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Reinforcement Learning-Based Logic Synthesis

Logic Synthesis
CAD Tool 

How to use RL to better optimize RTL circuits? 



Motivation
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• Logic synthesis involves a rich set of 
optimization commands

• The order of such commands can lead to 
different results (a.k.a. ordering problem)

• Fixed recipe is often used for various circuits 
✖non-optimal solution

• Benefit of having a bespoke sequence for 
different circuits is promising



Prior Work
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• Limitation for existing approaches1,2: trained and tested on the same individual circuits.
• Hard to distinguish whether gains are just memorization or actual learning is happening 
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Our Improvements
• Enhance the observable state that RL “sees”
• Conduct a feature-importance analysis using a random forest classifier
• Able to show the importance of added features and prune the feature space by 40%

• Outperform a commonly used ABC heuristic recipe (resyn2) and is able to generalize 
trained experience: separate training and validation circuit sets. 



Observation State Enhancement
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# of nodes # of Edges # of levels % of ANDs

# of 
Latches

# of Primary 
Input

# of Primary 
Output

% of NOTs

Lower four features will not change

• Extract more features from input circuits using a 
previous study1.
• Enhance state from 8 dimensions (as used in DRiLLS2) to 21 

dimensions 

1M. Hutton, J. Rose, J. Grossman, and D. Corneil, “Characterization and parameterized generation of synthetic combinational benchmark circuits,” IEEE 
Trans. on Computer-Aided Design of Integrated Circuits and Syst., vol. 17, no. 10, pp. 985–996, 1998.
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Circuit characteristics used by RL agent

# of nodes # of Edges # of levels % of ANDs

# of 
Latches

# of Primary 
Input

# of Primary 
Output

% of NOTs

Lower four features will not change

1 # of Nodes 12 Primary output shape based on the delay level

2 # of Edges 13 Average of node fan-out

3 # of Flip Flops 14 Standard deviation of node fan-out

4 # of combinational nodes 15 Average of combinational node fan-out

5 # of LUTs in the mapped FPGA 16 Standard deviation of combinational node fan-out

6 # of Levels in the mapped FPGA 17 Average of pi node fan-out

7 Node shape based on delay level 18 Standard deviation of pi node fan-out

8 Input shape based on the delay level 19 Average of D-type flip flop node fan-out

9 Output shape based on the delay level 20 Standard deviation of D-type flip flop node fan-out

10 Latches shape based on the delay level 21 Reconvergence value

11 Edge length distribution shape based on the delay level

Observation State Enhancement
• Extract more features from input circuits using a 

previous study1.
• Enhance state from 8 dimensions (as used in DRiLLS2) to 21 

dimensions 



Feature Analysis

Reconvergence Value
# of Nodes/ Edges

1. Generate 10k
data points of 

[observations, reward]

2. Random forest 
classifier

3. Feature-importance
Value
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Please refer to slide 7 table

• Feature-importance analysis using a random forest classifier



Experimental Setup: Circuit-by-Circuit Style
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• Circuit-by-circuit (CBC) style: 
• One RL agent for one benchmark, train and validate using the same circuit from EPFL benchmark

• ABC for logic synthesis optimization
• Mapped to 6-LUTs using the ABC priority cuts mapper (command: if -a -K 6), targeting area reduction

• Reinforcement learning setting
• Action space: [balance, rewrite, rewrite -z, resub, resub -z, refactor, refactor-z , undo] 
• State space: 21 features extracted from Ccirc1 + action history of these 8 commands

• RL algorithm evaluated: PPO, A2C (also used in DRiLLS1) 

• Train for 5k samples

1A. Hosny, S. Hashemi, M. Shalan and S. Reda, "DRiLLS: Deep Reinforcement Learning for Logic Synthesis," ASP-DAC, 2020, pp. 581-586



Training Performance

Best performing 
model
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• All the values are 
Geomean of  
number of LUTs

• Smaller the value 
indicates better 
area reduction

Comparison study of logic synthesis optimization approaches (GEOMEAN)
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Training Performance
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Command Frequency Analysis
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Observations: 
• At first, same 

frequency (12.5% 
each) and then it 
varies

• Certain commands 
are more useful for 
certain circuits

• rewrite –z is the 
most popular 
command

undo balance resub -z resub refactor -z refactor rewrite -z rewrite

max adder

cavlc ctrl

sin square

priority i2c

Command Frequency Analysis for PPO-Pruned model



Inference Performance
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Circuit-by-circuit style inference performance (GEOMEAN)

y-axis lists all the experiments where DRiLLS1 is the prior work 
and x-axis is the percentage improvement against the resyn2-1.

1A. Hosny, S. Hashemi, M. Shalan and S. Reda, "DRiLLS: Deep Reinforcement Learning for Logic Synthesis," 2020 25th Asia and South Pacific 
Design Automation Conference (ASP-DAC), 2020



Experimental Setup: Generalized Style
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• Generalized style: training and validation circuit sets

• Experiment 1: Train and validate on the same set
• Training set: Full 16 EPFL benchmark circuits
• Validation set: Full 16 EPFL benchmark circuits

• Experiment 2: Train on one set and validate on the other set
• Training set: Half of 16 EPFL benchmark circuits
• Validation set: The other half of 16 EPFL benchmark circuits



Inference Performance

Area reductions of 8.3-10.5% vs. resyn2, depending on the selection of 
the training vs. validation circuit set. 15

normalized by resyn2 
optimized value

Generalized inference performance (GEOMEAN)

Circuit-by-circuit style inference performance (GEOMEAN)

a.) Generalization Experiment 1

b.) Generalization Experiment 2
y-axis lists all the experiments and x-axis is the percentage 
improvement against the resyn2-1.



Effectiveness Analysis 
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a.) Generalization Experiment 1 b.) Generalization Experiment 2

Effectiveness analysis – trained RL agent (blue) vs. random (orange)



Conclusion
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• We present a logic synthesis framework that trains an RL agent to intelligently choose 
logic synthesis optimizations based on the characteristics of the circuit under 
optimization.

• Unlike previously published RL approaches, our approach demonstrates generalized 
learning across multiple circuits, and can use the trained agent in inference mode 
without the need for further training.

• The immediate next step is to extend the evaluation to depth-driven synthesis, 
automate the selection of episode length as well as fine-tuned a trained RL agent.
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Thank You for Listening, Questions?


