
Area-Driven FPGA Logic Synthesis
Using Reinforcement Learning
Guanglei Zhou and Jason Anderson

Department of ECE, University of Toronto

28th Asia and South Pacific Design Automation Conference

January 17th, 2023

1

2

Reinforcement Learning-Based Logic Synthesis

Logic Synthesis
CAD Tool

How to use RL to better optimize RTL circuits?

Motivation

3

• Logic synthesis involves a rich set of
optimization commands

• The order of such commands can lead to
different results (a.k.a. ordering problem)

• Fixed recipe is often used for various circuits
✖non-optimal solution

• Benefit of having a bespoke sequence for
different circuits is promising

Prior Work

4

1K. Zhu, M. Liu, H. Chen, Z. Zhao, and D. Z. Pan, “Exploring Logic Optimizations with Reinforcement Learning and Graph Convolutional Network,” in Proc. of
ACM/IEEE Workshop on Machine Learning for CAD, 2020, pp. 145-150
2A. Hosny, S. Hashemi, M. Shalan and S. Reda, "DRiLLS: Deep Reinforcement Learning for Logic Synthesis," 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), 2020, pp. 581-586

• Limitation for existing approaches1,2: trained and tested on the same individual circuits.
• Hard to distinguish whether gains are just memorization or actual learning is happening

Prior Work

5

• Limitation for existing approaches1,2: trained and tested on the same individual circuits.
• Hard to distinguish whether gains are just memorization or actual learning is happening

1K. Zhu, M. Liu, H. Chen, Z. Zhao, and D. Z. Pan, “Exploring Logic Optimizations with Reinforcement Learning and Graph Convolutional Network,” in Proc. of
ACM/IEEE Workshop on Machine Learning for CAD, 2020, pp. 145-150
2A. Hosny, S. Hashemi, M. Shalan and S. Reda, "DRiLLS: Deep Reinforcement Learning for Logic Synthesis," 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), 2020, pp. 581-586

Our Improvements
• Enhance the observable state that RL “sees”
• Conduct a feature-importance analysis using a random forest classifier
• Able to show the importance of added features and prune the feature space by 40%

• Outperform a commonly used ABC heuristic recipe (resyn2) and is able to generalize
trained experience: separate training and validation circuit sets.

Observation State Enhancement

6

of nodes # of Edges # of levels % of ANDs

of
Latches

of Primary
Input

of Primary
Output

% of NOTs

Lower four features will not change

• Extract more features from input circuits using a
previous study1.
• Enhance state from 8 dimensions (as used in DRiLLS2) to 21

dimensions

1M. Hutton, J. Rose, J. Grossman, and D. Corneil, “Characterization and parameterized generation of synthetic combinational benchmark circuits,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Syst., vol. 17, no. 10, pp. 985–996, 1998.
2A. Hosny, S. Hashemi, M. Shalan and S. Reda, "DRiLLS: Deep Reinforcement Learning for Logic Synthesis," ASP-DAC, 2020, pp. 581-586

7

1M. Hutton, J. Rose, J. Grossman, and D. Corneil, “Characterization and parameterized generation of synthetic combinational benchmark circuits,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Syst., vol. 17, no. 10, pp. 985–996, 1998.
2A. Hosny, S. Hashemi, M. Shalan and S. Reda, "DRiLLS: Deep Reinforcement Learning for Logic Synthesis," ASP-DAC, 2020, pp. 581-586

Circuit characteristics used by RL agent

of nodes # of Edges # of levels % of ANDs

of
Latches

of Primary
Input

of Primary
Output

% of NOTs

Lower four features will not change

1 # of Nodes 12 Primary output shape based on the delay level

2 # of Edges 13 Average of node fan-out

3 # of Flip Flops 14 Standard deviation of node fan-out

4 # of combinational nodes 15 Average of combinational node fan-out

5 # of LUTs in the mapped FPGA 16 Standard deviation of combinational node fan-out

6 # of Levels in the mapped FPGA 17 Average of pi node fan-out

7 Node shape based on delay level 18 Standard deviation of pi node fan-out

8 Input shape based on the delay level 19 Average of D-type flip flop node fan-out

9 Output shape based on the delay level 20 Standard deviation of D-type flip flop node fan-out

10 Latches shape based on the delay level 21 Reconvergence value

11 Edge length distribution shape based on the delay level

Observation State Enhancement
• Extract more features from input circuits using a

previous study1.
• Enhance state from 8 dimensions (as used in DRiLLS2) to 21

dimensions

Feature Analysis

Reconvergence Value
of Nodes/ Edges

1. Generate 10k
data points of

[observations, reward]

