
WIT-Greedy: Hardware System Design of Weighted
ITerative Greedy Decoder for Surface Code

Wang LIAO1, Yasunari Suzuki2, 3, Teruo Tanimoto3, 4, Yosuke Ueno1, Yuuki Tokunaga2

1. The University of Tokyo

2. NTT Computer and Data Science Laboratories

3. JST PRESTO

4. Kyushu University

2023/01/17 @ ASPDAC

1

Quantum computing (QC) era is coming, but lifetime of
qubits limits its application

• QC enables exponential speed-up for several important
information processing

• Error due to short lifetime of qubit is the current bottleneck
• Only 100 µs, but we need…

2
[1] Frank Arute, et al., Quantum supremacy using a programmable superconducting processor, Nature 574, 505–510 (2019).

Advanced superconducting QC chip [1]

Chip plane

Qubit:

Basic unit of QC

Lifetime:

Period of qubit holding its state

Error (state change)

during long holding

QEC is necessary due to high error rate

• Error rate due to short lifetime of physical qubit is large

• Quantum error correction(QEC) reduces error rate
• Physical qubits are encoded to logical qubits

• Error rate of logical qubit can be reduced to any small value

3

Logical error rate is reduced w/

the same single bit error rate

Physical qubit

Logical qubit
Detected!

QEC is necessary due to high error rate

• Error rate due to short lifetime of physical qubit is large

• Quantum error correction(QEC) reduces error rate
• Physical qubits are encoded to logical qubits

• Error rate of logical qubit can be reduced to any small value

4

Logical error rate is reduced w/

the same single bit error rate

Physical qubit

Logical qubit
Detected!

Error rate reduces to

any small value by increasing code distance

Code distance:

Least error number to

change logical state

Non-uniform error rates jeopardize QEC
• Reason:

• Fast correction is necessary due to short lifetime, but
assumes ideal uniform error rates (unweighted decoding)

5

Ideal qubits: uniform error rates

We need to work fast due to short lifetime!

Logical qubit

Uniform error rates

unweighted decoding

Decoding: error estimation in QEC code

6

Ideal qubits: uniform error rates

Real qubits: Non-uniform err. rates

Logical qubit

?

Decoding: error estimation in QEC code

Non-uniform error rates jeopardize QEC
• Reason:

• Fast correction is necessary due to short lifetime, but
assumes ideal uniform error rates (unweighted decoding)

• Non-uniform error rates are the nature of real qubits

7

Ideal qubits: uniform error rates

Real qubits: Non-uniform err. rates

Logical qubit

?

Profiling distribution of non-uniform error rates of

real qubits in IBMQ chips (Eagle)[1]

Physical qubit layout w/

lifetime as heatmap on chip

[1] IBMQ, https://quantum-computing.ibm.com/services/resources

Decoding: error estimation in QEC code

Non-uniform error rates jeopardize QEC
• Reason:

• Fast correction is necessary due to short lifetime, but
assumes ideal uniform error rates (unweighted decoding)

• Non-uniform error rates are the nature of real qubits

8

Ideal qubits: uniform error rates

Real qubits: Non-uniform err. rates

Logical qubit

?

Monte Carlo simulation result:

no error rate reduction by larger code distance

Uniform error rates

unweighted decoding

Non-uniform error rates

unweighted decoding

Decoding: error estimation in QEC code

Non-uniform error rates jeopardize QEC
• Reason:

• Fast correction is necessary due to short lifetime, but
assumes ideal uniform error rates (unweighted decoding)

• Non-uniform error rates are the nature of real qubits

9

Ideal qubits: uniform error rates

Real qubits: Non-uniform err. rates

Logical qubit

?

