
Iris: Automatic Generation of Efficient
Data Layouts for High Bandwidth

Utilization

Stephanie Soldavini, Donatella Sciuto, Christian Pilato
Dipartimento di Elettronica, Informazione e Bioingegneria

stephanie.soldavini@polimi.it

ASPDAC’23 – January 17, 2023

mailto:stephanie.soldavini@polimi.it


2

• Optimizing data movements is one of the biggest challenges in 
heterogeneous computing to cope with modern big data applications

• High-level synthesis (HLS) tools are increasingly efficient at optimizing 
computation, but data transfers have not been adequately improved

• Novel architectures such as high-bandwidth memory (HBM) have 
been developed to be able to transfer more data in parallel
• DDR5 has 2 channels of 32 bits/channel

• HBM can have e.g. 32 channels of 256 bits/channel

• However, designers must follow strict coding-style rules to exploit this 
extra bandwidth

Motivation



3

• We designed a method (“Iris”1) for efficiently transferring arbitrarily 
sized data from global memory to an accelerator

• Individual arrays of data are packed into global memory as one unified 
block, to make one large transfer instead of many small transfers

• Inspired by processor scheduling, where the data arrays are treated as 
preemptible tasks and the goal is to optimize such that the data arrives 
to their relevant processing units as soon as possible

Iris

1In Greek mythology, Iris is the messenger of the gods



4

ExampleArray Width Depth Due Date
A 2 5 2

B 3 5 6

C 4 3 3

D 5 4 6

E 6 2 3



5

ExampleArray Width Depth Due Date
A 2 5 2

B 3 5 6

C 4 3 3

D 5 4 6

E 6 2 3

Array Width Depth Due Date ▼
A 2 5 2
C 4 3 3
E 6 2 3
B 3 5 6
D 5 4 6



6

Example

Fig. 1: Naive layout

Array Width Depth Due Date
A 2 5 2

B 3 5 6

C 4 3 3

D 5 4 6

E 6 2 3

Array Width Depth Due Date ▼
A 2 5 2
C 4 3 3
E 6 2 3
B 3 5 6
D 5 4 6



7

Example

Fig. 1: Naive layout Fig. 2: Naively packed layout

Array Width Depth Due Date
A 2 5 2

B 3 5 6

C 4 3 3

D 5 4 6

E 6 2 3

Array Width Depth Due Date ▼
A 2 5 2
C 4 3 3
E 6 2 3
B 3 5 6
D 5 4 6



8

Example

Fig. 1: Naive layout Fig. 2: Naively packed layout Fig. 3: Iris layout

Array Width Depth Due Date
A 2 5 2

B 3 5 6

C 4 3 3

D 5 4 6

E 6 2 3

Array Width Depth Due Date ▼
A 2 5 2
C 4 3 3
E 6 2 3
B 3 5 6
D 5 4 6



9

Example

Fig. 1: Naive layout Fig. 2: Naively packed layout Fig. 3: Iris layout

Array Width Depth Due Date
A 2 5 2

B 3 5 6

C 4 3 3

D 5 4 6

E 6 2 3

Array Width Depth Due Date ▼
A 2 5 2
C 4 3 3
E 6 2 3
B 3 5 6
D 5 4 6

Table 1: Decode logic HLS estimates
Strategy Latency FF LUT

Naively packed 43 54 452

Iris layout 11 29 194

% Reduction 74% 46% 57%



10

Problem Formulation as Scheduling



11

Memory Layout Problem

Problem Formulation as Scheduling



12

Memory Layout Problem

Problem Formulation as Scheduling

• Given: 
• Bus width (𝑚) 
• A set of accelerator arrays, each with: 

• Bitwidth (𝑊!) and Depth (𝐷!)
• Desired due date (𝑑!)



13

Memory Layout Problem

Problem Formulation as Scheduling

• Given: 
• Bus width (𝑚) 
• A set of accelerator arrays, each with: 

• Bitwidth (𝑊!) and Depth (𝐷!)
• Desired due date (𝑑!)

• Want a memory layout where: 
• Data are packed most densely 
• Arrays arrive as close to their due 

dates as possible when transferred 
from memory to accelerator



14

Memory Layout Problem

Problem Formulation as Scheduling
Scheduling Problem

• Given: 
• Bus width (𝑚) 
• A set of accelerator arrays, each with: 

• Bitwidth (𝑊!) and Depth (𝐷!)
• Desired due date (𝑑!)

