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Quantum computing (QC) era is coming, but lifetime of 
qubits limits its application

• QC enables exponential speed-up for several important 
information processing

• Error due to short lifetime of qubit is the current bottleneck
• Only 100 µs, but we need…
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[1] Frank Arute, et al., Quantum supremacy using a programmable superconducting processor, Nature 574, 505–510 (2019).

Advanced superconducting QC chip [1]

Chip plane

Qubit:

Basic unit of QC

Lifetime:

Period of qubit holding its state

Error (state change) 

during long holding



QEC is necessary due to high error rate

• Error rate due to short lifetime of physical qubit is large

• Quantum error correction(QEC) reduces error rate
• Physical qubits are encoded to logical qubits

• Error rate of logical qubit can be reduced to any small value

3

Logical error rate is reduced w/ 

the same single bit error rate

Physical qubit

Logical qubit
Detected!



QEC is necessary due to high error rate

• Error rate due to short lifetime of physical qubit is large

• Quantum error correction(QEC) reduces error rate
• Physical qubits are encoded to logical qubits

• Error rate of logical qubit can be reduced to any small value

4

Logical error rate is reduced w/ 

the same single bit error rate

Physical qubit

Logical qubit
Detected!

Error rate reduces to 

any small value by increasing code distance

Code distance:

Least error number to 

change logical state



Non-uniform error rates jeopardize QEC
• Reason: 

• Fast correction is necessary due to short lifetime, but 
assumes ideal uniform error rates (unweighted decoding)

5

Ideal qubits: uniform error rates

We need to work fast due to short lifetime!

Logical qubit

Uniform error rates

unweighted decoding

Decoding: error estimation in QEC code
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Ideal qubits: uniform error rates

Real qubits: Non-uniform err. rates

Logical qubit

?

Decoding: error estimation in QEC code

Non-uniform error rates jeopardize QEC
• Reason: 

• Fast correction is necessary due to short lifetime, but 
assumes ideal uniform error rates (unweighted decoding)

• Non-uniform error rates are the nature of real qubits
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Ideal qubits: uniform error rates

Real qubits: Non-uniform err. rates

Logical qubit

?

Profiling distribution of non-uniform error rates of

real qubits in IBMQ chips (Eagle)[1] 

Physical qubit layout w/ 

lifetime as heatmap on chip

[1] IBMQ, https://quantum-computing.ibm.com/services/resources

Decoding: error estimation in QEC code

Non-uniform error rates jeopardize QEC
• Reason: 

• Fast correction is necessary due to short lifetime, but 
assumes ideal uniform error rates (unweighted decoding)

• Non-uniform error rates are the nature of real qubits
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Ideal qubits: uniform error rates

Real qubits: Non-uniform err. rates

Logical qubit

?

Monte Carlo simulation result: 

no error rate reduction by larger code distance

Uniform error rates

unweighted decoding

Non-uniform error rates

unweighted decoding

Decoding: error estimation in QEC code

Non-uniform error rates jeopardize QEC
• Reason: 

• Fast correction is necessary due to short lifetime, but 
assumes ideal uniform error rates (unweighted decoding)

• Non-uniform error rates are the nature of real qubits
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Ideal qubits: uniform error rates

Real qubits: Non-uniform err. rates

Logical qubit

?

Solution: Weighted decoding (i.e., decoding w/ non-uniform 

error rates) can help to re-gain distance benefit, but…

Non-uniform error rates

weighted decoding

Non-uniform error rates

unweighted decoding

Decoding: error estimation in QEC code

Non-uniform error rates jeopardize QEC
• Reason: 

• Fast correction is necessary due to short lifetime, but 
assumes ideal uniform error rates (unweighted decoding)

• Non-uniform error rates are the nature of real qubits



No support for weighted

Small code distance onlyPrevious work
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Non-uniform error rates jeopardize QEC
• Reason: 