Solution: Weighted decoding (i.e., decoding w/ non-uniform

error rates) can help to re-gain distance benefit, but…

Non-uniform error rates

weighted decoding

Non-uniform error rates

unweighted decoding

Decoding: error estimation in QEC code

Non-uniform error rates jeopardize QEC
• Reason:

• Fast correction is necessary due to short lifetime, but
assumes ideal uniform error rates (unweighted decoding)

• Non-uniform error rates are the nature of real qubits

No support for weighted

Small code distance onlyPrevious work

10

Non-uniform error rates jeopardize QEC
• Reason:

• Fast correction is necessary due to short lifetime, but
assumes ideal uniform error rates (unweighted decoding)

• Non-uniform error rates are the nature of real qubits

• Current issue:✔ we solved in this paper
• No fast error estimating device (i.e. decoder) for weighted decoding

(i.e., error estimation w/ non-uniform error rates) large-distance
code

No support for weighted

Small code distance onlyPrevious work

Highlight of this paper

• Current issue: No fast decoder for weighted decoding (i.e., error
estimation w/ non-uniform error rates) large-distance code

•✔ Our contribution: we solved it by designing a fast hardware
decoder

• Fast: average delay within time budget

• Weighted decoding (i.e., error estimation w/ non-uniform error rates)

• Large distance: support surface code up to d=11

11

Contents

• Introduction of decoder for surface code

• Proposed weighted hardware decoder of WIT-Greedy

• Conclusion

12

Contents

• Introduction of decoder for surface code

• Proposed weighted hardware decoder of WIT-Greedy

• Conclusion

13

Overview of decoding for surface code
• Surface code is currently the most promising QEC code

• Decoding: estimation of error allocation inside code

• Decoding task is essentially a classical problem: solve matching
problem of active syndrome nodes

14

Syndrome queue Solve matching problem

in a complete graph
Error assignment

Decoding process for surface code

Qubit errorMatching: pairing every two nodes

Complete graph: nodes are all connected

A B

C

D

A
B

C
D

1

2

1

3
3 2

Error

correction

Error detection in

logical qubit:

Syndrome

Logical qubit on chip

Overview of decoding for surface code
• Surface code is currently the most promising QEC code

• Decoding: estimation of error allocation inside code

• Decoding task is essentially a classical problem: solve matching
problem of active syndrome nodes

15

Syndrome queue Solve matching problem

in a complete graph
Error assignment

Decoding process for surface code

Qubit errorMatching: pairing every two nodes

Complete graph: nodes are all connected

A B

C

D

A
B

C
D

1

2

1

3
3 2

Error

correction

Error detection in

logical qubit:

Syndrome

Logical qubit on chip

Error syndrome using surface code

• Error syndrome: parity check # of errors in neighbor
data qubits → error detection in QEC

16

Phys. data qubit

Ancilla qubit Syndrome

Logical qubit Error syndrome

via ancilla qubit
Measurement value

Error syndrome using surface code

• Error syndrome: parity check # of errors in neighbor
data qubits → error detection in QEC

17

Phys. data qubit

Ancilla qubit Syndrome

Logical qubit Error syndrome

via ancilla qubit
Measurement value

E

1 for

0 for

Odd # (e.g., 1 error)

Even # (e.g., 0, 2 errors)

• Error syndrome: parity check # of errors in neighbor
data qubits → error detection in QEC

• Code distance d: error detection ability

Error syndrome using surface code

18

X

X
flip

X

X

Detected!
1 logical qubit

(d = 2)
1 logical qubit

(d = 3)

*: Two types of errors exist in QC as X and Z typesd = maximum # of errors

to detect

Successive syndrome during computation

• Syndrome measurement is conducted every
computation code cycle due to large error rates

19

Cycle 1

Cycle 2

Cycle 3

XOR

XOR

X, Z syndrome

measurement value

…

Z syndrome

queue

X syndrome

queue

… …

Measurement value = 1*
Measurement value = 0

*: also called active node

Code cycle: each syndrome

measurement cycle of QEC code

Successive syndrome during computation

• Syndrome measurement is conducted every
computation code cycle due to large error rates

20

Cycle 1

Cycle 2

Cycle 3

XOR

XOR

X, Z syndrome

measurement value

…

Z syndrome

queue

X syndrome

queue

… …

Measurement value = 1*
Measurement value = 0

*: also called active node

Code cycle: each syndrome

measurement cycle of QEC code

How can we estimate errors using syndrome queue?

Convert decoding task of syndrome queue to a matching problem

• Most probable error estimation -> find minimum weight perfect
matching (i.e. most probable error pattern)

21

Which is

reasonable?

