An SMT-Solver-based Synthesis of NNA-Compliant quantum Circuits Consisting of CNOT, H, and T Gate Kyohei Seino, Shigeru Yamashita

Ritsumeikan University

Quantum Circuits

Diagram of quantum gates in chronological order

Quantum Gates

- □A CNOT gate
 - Invert x2 when x1=1

$$|x_1\rangle - |x_1\rangle \\ |x_2\rangle - |x_1 \oplus x_2\rangle$$

• 例

T gate

• Add $e^{i\pi/4}$ phase when x1 =1

□H gate

An NNA(Nearest Neighbor Architecture) Restriction

Permits interactions only between two adjacent physical quantum bits (qubits)

An NNA-Compliant Circuit

Conversion into NNA-Compliant Circuits

Conversion with SWAP gate

=x1

More efficient Placements

The circuit like below the diagram without inserting SWAP gate
 Find circuits consist of NNA-compliant CNOT gates

Conversion with SMT Solver

Construction of NNA-compliant circuits with SMT solver
Minimization the number of CNOT gate

□Flow applying SMT solver

- 1. Introduces variables
- 2. Expresses formulation with variables
- 3. Finds a solution with SMT solver

 $(x > 2) \land (0 < y < 3) \land (x + y < 5) \Rightarrow sat(x=3,y=1)$

Finding an NNA-compliant Circuit with SMT Solver

Constraints for an SMT Solver

Constraints for functional equivalence and the NNA restriction for each CNOT Gate

- 1. Functional equivalence
- 2. Has a control bit and target bit
- 3. NNA restriction

Variables

CNOT-gate placements

$$Control \ bit \ C_{i,j} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \qquad Target \ bit \ T_{i,j} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

□ Inputs

□Logical states

> Expressed with input variables

10

Method for Division of The Circuit

Divides into subcircuit consisting of CNOT gate

>Divides the circuit by H/T gates

Converts subcircuit into NNA-compliant circuiuts

- > Treats only CNOT gates
- Linear combination of input variables

Our new observation

□Necessary_set

Logical State before T gates

≻Above two circuits have same *necessary_set* = { $x_1 \oplus x_2 \oplus x_3, x_1$ }

□Functional equivalence

Calculates *necessary_set* of *the circuit before conversion* Somewhere in the circuit after conversion, *necessary_set* must be included.

"Don't care" quantum bit

Calculates logical states before T gates
 Only logic states before T gates are considered
 Logical states in black stand for "Don't care"

□Converts to satisfy all of these in the circuit after conversion
 >Logic function in red exists somewhere in the circuit
 >*necessary_set*={x₁ ⊕ x₃, x₃ ⊕ x₅}

After H gates apply

Quantum states after applying H gates
 Alter to supperposed states
 cannot be expressed using the input variables.

Adds new variables

>Adds new variables after applying H gates

Division of the Circuit in the proposed Method

Continuous T gates

>Treats as a subcircuit

- $\succ \text{necessary_set} = \{x_4, x_5, x_6, x_1 \oplus x_6, x_5 \oplus x_6, x_2 \oplus x_4, x_2 \oplus x_4 \oplus x_5\}$
- >In conversion of the circuit in Green, we consider only necessary_set

Conversion of the Circuit in the proposed Method

Results of Conversion

 $\square \text{necessary_set} = \{x_1 \oplus x_6, x_5 \oplus x_6, x_1 \oplus x_5 \oplus x_6, x_2 \oplus x_4 \oplus x_5 \oplus x_6, x_2 \oplus x_5, x_5 \oplus x_6, x_2 \oplus x_5, x_2 \oplus x_4\}$

Conversion into NNA-compliant Circuit with SMT Solver

Benchmark					The number of CNOT gates			CPU time used by the SMT-solver		
					after transformation			(seconds)		
Circuit Name	♯ CNOTs	♯ qbits	# partition	Ours	[4]	Δ	Ours	[4]	Δ	
ham3_102	11	3	3	7	14	-50.0%	0.16	0.22	-16.0%	
toffoli_2	14	4	5	19	41	-53.7%	0.79	0.99	-20.3%	
alu-v1_28	38	5	11	60	143	-58.0%	6.56	9.27	-29.3%	
4gt11_82	18	5	8	23	55	-58.2%	7.82	5.66	38.1%	
rd32_271.real	24	5	7	33	93	-64.6%	3.69	13.9	-73.5%	
one-two-three-v0_98	65	5	12	85	163	-47.9%	9.35	10.5	-11.1%	
fredkin_6.real	21	3	7	17	39	-56.4%	0.16	0.60	-26.8%	
mod10_176.real	70	5	12	67	211	-68.2%	4.34	1.59	-36.0%	
hwb4_52.real	29	4	9	31	71	-56.3%	0.99	1.59	-37.6%	
alu-v2_31.real	108	5	19	270	833	-67.6%	56.4	85.6	-34.1%	
aj-e11_168.real	48	4	9	60	148	-59.5%	4.92	15.0	-67.2%	
miller_11.real	23	3	7	15	35	-57.1%	0.39	0.54	-26.8%	

Experimental results

- > 29.22% computation time was reduced for the SMT solver
- > 58.11% CNOT gates have been reduced on average

Conclusion

Conclusion

- More optimal circuits can be constructed by considering don't-care qubits
- > H gate sub-circuits can only be handled in the same way as existing methods

Future works

- > Adaptation to larger quantum circuits
- Conversion without splitting the circuit