
1

Optimization of Reversible Logic

Networks with Gate Sharing

Yung-Chih Chen and Feng-Jie Chao

National Taiwan Univ. of Science and Tech., Taiwan

Outline

 Introduction

 Background

 Motivation example

 Reversible logic network optimization

 Experimental results

 Conclusion

2

Introduction

 Logic synthesis for quantum computing is a process

to map a Boolean function or network into a

quantum circuit

3

f=ab♁c

Quantum circuit [22]

• Quantum gates: reversible and

operate on qubits (e.g, 3 qubits)

• Limited resources

• Program to be executed on quantum

computers

[22] M. Soeken et al., LUT-based hierarchical reversible logic synthesis. TCAD, 2019.

Typical Synthesis Flow

 Two stages

 First, map the given Boolean function into a reversible

logic network (RLN)

 Then, map each reversible gate into quantum gates

 Synthesis quality is mainly affected by the RLN

 Many of the existing synthesis methods are dedicated to

the first stage

4

+
a

b
c

s

c0

RLN

Quantum

circuit

RLN Synthesis (cont’d)

 State-of-the-art hierarchical method: lookup-table

(LUT)-based

 Take advantage of the LUT-based mapping technology

for FPGAs

 Synthesize the given Boolean network to a k-LUT

network, and then map each LUT node to reversible

gates to generate an RLN

 Scalable, and flexible for trading off qubit count and

quantum cost

 However, neglect that reversible gates from different

LUT nodes can be shared

 Quantum cost of the RLN could be further minimized

5
[22] M. Soeken et al., LUT-based hierarchical reversible logic synthesis. TCAD, 2019.

Our Contributions

 Our objective is to optimize the RLNs generated by

the LUT-based method

 We propose a method to extract the shareable

gates to simplify the RLNs

 We transform the extraction problem into an optimization

problem of exclusive-sums-of-product (ESOP)

 Our method can reduce quantum cost without

introducing extra qubits

6

Outline

 Introduction

 Background

 Motivation example

 Reversible logic network optimization

 Experimental results

 Conclusion

7

RLN

 Reversible function: one-to-one and onto function,

i.e., bijective

 An RLN realizes a reversible function

 A number of lines

 A cascade of reversible gates operating on the lines

8

Input terminal Output terminal

Multiple-Controlled Toffoli Gate

 The multiple-controlled Toffoli gate is a widely used

reversible gate

 Operate on n+1 lines

 n lines pass through the gate unmodified, called control lines

 1 (rest) line is XORed with the conjunction of the values of the

control lines, called target line

9

Two-controlled Toffoli gate

CNOT gate

Only one control line

The RLN under consideration is composed of only multiple-

controlled Toffoli gates

Quantum Cost

 Synthesizing an RLN into a quantum circuit can be achieved

by mapping each multiple-controlled Toffoli gate into

quantum gates

 Clifford+T quantum gate library [5]

 T gate is sufficiently expensive

 Reasonable to consider only the T gate when costing a quantum circuit

10

[5] P. O. Boykin et al., A new universal and fault-tolerant quantum basis. Inform. Process. Lett., 2000.

[9] Maslov, Advantages of using relative-phase Toffoli gates with an application to multiple control Toffoli

optimization. ArXiv 1508.03273, 2015.

Toffoli gate Required T gates [9]

2-controlled 7

k-controlled, k > 2 8k – 8*

*Require more than
𝑘−2

2
free qubits

RLN optimization metric: T gate count

LUT-based Hierarchical Reversible Logic

Synthesis

 First, synthesize the given Boolean network to an LUT network

 Then, transform each LUT node into one or two reversible single-

target gates (STGs)

 Finally, map each STG into a cascade of multiple-controlled

Toffoli gates, which have the same target line

11
[22] M. Soeken et al., LUT-based hierarchical reversible logic synthesis. TCAD, 2019.

LUT network STG RLN RLN

Outline

 Introduction

 Background

 Motivation example

 Reversible logic network optimization

 Experimental results

 Conclusion

12

Motivation Example

The LUT-based method does not consider the opportunity of

sharing gates among different LUT nodes

13

• Two STGs

• Each STG is well optimized

• # of T gates: 32

Original RLN Optimized RLN

• g1 and g2 are extracted and shared

by the two STGs

• # of T gates: 21

Problem Formulation

 Input: an RLN generated by the LUT-based

method

 Output: an optimized RLN with minimized T gate

count

 Goal: Extract and share gates among different

STGs to minimize T gate count without introducing

extra qubits

14

Outline

 Introduction

 Background

 Motivation example

 Reversible logic network optimization

 Experimental results

 Conclusion

15

Our Intention

 Main flow is to iteratively select two STGs and extract

shareable multiple-controlled Toffoli gates from them

16

Two STGs, G1 and G2

Not necessary to be adjacent

Extract Gs from G1 and G2,

and simplify them to G1_new and G2_new

Problems

 To extract shareable gates, we need to solve two problems

1) Given G1 and G2, is it valid to extract shareable gates (if any) from

them?