2. Random forest
classifier

3. Feature-importance
Value

8
Please refer to slide 7 table

• Feature-importance analysis using a random forest classifier

Experimental Setup: Circuit-by-Circuit Style

9

• Circuit-by-circuit (CBC) style:
• One RL agent for one benchmark, train and validate using the same circuit from EPFL benchmark

• ABC for logic synthesis optimization
• Mapped to 6-LUTs using the ABC priority cuts mapper (command: if -a -K 6), targeting area reduction

• Reinforcement learning setting
• Action space: [balance, rewrite, rewrite -z, resub, resub -z, refactor, refactor-z , undo]
• State space: 21 features extracted from Ccirc1 + action history of these 8 commands

• RL algorithm evaluated: PPO, A2C (also used in DRiLLS1)

• Train for 5k samples

1A. Hosny, S. Hashemi, M. Shalan and S. Reda, "DRiLLS: Deep Reinforcement Learning for Logic Synthesis," ASP-DAC, 2020, pp. 581-586

Training Performance

Best performing
model

10

• All the values are
Geomean of
number of LUTs

• Smaller the value
indicates better
area reduction

Comparison study of logic synthesis optimization approaches (GEOMEAN)

926.6

808.8

770.8

753.5

769.5

750.7

769.5

752.5

768.7

748.6

740

760

780

800

820

840

860

880

900

920

940

First10 Last10 First10 Last10 First10 Last10 First10 Last10

Initial Resyn2 DRiLLS RL-A2C RL-PPO RL-PPO-Pruned

G
EO

M
EA

N

Training Performance

11

11

16 16 16

0

2

4

6

8

10

12

14

16

18

DRiLL
S

RL-A
2C

RL-P
PO

RL-P
PO-P

run
ed

of

 b
en

ch
m

ar
ks

 s
ho

w
 le

ar
ni

ng
 s

ig
n

3 3

1

13

0

2

4

6

8

10

12

14

DRiLL
S

RL-A
2C

RL-P
PO

RL-P
PO-P

run
ed

of

 b
es

t p
er

fo
rm

in
g

be
nc

hm
ar

ks

The count of best explored benchmarks of
each RL method Learning sign count of each RL method

Command Frequency Analysis

12

Observations:
• At first, same

frequency (12.5%
each) and then it
varies

• Certain commands
are more useful for
certain circuits

• rewrite –z is the
most popular
command

undo balance resub -z resub refactor -z refactor rewrite -z rewrite

max adder

cavlc ctrl

sin square

priority i2c

Command Frequency Analysis for PPO-Pruned model

Inference Performance

13

Circuit-by-circuit style inference performance (GEOMEAN)

y-axis lists all the experiments where DRiLLS1 is the prior work
and x-axis is the percentage improvement against the resyn2-1.

1A. Hosny, S. Hashemi, M. Shalan and S. Reda, "DRiLLS: Deep Reinforcement Learning for Logic Synthesis," 2020 25th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2020

Experimental Setup: Generalized Style

14

• Generalized style: training and validation circuit sets

• Experiment 1: Train and validate on the same set
• Training set: Full 16 EPFL benchmark circuits
• Validation set: Full 16 EPFL benchmark circuits

• Experiment 2: Train on one set and validate on the other set
• Training set: Half of 16 EPFL benchmark circuits
• Validation set: The other half of 16 EPFL benchmark circuits

Inference Performance

Area reductions of 8.3-10.5% vs. resyn2, depending on the selection of
the training vs. validation circuit set. 15

normalized by resyn2
optimized value

Generalized inference performance (GEOMEAN)

Circuit-by-circuit style inference performance (GEOMEAN)

a.) Generalization Experiment 1

b.) Generalization Experiment 2
y-axis lists all the experiments and x-axis is the percentage
improvement against the resyn2-1.

Effectiveness Analysis

16

a.) Generalization Experiment 1 b.) Generalization Experiment 2

Effectiveness analysis – trained RL agent (blue) vs. random (orange)

Conclusion

17

• We present a logic synthesis framework that trains an RL agent to intelligently choose
logic synthesis optimizations based on the characteristics of the circuit under
optimization.

• Unlike previously published RL approaches, our approach demonstrates generalized
learning across multiple circuits, and can use the trained agent in inference mode
without the need for further training.

• The immediate next step is to extend the evaluation to depth-driven synthesis,
automate the selection of episode length as well as fine-tuned a trained RL agent.

18

Thank You for Listening, Questions?