• Horizontal edge > data qubit error

• Vertical edge -> ancilla qubit error

Meaning of edges in graph:

Weight of edge: related to the error rate of each qubit

Total weight of edges: 2✔ Total weight of edges: 5

= =

A B

C

D

A B

C

D

Summary of decoding process
• Pick up all active syndrome node (i.e. measurement value = 1)

• Re-construct complete graph with weights of path

• Solve matching problem of active syndrome nodes

• Error assignment

22

Syndrome queue Solve matching problem

in a complete graph
Error assignment

Decoding process for surface code

Qubit errorMatching: pairing every two nodes

Complete graph: nodes are all connected

A B

C

D

A
B

C
D

1

2

1

3
3 2

Error

correction

Error detection in

logical qubit:

Syndrome

Logical qubit on chip

Contents

• Introduction of decoder for surface code

• Proposed weighted hardware decoder of WIT-Greedy

• Conclusion

23

Our contribution

• We developed fast weighted decoder with the same
computation complexity of the baseline unweighted decoder

• Key idea: weight tables and parallel processing

24

Syndrome

input

Merge to

syndrome queue

Generate complete graph

by Manhattan distances of

nodes

Matching Error

assignment

Syndrome

input

Merge to

syndrome queue Generate complete graph Parallel Matching
Error

assignment

Weight tables

Parallel access

O(1)

O(1)×d6/(#Table)

O(d6)

O(1)

Complexity and flow of hardware decoder

Baseline: unweighted greedy decoder

Our proposal: WIT-Greedy

+

+

d is code distance

Our contribution

• We developed fast weighted decoder with the same
computation complexity of the baseline unweighted decoder

• Key idea: weight tables and parallel processing

25

Syndrome

input

Merge to

syndrome queue

Generate complete graph

by Manhattan distances of

nodes

Matching Error

assignment

Syndrome

input

Merge to

syndrome queue Generate complete graph Parallel Matching
Error

assignment

Weight tables

Parallel access

O(1)

O(1)×d6/(#Table)

O(d6)

O(1)

Complexity and flow of hardware decoder

Baseline: unweighted greedy decoder

Our proposal: WIT-Greedy

+

+

d is code distance

Difficulty to consider non-uniform weights

• Hard to find shortest path betw. nodes
• Unweighted one can be calculated by Manhattan distance

• Shortest path needs repeated enumeration
• Complexity of O(d3) for d6 times

26

1 1 1

1 1

1

1

1
1

1

1

Matching result of

uniform weight

Matching result of

non-uniform weight

1

1

0.5 1.6 0.3

1.5 1.3

0.5

0.7

0.7
1.2

0.6

0.9

1.3

0.9

Shortest path in uniform weight can be

replaced by Manhattan distance
However, for non-uniform case, we can not

use Manhattan distance

b
o
u
n
d
a
ry

b
o
u
n
d
a
ry

b
o
u
n
d
a
ry

b
o
u
n
d
a
ry

d is code distance

Our proposal: Pre-calculated weight table of shortest paths

• Previous solutions:
• 1. Perform shortest-path finding in each iteration -> time consuming

• 2. Full look-up table for matching -> mem. resource exhaust at d=5 [1]

• Our solution:
• Construct pre-calculated weight table of shortest path of each node pair

27

[1]P.Das, et al., LILLIPUT, ASPLOS’22

(x1, y1, 0)

(x2, y2, z2)

Syndrome queue
Select two

syndrome nodes in

z differential cor.

Weights of

shortest path

betw. arbitrary

two nodes

Re-calculate until all node pairs are emulated

Weight

table

Store to memory

resource (i.e. random

access memory, RAM)

Increasing rate of size at 2𝑑
3

Increasing rate of size at d5

Complexity O(d3)

O(1)

Our contribution

• We developed fast weighted decoder with the same
computation complexity of the baseline unweighted decoder

• Key idea: weight tables and parallel processing

28

Syndrome

input

Merge to

syndrome queue

Generate complete graph

by Manhattan distances of

nodes

Matching Error

assignment

Syndrome

input

Merge to

syndrome queue Generate complete graph Parallel Matching
Error

assignment

Weight tables

Parallel access

O(1)

