
1

Optimization of Reversible Logic

Networks with Gate Sharing

Yung-Chih Chen and Feng-Jie Chao

National Taiwan Univ. of Science and Tech., Taiwan

Outline

 Introduction

 Background

 Motivation example

 Reversible logic network optimization

 Experimental results

 Conclusion

2

Introduction

 Logic synthesis for quantum computing is a process

to map a Boolean function or network into a

quantum circuit

3

f=ab♁c

Quantum circuit [22]

• Quantum gates: reversible and

operate on qubits (e.g, 3 qubits)

• Limited resources

• Program to be executed on quantum

computers

[22] M. Soeken et al., LUT-based hierarchical reversible logic synthesis. TCAD, 2019.

Typical Synthesis Flow

 Two stages

 First, map the given Boolean function into a reversible

logic network (RLN)

 Then, map each reversible gate into quantum gates

 Synthesis quality is mainly affected by the RLN

 Many of the existing synthesis methods are dedicated to

the first stage

4

+
a

b
c

s

c0

RLN

Quantum

circuit

RLN Synthesis (cont’d)

 State-of-the-art hierarchical method: lookup-table

(LUT)-based

 Take advantage of the LUT-based mapping technology

for FPGAs

 Synthesize the given Boolean network to a k-LUT

network, and then map each LUT node to reversible

gates to generate an RLN

 Scalable, and flexible for trading off qubit count and

quantum cost

 However, neglect that reversible gates from different

LUT nodes can be shared

 Quantum cost of the RLN could be further minimized

5
[22] M. Soeken et al., LUT-based hierarchical reversible logic synthesis. TCAD, 2019.

Our Contributions

 Our objective is to optimize the RLNs generated by

the LUT-based method

 We propose a method to extract the shareable

gates to simplify the RLNs

 We transform the extraction problem into an optimization

problem of exclusive-sums-of-product (ESOP)

 Our method can reduce quantum cost without

introducing extra qubits

6

Outline

 Introduction

 Background

 Motivation example

 Reversible logic network optimization

 Experimental results

 Conclusion

7

RLN

 Reversible function: one-to-one and onto function,

i.e., bijective

 An RLN realizes a reversible function

 A number of lines

 A cascade of reversible gates operating on the lines

8

Input terminal Output terminal

Multiple-Controlled Toffoli Gate

 The multiple-controlled Toffoli gate is a widely used

reversible gate

 Operate on n+1 lines

 n lines pass through the gate unmodified, called control lines

 1 (rest) line is XORed with the conjunction of the values of the

control lines, called target line

9

Two-controlled Toffoli gate

CNOT gate

Only one control line

The RLN under consideration is composed of only multiple-

controlled Toffoli gates

Quantum Cost

 Synthesizing an RLN into a quantum circuit can be achieved

by mapping each multiple-controlled Toffoli gate into

quantum gates

 Clifford+T quantum gate library [5]

 T gate is sufficiently expensive

 Reasonable to consider only the T gate when costing a quantum circuit

10

[5] P. O. Boykin et al., A new universal and fault-tolerant quantum basis. Inform. Process. Lett., 2000.

[9] Maslov, Advantages of using relative-phase Toffoli gates with an application to multiple control Toffoli

optimization. ArXiv 1508.03273, 2015.

Toffoli gate Required T gates [9]

2-controlled 7

k-controlled, k > 2 8k – 8*

*Require more than
𝑘−2

2
free qubits

RLN optimization metric: T gate count

LUT-based Hierarchical Reversible Logic

Synthesis

 First, synthesize the given Boolean network to an LUT network

 Then, transform each LUT node into one or two reversible single-

target gates (STGs)

 Finally, map each STG into a cascade of multiple-controlled

Toffoli gates, which have the same target line

11
[22] M. Soeken et al., LUT-based hierarchical reversible logic synthesis. TCAD, 2019.

LUT network STG RLN RLN

Outline

 Introduction

 Background

 Motivation example

 Reversible logic network optimization

 Experimental results

 Conclusion

12

Motivation Example

The LUT-based method does not consider the opportunity of

sharing gates among different LUT nodes

13

• Two STGs

• Each STG is well optimized

• # of T gates: 32

Original RLN Optimized RLN

• g1 and g2 are extracted and shared

by the two STGs

• # of T gates: 21

Problem Formulation

 Input: an RLN generated by the LUT-based

method

 Output: an optimized RLN with minimized T gate

count

 Goal: Extract and share gates among different

STGs to minimize T gate count without introducing

extra qubits

14

Outline

 Introduction

 Background

 Motivation example

 Reversible logic network optimization

 Experimental results

 Conclusion

15

Our Intention

 Main flow is to iteratively select two STGs and extract

shareable multiple-controlled Toffoli gates from them

16

Two STGs, G1 and G2

Not necessary to be adjacent

Extract Gs from G1 and G2,

and simplify them to G1_new and G2_new

Problems

 To extract shareable gates, we need to solve two problems

1) Given G1 and G2, is it valid to extract shareable gates (if any) from

them?