• Want a memory layout where: 
• Data are packed most densely 
• Arrays arrive as close to their due 

dates as possible when transferred 
from memory to accelerator



15

Memory Layout Problem

Problem Formulation as Scheduling
Scheduling Problem

• Given: 
• Bus width (𝑚) 
• A set of accelerator arrays, each with: 

• Bitwidth (𝑊!) and Depth (𝐷!)
• Desired due date (𝑑!)

• Want a memory layout where: 
• Data are packed most densely 
• Arrays arrive as close to their due 

dates as possible when transferred 
from memory to accelerator

• Given: 
• 𝑚 identical processors
• A set of preemptible tasks, each with: 

• Processing time (𝑊!×𝐷!)
• Desired due date (𝑑!)



16

Memory Layout Problem

Problem Formulation as Scheduling
Scheduling Problem

• Given: 
• Bus width (𝑚) 
• A set of accelerator arrays, each with: 

• Bitwidth (𝑊!) and Depth (𝐷!)
• Desired due date (𝑑!)

• Want a memory layout where: 
• Data are packed most densely 
• Arrays arrive as close to their due 

dates as possible when transferred 
from memory to accelerator

• Given: 
• 𝑚 identical processors
• A set of preemptible tasks, each with: 

• Processing time (𝑊!×𝐷!)
• Desired due date (𝑑!)

• Want a schedule where:
• Processors are maximally used
• Tasks complete as close to their 

due dates as possible



17

Given 𝑚 identical processors, we want to schedule preemptible 
tasks with release time 𝑟! across several processors to minimize 
the total schedule length (𝐶"#$) [1]

Isomorphic Scheduling Problem

[1] Maciej Drozdowski. “Real-time scheduling of linear speedup parallel tasks”. In: Information Processing Letters 57.1 (1996), pp. 35–40.



18

Given 𝑚 identical processors, we want to schedule preemptible 
tasks with release time 𝑟! across several processors to minimize 
the total schedule length (𝐶"#$) [1]

• The release time 𝑟! is time step when a task 𝑗 is ready to begin 
execution

Isomorphic Scheduling Problem

[1] Maciej Drozdowski. “Real-time scheduling of linear speedup parallel tasks”. In: Information Processing Letters 57.1 (1996), pp. 35–40.



19

Given 𝑚 identical processors, we want to schedule preemptible 
tasks with release time 𝑟! across several processors to minimize 
the total schedule length (𝐶"#$) [1]

• The release time 𝑟! is time step when a task 𝑗 is ready to begin 
execution

Isomorphic Scheduling Problem

[1] Maciej Drozdowski. “Real-time scheduling of linear speedup parallel tasks”. In: Information Processing Letters 57.1 (1996), pp. 35–40.

• To convert between the two problems, each due date 𝑑! is converted 
to a release time 𝑟! by subtracting it from the maximum (latest) due 
date: 𝑟! = 𝑑"#$ − 𝑑!



20

Given 𝑚 identical processors, we want to schedule preemptible 
tasks with release time 𝑟! across several processors to minimize 
the total schedule length (𝐶"#$) [1]

• The release time 𝑟! is time step when a task 𝑗 is ready to begin 
execution

Isomorphic Scheduling Problem

[1] Maciej Drozdowski. “Real-time scheduling of linear speedup parallel tasks”. In: Information Processing Letters 57.1 (1996), pp. 35–40.

• To convert between the two problems, each due date 𝑑! is converted 
to a release time 𝑟! by subtracting it from the maximum (latest) due 
date: 𝑟! = 𝑑"#$ − 𝑑!

• The solution to the isomorphic problem is read backwards to obtain the 
solution to the original memory layout problem



21

Sample schedule showing conversion between due 
dates and release times

Isomorphic Problem: Transformation



22

Algorithm Example
Array Width Depth Due Date Release Time

D 5 4 6 0
B 3 5 6 0
E 6 2 3 3
C 4 3 3 3
A 2 5 2 4



23

Algorithm Example

Schedule 
(Building Backwards)

Array Width Depth Due Date Release Time
D 5 4 6 0
B 3 5 6 0
E 6 2 3 3
C 4 3 3 3
A 2 5 2 4

1



24

Algorithm Example

Schedule 
(Building Backwards)

Array Width Depth Due Date Release Time
D 5 4 6 0
B 3 5 6 0
E 6 2 3 3
C 4 3 3 3
A 2 5 2 4