• Fast correction is necessary due to short lifetime, but 
assumes ideal uniform error rates (unweighted decoding)

• Non-uniform error rates are the nature of real qubits

• Current issue:✔ we solved in this paper
• No fast error estimating device (i.e. decoder) for weighted decoding 

(i.e., error estimation w/ non-uniform error rates) large-distance 
code



No support for weighted

Small code distance onlyPrevious work

Highlight of this paper

• Current issue: No fast decoder for weighted decoding (i.e., error 
estimation w/ non-uniform error rates) large-distance code

•✔ Our contribution: we solved it by designing a fast hardware 
decoder

• Fast: average delay within time budget

• Weighted decoding (i.e., error estimation w/ non-uniform error rates)

• Large distance: support surface code up to d=11
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Overview of decoding for surface code  
• Surface code is currently the most promising QEC code

• Decoding: estimation of error allocation inside code

• Decoding task is essentially a classical problem: solve matching 
problem of active syndrome nodes 
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Error syndrome using surface code

• Error syndrome: parity check # of errors in neighbor 
data qubits → error detection in QEC
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Error syndrome using surface code

• Error syndrome: parity check # of errors in neighbor 
data qubits → error detection in QEC
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Phys. data qubit

Ancilla qubit Syndrome

Logical qubit Error syndrome 

via ancilla qubit
Measurement value

E

1 for

0 for

Odd # (e.g.,  1 error)

Even # (e.g., 0, 2 errors)



• Error syndrome: parity check # of errors in neighbor 
data qubits → error detection in QEC

• Code distance d: error detection ability

Error syndrome using surface code
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X

X
flip

X

X

Detected!
1 logical qubit

(d = 2)
1 logical qubit

(d = 3)

*: Two types of errors exist in QC as X and Z typesd = maximum # of errors 

to detect



Successive syndrome during computation

• Syndrome measurement is conducted every 
computation code cycle due to large error rates
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Successive syndrome during computation

• Syndrome measurement is conducted every 
computation code cycle due to large error rates
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Cycle 1

Cycle 2

Cycle 3

XOR

XOR

X, Z syndrome 

measurement value

…

Z syndrome 

queue

X syndrome 

queue

… …

Measurement value = 1*
Measurement value = 0

*: also called active node

Code cycle: each syndrome 

measurement cycle of QEC code

How can we estimate errors using syndrome queue?



Convert decoding task of syndrome queue to a matching problem

• Most probable error estimation -> find minimum weight perfect 
matching (i.e. most probable error pattern)
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Which is

reasonable?

• Horizontal edge > data qubit error

• Vertical edge -> ancilla qubit error

Meaning of edges in graph:

Weight of edge: related to the error rate of each qubit

Total weight of edges: 2✔ Total weight of edges: 5

= =

A B

C

D

A B

C

D



Summary of decoding process
• Pick up all active syndrome node (i.e. measurement value = 1)

• Re-construct complete graph with weights of path

• Solve matching problem of active syndrome nodes 

• Error assignment
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Our contribution

• We developed fast weighted decoder with the same 
computation complexity of the baseline unweighted decoder

• Key idea: weight tables and parallel processing
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Difficulty to consider non-uniform weights

• Hard to find shortest path betw. nodes
• Unweighted one can be calculated by Manhattan distance

• Shortest path needs repeated enumeration
• Complexity of O(d3) for d6 times
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Our proposal: Pre-calculated weight table of shortest paths

• Previous solutions: 
• 1. Perform shortest-path finding in each iteration -> time consuming

• 2. Full look-up table for matching  -> mem. resource exhaust at d=5 [1]

• Our solution:
• Construct pre-calculated weight table of shortest path of each node pair
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[1]P.Das, et al., LILLIPUT, ASPLOS’22

(x1, y1, 0)

(x2, y2, z2)

Syndrome queue
Select two 

syndrome nodes in 

z differential cor.