 Not all pairs of STGs having common sub-functions can share gates

without altering the overall functionality

 Validity problem

2) How to find the shareable gate from G1 and G2, i.e., to compute Gs,

G1_new and G2_new?

 Extraction problem

17

Validity Problem

 G1 and G2 are valid for extracting shareable gates if they

satisfy the following three conditions

 The target line of G1 has an initial value 0

 To ensure that the extracted Gs implements a desired function

 The target line of G2 is not a control line of G1 and the STGs in

between G1 and G2

 To ensure that the control line is not altered by the newly added

CNOT gate

 A control line of G2 and G1 is not the target line of G1 and not

the target line of a STG in between G1 and G2

 To ensure that Gs and G2_new implement desired functions

18

Extraction Problem

 We simplify the problem of computing Gs, G1_new

and G2_new to that of computing G2_new only

 Two types of extractions

 Mainly different in the methods of finding Gs

19

Type 1 Extraction

 Gs: gates in G1 that have common control lines with G2

 G1_new: other gates in G1

 G1 is partitioned into Gs and G1_new

 G2_new: G2 and Gs

 Exclusive-sums-of-product (ESOP) optimization

 Let f1, f2, fs, and f2_new denote the functions of G1, G2, Gs,

and G2_new

20

f1

f2

fs

f1

f2_new= f2♁fs

fs♁f2_new = fs♁f2♁fs

= f2

Type 1 Extraction (cont’d)

21

G1={g1, g2} and G2={g3, g4} Gs={g1, g2}, G1_new=∅, and

G2_new={g1, g2, g3, g4}

Simplified G2_new={g6, g7, g8}

• Perform ESOP optimization to G2_new

with the exorcism technique [15]

• Accept the extraction if simplified

G2_new requires fewer T gates than G2

[15] A. Mishchenko and M. A. Perkowski. 2001. Fast

heuristic minimization of exclusive-sums-of-products.

In Proc. Reed Muller Workshop.

Type 2 Extraction

 In Type 1 extraction, if the simplified ESOP expression

has a higher cost than G2, but a lower cost than Gs, we then

perform Type 2 extraction to simplify G1 rather than G2

 Type 2 extraction

 Gs: G2

 G1_new: other gates in G1 and gates in simplified ESOP expression

 G2_new: ∅

22
G1={g11, g12} and G2={g13, g14} Simplified ESOP expression: {g16, g17, g18}

Overall Flow for RLN Optimization

 Given an RLN, we first identify STGs

 Then, we iteratively select two groups, G1 and G2,

and check if they are valid

 If yes, we compute the optimized ESOP expression and

evaluate the cost

 If the cost reduces, we apply Type 1 Extraction or Type

2 Extraction accordingly

 Only one exorcism call is needed, because the two types of

extractions use the same simplified ESOP expression

23

Outline

 Introduction

 Background

 Motivation example

 Reversible logic network optimization

 Experimental results

 Conclusion

24

Experimental setup

 C language

 Linux workstation with an Intel Core i5 2.90GHz

CPU and 32GB memory

 Benchmarks

 IWLS 2005 benchmark suite

 RLNs generated by [22]

 Verification

 SAT-based combinational equivalence checker for RLNs

[3]

25

[3] L. Amaru el al.. Exploiting inherent characteristics of reversible circuits for faster combinational

equivalence checking. In Proc. Design, Automation and Test in Europe Conf., 2016

[22] M. Soeken et al., LUT-based hierarchical reversible logic synthesis. TCAD, 2019.

Experimental

results

 Achieve an average of

4.14% T gate reduction

 The best result is up to

23.60% for the

steppermotordrive

benchmark

 Some pairs of STGs are

identical

 Limited by the number of

valid pairs of STGs and the

optimization quality of

exorcism

26

Outline

 Introduction

 Background

 Motivation example

 Reversible logic network optimization

 Experimental results

 Conclusion

27

Conclusion

 We proposed a new method for RLN optimization

by sharing multiple-controlled Toffoli gates

 Reduce the implementation cost in terms of T gate count

without increasing the qubits

 Future work

 Study other transformations and ESOP optimization

techniques

28

Thank you for your attention

29