1

2



25

Algorithm Example

Schedule 
(Building Backwards)

Array Width Depth Due Date Release Time
D 5 4 6 0
B 3 5 6 0
E 6 2 3 3
C 4 3 3 3
A 2 5 2 4

1

2

3



26

Algorithm Example

Schedule 
(Building Backwards)

Array Width Depth Due Date Release Time
D 5 4 6 0
B 3 5 6 0
E 6 2 3 3
C 4 3 3 3
A 2 5 2 44



27

Algorithm Example

Schedule 
(Building Backwards)

Array Width Depth Due Date Release Time
D 5 4 6 0
B 3 5 6 0
E 6 2 3 3
C 4 3 3 3
A 2 5 2 44

5



28

Algorithm Example

Schedule 
(Building Backwards)

Array Width Depth Due Date Release Time
D 5 4 6 0
B 3 5 6 0
E 6 2 3 3
C 4 3 3 3
A 2 5 2 4

6



29

Algorithm Example

Schedule 
(Building Backwards)

Array Width Depth Due Date Release Time
D 5 4 6 0
B 3 5 6 0
E 6 2 3 3
C 4 3 3 3
A 2 5 2 4

6

7



30

Algorithm Example

Schedule 
(Building Backwards)

Array Width Depth Due Date Release Time
D 5 4 6 0
B 3 5 6 0
E 6 2 3 3
C 4 3 3 3
A 2 5 2 4

6

7

8



31

Algorithm Example

Finished Schedule / 
Memory Layout 



32

Matrix Multiply



33

• Unconventional bitwidths are 
used to save time and area in 
applications such as neural 
networks

Matrix Multiply

Layout metrics with buswidth of 256 and varied 
Array Width (𝑊) (Matrix Multiply)



34

• Unconventional bitwidths are 
used to save time and area in 
applications such as neural 
networks

Matrix Multiply

Layout metrics with buswidth of 256 and varied 
Array Width (𝑊) (Matrix Multiply) • Iris uses the bandwidth 6.4% 

more efficiently, which is 
significant over millions of 
executions 



35

• The Inverse Helmholtz is a 
computational fluid dynamics 
operator, with three input 
arrays

Inverse Helmholtz



36

• The Inverse Helmholtz is a 
computational fluid dynamics 
operator, with three input 
arrays

Inverse Helmholtz

Layout metrics with buswidth of 256 and varied 
Due date/Width (𝛿/𝑊)* (Inv. Helmholtz)

Naively 
Packed

• The naive packing strategy 
requires large FIFO depths to 
accommodate several data 
elements in a single cycle



37

• The Inverse Helmholtz is a 
computational fluid dynamics 
operator, with three input 
arrays

Inverse Helmholtz

Layout metrics with buswidth of 256 and varied 
Due date/Width (𝛿/𝑊)* (Inv. Helmholtz)

Naively 
Packed

• The naive packing strategy 
requires large FIFO depths to 
accommodate several data 
elements in a single cycle

• Iris reduces the FIFO depths 
by 1/3 while maintaining 
similar efficiency, useful for 
when an application is device-
area-bound



38

• The protoype tool is able to automatically generate the packing and 
unpacking functions

Data Packing and Unpacking



39

• The protoype tool is able to automatically generate the packing and 
unpacking functions

• Host-side C code for arranging 
the separate input arrays into the 
Iris layout as one unified array

Data Packing and Unpacking

…

…



40

• The protoype tool is able to automatically generate the packing and 
unpacking functions

• Host-side C code for arranging 
the separate input arrays into the 
Iris layout as one unified array

Data Packing and Unpacking

…

…

…

…

• Accelerator-side HLS C code for 
unpacking the array elements and 
moving them into streams to be 
consumed by the accelerator



41

• Iris is designed to automatically create an efficient data layout that 
maximizes the use of the available bandwidth

• Iris was able to achieve:
• Higher bandwidth efficiency and lower lateness 𝐿$%&
• Lower FPGA resource utilizations for the data read module, particularly in the 

case of the data FIFOs
• Iris is an automatic process which relieves the designer of a huge 

manual effort and supports rapid design space exploration of custom 
data types

Conclusion



Questions?

stephanie.soldavini@polimi.it

This work was partially funded by the EU Horizon 2020 Programme under 
grant agreement No 957269 (EVEREST). http://www.everest-h2020.eu

mailto:stephanie.soldavini@polimi.it
http://www.everest-h2020.eu/