Weights of 

shortest path 

betw. arbitrary 

two nodes

Re-calculate until all node pairs are emulated

Weight 

table

Store to memory 

resource (i.e. random 

access memory, RAM)

Increasing rate of size at 2𝑑
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Complexity O(d3)
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Our contribution

• We developed fast weighted decoder with the same 
computation complexity of the baseline unweighted decoder

• Key idea: weight tables and parallel processing
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Overall HW design of WIT-Greedy for parallel processing

• Processing flow chart
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Overall HW design of WIT-Greedy for parallel processing

• Processing flow chart
• Active syndrome node encoding

• Pair table based parallel comparator
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Generating address to query weight tables



Overall HW design of WIT-Greedy for parallel processing

• Processing flow chart
• Active syndrome node encoding

• Pair table based parallel comparator

31
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Overall HW design of WIT-Greedy for parallel processing

• Processing flow chart
• Active syndrome node encoding

• Pair table based parallel comparator
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Parallel processing in active syndrome encoding

• Encoding rows: 1 clock delay for entire row

• Merge to syndrome queue
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Row encoding unit

input

output

x offset of active syndrome

LSB MSB

Array of syndrome measurement value:

1101 0010 0000 0000 0000…



Parallel processing in active syndrome encoding

• Encoding rows: 1 clock delay for entire row

• Merge to syndrome queue: 3-stage pipeline
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Data in syndrome queue

…

Data in row buffer Data in cycle buffer

insert

*: These buffers are all registers (FFs)



Overall HW design of WIT-Greedy for parallel processing

• Processing flow chart
• Active syndrome node encoding

• Pair table based parallel comparator
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Enable to pick up the least-

weight pair at one time



Generate pair table for parallel matching

• Large pair table of registers is created for comparing all 
the pairs simultaneously

• Parallel accessing weight tables to read weight of each node 
pairs

• Record existing top least weight 
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Generate pair table for parallel matching

• Large pair table of registers is created for comparing all 
the pairs simultaneously

• Parallel accessing weight tables to read weight of each node 
pairs

• Record existing top least weight 
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…

(until all weights 

loaded)



Parallel processing for matching
• Parallel greedy algorithm: 

• pick up the first pair of the current least weight @minimum of 1 clock

• Turn off flags of pairs containing matched nodes 

• Pop-up pairs for Pauli frame generation in parallel
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Parallel processing for matching
• Parallel greedy algorithm: 

• pick up the first pair of the current least weight @minimum of 1 clock

• Turn off flags of pairs containing matched nodes 

• Pop-up pairs for Pauli frame generation in parallel
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Parallel processing for matching
• Parallel greedy algorithm: 

• pick up the first pair of the current least weight @minimum of 1 clock

• Turn off flags of pairs containing matched nodes 

• Pop-up pairs for Pauli frame generation in parallel
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Overall HW design of WIT-Greedy for parallel processing

42
Enable to pick up the least-

weight pair at one time

×d 

Parallel processing acceleration 

(d is code distance, N = Nactive_syn is paring window size) 

×3 ×10

×N(N-1)/2



Implementation result using FPGA

• Requirement of latency is satisfied
• We have an average delay of 370 ns at d=11

• Scale of circuit implementation is reasonable
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Latency fits into 1µs time budget 

of code cycle

Condition of latency evaluation:

• RTL simulation

• Write random syndrome flipping testbench 

and monitor the delay

• Flip rate = 6*average error rate

• 104 random syndrome cycle sample

Reasonable resource utilization of circuits for d=11

Condition of resource evaluation

• Queue overflow probability < 1e-15

• Clock constraint = 100 MHz

• placement&routing in FPGA (field programmable 

gate array, user reconfigurable circuits)



Conclusion
• Weighted decoding with non-uniformity is a necessity

• We made it with results of
• Iterative greedy matching within average 370 ns

• Support surface code up to d=11

• Implementable with mid-class classical commercial device
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No support weighted
Small code onlyPrevious work


