Area-Driven FPGA Logic Synthesis Using Reinforcement Learning

Guanglei Zhou and Jason Anderson

Department of ECE, University of Toronto

28th Asia and South Pacific Design Automation Conference January 17th, 2023

Reinforcement Learning-Based Logic Synthesis

How to use RL to better optimize RTL circuits?

Motivation

- Logic synthesis involves a rich set of optimization commands
- The order of such commands can lead to different results (a.k.a. ordering problem)
- Fixed recipe is often used for various circuits
 * non-optimal solution
- Benefit of having a bespoke sequence for different circuits is promising

Prior Work

- Limitation for existing approaches^{1,2}: trained and tested on the same individual circuits.
 - Hard to distinguish whether gains are just memorization or actual learning is happening

¹K. Zhu, M. Liu, H. Chen, Z. Zhao, and D. Z. Pan, "Exploring Logic Optimizations with Reinforcement Learning and Graph Convolutional Network," in Proc. of ACM/IEEE Workshop on Machine Learning for CAD, 2020, pp. 145-150 ²A. Hosny, S. Hashemi, M. Shalan and S. Reda, "DRiLLS: Deep Reinforcement Learning for Logic Synthesis," 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), 2020, pp. 581-586

Prior Work

- Limitation for existing approaches^{1,2}: trained and tested on the same individual circuits.
 - Hard to distinguish whether gains are just memorization or actual learning is happening

Our Improvements

- Enhance the observable state that RL "sees"
- Conduct a feature-importance analysis using a random forest classifier
 - Able to show the importance of added features and prune the feature space by 40%
- Outperform a commonly used ABC heuristic recipe (resyn2) and is able to generalize trained experience: separate training and validation circuit sets.

¹K. Zhu, M. Liu, H. Chen, Z. Zhao, and D. Z. Pan, "Exploring Logic Optimizations with Reinforcement Learning and Graph Convolutional Network," in Proc. of ACM/IEEE Workshop on Machine Learning for CAD, 2020, pp. 145-150 ²A. Hosny, S. Hashemi, M. Shalan and S. Reda, "DRiLLS: Deep Reinforcement Learning for Logic Synthesis," 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), 2020, pp. 581-586

Observation State Enhancement

- Extract more features from input circuits using a previous study¹.
 - Enhance state from 8 dimensions (as used in DRiLLS²) to 21 dimensions

# of nodes	# of Edges	# of levels	% of ANDs
# of Latches	# of Primary Input	# of Primary Output	% of NOTs

Lower four features will not change

¹M. Hutton, J. Rose, J. Grossman, and D. Corneil, "Characterization and parameterized generation of synthetic combinational benchmark circuits," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Syst., vol. 17, no. 10, pp. 985–996, 1998. ²A. Hosny, S. Hashemi, M. Shalan and S. Reda, "DRiLLS: Deep Reinforcement Learning for Logic Synthesis," ASP-DAC, 2020, pp. 581-586

Observation State Enhancement

- Extract more features from input circuits using a previous study¹.
 - Enhance state from 8 dimensions (as used in DRiLLS²) to 21 dimensions

# of nodes	# of Edges	# of levels	% of ANDs
# of	# of Primary	# of Primary	% of NOTs
Latches	Input	Output	

Lower four features will not change

1	# of Nodes	12	Primary output shape based on the delay level
2	# of Edges	13	Average of node fan-out
3	# of Flip Flops	14	Standard deviation of node fan-out
4	# of combinational nodes	15	Average of combinational node fan-out
5	# of LUTs in the mapped FPGA	16	Standard deviation of combinational node fan-out
6	# of Levels in the mapped FPGA	17	Average of pi node fan-out
7	Node shape based on delay level	18	Standard deviation of pi node fan-out
8	Input shape based on the delay level	19	Average of D-type flip flop node fan-out
9	Output shape based on the delay level	20	Standard deviation of D-type flip flop node fan-out
10	Latches shape based on the delay level	21	Reconvergence value
11	Edge length distribution shape based on the delay level		

Circuit characteristics used by RL agent

¹M. Hutton, J. Rose, J. Grossman, and D. Corneil, "Characterization and parameterized generation of synthetic combinational benchmark circuits," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Syst., vol. 17, no. 10, pp. 985–996, 1998. ²A. Hosny, S. Hashemi, M. Shalan and S. Reda, "DRiLLS: Deep Reinforcement Learning for Logic Synthesis," ASP-DAC, 2020, pp. 581-586

Feature Analysis

• Feature-importance analysis using a random forest classifier

Experimental Setup: Circuit-by-Circuit Style

- Circuit-by-circuit (CBC) style:
 - One RL agent for one benchmark, train and validate using the same circuit from EPFL benchmark
- ABC for logic synthesis optimization
 - Mapped to 6-LUTs using the ABC priority cuts mapper (command: if -a -K 6), targeting area reduction
- Reinforcement learning setting
 - Action space: [balance, rewrite, rewrite -z, resub, resub -z, refactor, refactor-z, undo]
 - State space: 21 features extracted from Ccirc¹ + action history of these 8 commands
- RL algorithm evaluated: PPO, A2C (also used in DRiLLS¹)
- Train for 5k samples

¹A. Hosny, S. Hashemi, M. Shalan and S. Reda, "DRiLLS: Deep Reinforcement Learning for Logic Synthesis," ASP-DAC, 2020, pp. 581-586

Training Performance

940

920

900

880

860

840

820

800

780

760

740

GEOMEAN

926.6 926.6 926.0

- All the values are Geomean of number of LUTs
- Smaller the value indicates better area reduction

808.8 770.8 769.5 769.5 768.7 **Best performing** model 753.5 752.5 750.7 748.6 • UNIVERSITY OF TORONTO First10 Last10 First10 Last10 First10 Last10 First10 Last10 10 DRiLLS RL-A2C **RL-PPO RL-PPO-Pruned** Initial Resyn2

Training Performance

The count of best explored benchmarks of each RL method

Learning sign count of each RL method

Command Frequency Analysis

Command Frequency Analysis for PPO-Pruned model

12

Inference Performance

y-axis lists all the experiments where DRiLLS¹ is the prior work and x-axis is the percentage improvement against the resyn2-1.

13

UNIVERSITY OF

3

Experimental Setup: Generalized Style

- Generalized style: training and validation circuit sets
- Experiment 1: Train and validate on the same set
 - Training set: Full 16 EPFL benchmark circuits
 - Validation set: Full 16 EPFL benchmark circuits
- Experiment 2: Train on one set and validate on the other set
 - Training set: Half of 16 EPFL benchmark circuits
 - Validation set: The other half of 16 EPFL benchmark circuits

Inference Performance

Circuit-by-circuit style inference performance (GEOMEAN)

y-axis lists all the experiments and x-axis is the percentage improvement against the resyn2-1.

Generalized inference performance (GEOMEAN)

Area reductions of 8.3-10.5% vs. *resyn2*, depending on the selection of the training vs. validation circuit set.

Effectiveness Analysis

Inference Performance

a.) Generalization Experiment 1

UNIVERSITY OF 7 ORONTO 16

Effectiveness analysis – trained RL agent (blue) vs. random (orange)

Conclusion

- We present a logic synthesis framework that trains an RL agent to intelligently choose logic synthesis optimizations based on the characteristics of the circuit under optimization.
- Unlike previously published RL approaches, our approach demonstrates generalized learning across multiple circuits, and can use the trained agent in inference mode without the need for further training.
- The immediate next step is to extend the evaluation to depth-driven synthesis, automate the selection of episode length as well as fine-tuned a trained RL agent.

Thank You for Listening, Questions?