 Not all pairs of STGs having common sub-functions can share gates

without altering the overall functionality

 Validity problem

2) How to find the shareable gate from G1 and G2, i.e., to compute Gs,

G1_new and G2_new?

 Extraction problem

17

Validity Problem

 G1 and G2 are valid for extracting shareable gates if they

satisfy the following three conditions

 The target line of G1 has an initial value 0

 To ensure that the extracted Gs implements a desired function

 The target line of G2 is not a control line of G1 and the STGs in

between G1 and G2

 To ensure that the control line is not altered by the newly added

CNOT gate

 A control line of G2 and G1 is not the target line of G1 and not

the target line of a STG in between G1 and G2

 To ensure that Gs and G2_new implement desired functions

18

Extraction Problem

 We simplify the problem of computing Gs, G1_new

and G2_new to that of computing G2_new only

 Two types of extractions

 Mainly different in the methods of finding Gs

19

Type 1 Extraction

 Gs: gates in G1 that have common control lines with G2

 G1_new: other gates in G1

 G1 is partitioned into Gs and G1_new

 G2_new: G2 and Gs

 Exclusive-sums-of-product (ESOP) optimization

 Let f1, f2, fs, and f2_new denote the functions of G1, G2, Gs,

and G2_new

20

f1

f2

fs

f1

f2_new= f2♁fs

fs♁f2_new = fs♁f2♁fs

= f2

Type 1 Extraction (cont’d)

21

G1={g1, g2} and G2={g3, g4} Gs={g1, g2}, G1_new=∅, and

G2_new={g1, g2, g3, g4}

Simplified G2_new={g6, g7, g8}

• Perform ESOP optimization to G2_new

with the exorcism technique [15]

• Accept the extraction if simplified

G2_new requires fewer T gates than G2

[15] A. Mishchenko and M. A. Perkowski. 2001. Fast

heuristic minimization of exclusive-sums-of-products.

In Proc. Reed Muller Workshop.

Type 2 Extraction

 In Type 1 extraction, if the simplified ESOP expression

has a higher cost than G2, but a lower cost than Gs, we then

perform Type 2 extraction to simplify G1 rather than G2

 Type 2 extraction

 Gs: G2

 G1_new: other gates in G1 and gates in simplified ESOP expression

 G2_new: ∅

22
G1={g11, g12} and G2={g13, g14} Simplified ESOP expression: {g16, g17, g18}

Overall Flow for RLN Optimization

 Given an RLN, we first identify STGs

 Then, we iteratively select two groups, G1 and G2,

and check if they are valid

 If yes, we compute the optimized ESOP expression and

evaluate the cost

 If the cost reduces, we apply Type 1 Extraction or Type

2 Extraction accordingly

 Only one exorcism call is needed, because the two types of

extractions use the same simplified ESOP expression

23

Outline

 Introduction

 Background

 Motivation example

 Reversible logic network optimization

 Experimental results

 Conclusion

24

Experimental setup

 C language

 Linux workstation with an Intel Core i5 2.90GHz

CPU and 32GB memory

 Benchmarks

 IWLS 2005 benchmark suite

 RLNs generated by [22]

 Verification

 SAT-based combinational equivalence checker for RLNs

[3]

25

[3] L. Amaru el al.. Exploiting inherent characteristics of reversible circuits for faster combinational

equivalence checking. In Proc. Design, Automation and Test in Europe Conf., 2016

[22] M. Soeken et al., LUT-based hierarchical reversible logic synthesis. TCAD, 2019.

Experimental

results

 Achieve an average of

4.14% T gate reduction

 The best result is up to

23.60% for the

steppermotordrive

benchmark

 Some pairs of STGs are

identical

 Limited by the number of

valid pairs of STGs and the

optimization quality of

exorcism

26

Outline

 Introduction

 Background

 Motivation example

 Reversible logic network optimization

 Experimental results

 Conclusion

27

Conclusion

 We proposed a new method for RLN optimization

by sharing multiple-controlled Toffoli gates

 Reduce the implementation cost in terms of T gate count

without increasing the qubits

 Future work

 Study other transformations and ESOP optimization

techniques

28

Thank you for your attention

29

