Tsai, and Tsung-Yi Ho, "An Optimal Algorithm for Splitter and Buffer Insertion in Adiabatic Quantum-Flux-Parametron Circuits," In ICCAD 2021

[8] Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli, "Beyond local optimality of buffer and splitter insertion for AQFP circuits," In Proc. DAC 2022

AQFP: contributions

- The first **depth-optimal** algorithm to insert buffers and splitters
- A heuristic based on minimum-register retiming for global B/S minimization
- An AQFP mapping and optimization flow

As a scheduling problem \rightarrow assign nodes to a level

16

- It generates a minimum-height splitter tree
- By applying this algorithm in reverse topological order it generates a depth-optimal AQFP circuit → ALAP scheduling
 - Assign POs to a level according to an upper bound
 - · Construct minimum-height splitter trees in reverse topological order
- Runs in **linear time** w.r.t. the number of gates

Share buffers and splitters

19

- Objective of **globally** maximizing the **sharing** of splitters and buffers
 - Previous work on retiming-like approaches is only local on a single wire [2]
- Minimum-register retiming [9]
 - Used to minimize globally the number of register
 - Executes in polynomial time
 - Dual to the max-flow/min-cut problem
- Buffers and splitters can be treated like registers but:
 - A B/S element that gets relocated transfers its fanout to its fanin gate
 - The relocation is limited by the fanout constraints

[2] Christopher L Ayala, Ro Saito, Tomoyuki Tanaka, Olivia Chen, Naoki Takeuchi, Yuxing He, and Nobuyuki Yoshikawa, "A semi-custom design methodology and environment for implementing superconductor adiabatic quantum-flux-parametron microprocessors", Superconductor Science and Technology 33, 5 (2020).
 [9] Charles E. Leiserson and James B. Saxe, "Retiming Synchronous Circuitry," Algorithmica 6, 1991, 5–35

- 1. Select a subset of B/S elements to be retimed
 - Their relocation does not violate the fanout constraints
- 2. Each B/S element is a source and sink of a flow
- 3. Compute the minimum cut
- 4. Reposition the B/S elements to the minimum cut
- 5. Repeat until no more improvement

Mapping to AQFP

Mapping to AQFP

- 1. Start from a majority-inverter graph (MIG) [3]
 - Abstracts the technology
- 2. Depth-optimal B/S insertion
- 3. B/S retiming
- 4. Loop:
 - 1. Chunk movement [8] \rightarrow chunk of nodes are moved up or down
 - 2. B/S retiming

[3] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli, "Majority-Inverter Graph: A New Paradigm for Logic Optimization," IEEE Trans. CAD 2016
[8] Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli, "Beyond local optimality of buffer and splitter insertion for

Depth-optimal Buffer and Splitter Insertion and Optimization in AQFP Circuits

Open Source Implementation

- The code has been implemented in C++ in the library Mockturtle <u>https://github.com/lsils/mockturtle</u>
- Tools for mapping and optimizing MIG
- Tools for AQFP optimization and verification

[7] Chao-Yuan Huang, Yi-Chen Chang, Ming-Jer Tsai, and Tsung-Yi Ho, "An Optimal Algorithm for Splitter and Buffer Insertion in Adiabatic Quantum-Flux-Parametron Circuits," In ICCAD 2021

Mapping to AQFP: EPFL benchmarks

Bench.	Baseline		Depth-optimal B/S insertion				B/S optimization							
	Size	Depth	#B/S	#JJs	JJ depth	Time	e (s)	#B/S	∆ B/S(%)	#JJs	∆ JJs(%)	Ti	ime (s)	
adder	384	129	49788	101880	258	0	0.00	49535	0.51	101374	0.50	[0.39	
bar	3016	12	2001	22098	20	0	0.01	2001	0.00	22098	0.00		0.10	
div	57300	2217	1881255	4106310	4371	0).87	-	-	-	-		>300	
hyp	136109	8762	9035578	18887810	17246	2	2.78	-	-	-	-		>300	
log2	24456	200	129547	405830	379	0	0.10	86705	33.07	320146	21.11		64.18	
max	2413	150	69892	154262	160	0	0.01	68462	2.05	151402	1.85		1.38	
multiplier	19710	133	102005	322270	264	0	0.08	63414	37.83	245088	23.95		43.50	
sin	4303	110	18905	63628	188	0	0.01	14886	21.26	55590	12.63		4.12	
sqrt	23238	3366	1791005	3721438	6628	0).49	1343705	24.97	2826838	24.04	ŝ	284.10	
square	12180	126	89516	252112	251	0	0.03	63630	28.92	200340	20.54		18.30	
arbiter	7000	59	27566	97132	63	0	0.01	25721	6.69	93442	3.80		1.28	
mem_ctrl	42758	73	216927	690402	114	0).27	215202	0.80	686952	0.50		10.55	
voter	7860	47	19263	85686	86	0	0.01	15736	18.31	78632	8.23		0.92	

Conclusions

- Contributions:
 - The first **depth-optimal** algorithm to insert buffers and splitters
 - Global B/S optimization algorithm based on minimum register retiming
 - An AQFP mapping and optimization flow
- Improvements:
 - Up to 20.7% reduction in the number of buffers and splitters
 - Depth optimality
- Our method scales to large benchmarks
 - Optimization up to 1M buffers and splitters in < 300s

Depth-optimal Buffer and Splitter Insertion and Optimization in AQFP Circuits

Alessandro Tempia Calvino

Giovanni De Micheli

ASP-DAC 2023

Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

alessandro.tempiacalvino@epfl.ch

17th January 2023