O(1)×d6/(#Table)

O(d6)

O(1)

Complexity and flow of hardware decoder

Baseline: unweighted greedy decoder

Our proposal: WIT-Greedy

+

+

d is code distance

Accelerate matching

Overall HW design of WIT-Greedy for parallel processing

• Processing flow chart

29

Overall HW design of WIT-Greedy for parallel processing

• Processing flow chart
• Active syndrome node encoding

• Pair table based parallel comparator

30

Generating address to query weight tables

Overall HW design of WIT-Greedy for parallel processing

• Processing flow chart
• Active syndrome node encoding

• Pair table based parallel comparator

31
Enable to pick up the least-

weight pair at one time

Matching nodes

Overall HW design of WIT-Greedy for parallel processing

• Processing flow chart
• Active syndrome node encoding

• Pair table based parallel comparator

32
Enable to pick up the least-

weight pair at one time

Parallel processing in active syndrome encoding

• Encoding rows: 1 clock delay for entire row

• Merge to syndrome queue

33
Row encoding unit

input

output

x offset of active syndrome

LSB MSB

Array of syndrome measurement value:

1101 0010 0000 0000 0000…

Parallel processing in active syndrome encoding

• Encoding rows: 1 clock delay for entire row

• Merge to syndrome queue: 3-stage pipeline

34

Data in syndrome queue

…

Data in row buffer Data in cycle buffer

insert

*: These buffers are all registers (FFs)

Overall HW design of WIT-Greedy for parallel processing

• Processing flow chart
• Active syndrome node encoding

• Pair table based parallel comparator

35
Enable to pick up the least-

weight pair at one time

Generate pair table for parallel matching

• Large pair table of registers is created for comparing all
the pairs simultaneously

• Parallel accessing weight tables to read weight of each node
pairs

• Record existing top least weight

36

Generate pair table for parallel matching

• Large pair table of registers is created for comparing all
the pairs simultaneously

• Parallel accessing weight tables to read weight of each node
pairs

• Record existing top least weight

37

…

(until all weights

loaded)

Parallel processing for matching
• Parallel greedy algorithm:

• pick up the first pair of the current least weight @minimum of 1 clock

• Turn off flags of pairs containing matched nodes

• Pop-up pairs for Pauli frame generation in parallel

38

Node1 Node2

Node3

1

2

1

3
3 2

Node4

Being compared

simultaneously

Parallel processing for matching
• Parallel greedy algorithm:

• pick up the first pair of the current least weight @minimum of 1 clock

• Turn off flags of pairs containing matched nodes

• Pop-up pairs for Pauli frame generation in parallel

39

Being compared

simultaneously

Node1 Node2

Node3

1

2

1

3
3 2

Node4

Find first least weight

Parallel processing for matching
• Parallel greedy algorithm:

• pick up the first pair of the current least weight @minimum of 1 clock

• Turn off flags of pairs containing matched nodes

• Pop-up pairs for Pauli frame generation in parallel

40

Being compared

simultaneously

Unmatched flag

Node1 Node2

Node3

1

1

Node4

Match and disable

Parallel processing for matching
• Parallel greedy algorithm:

• pick up the first pair of the current least weight @minimum of 1 clock

• Turn off flags of pairs containing matched nodes

• Pop-up pairs for Pauli frame generation in parallel

41

Being compared

simultaneously

Unmatched flag

Node1 Node2

Node3

1

1

Node4
Match next pair

Overall HW design of WIT-Greedy for parallel processing

42
Enable to pick up the least-

weight pair at one time

×d

Parallel processing acceleration

(d is code distance, N = Nactive_syn is paring window size)

×3 ×10

×N(N-1)/2

Implementation result using FPGA

• Requirement of latency is satisfied
• We have an average delay of 370 ns at d=11

• Scale of circuit implementation is reasonable

43

Latency fits into 1µs time budget

of code cycle

Condition of latency evaluation:

• RTL simulation

• Write random syndrome flipping testbench

and monitor the delay

• Flip rate = 6*average error rate

• 104 random syndrome cycle sample

Reasonable resource utilization of circuits for d=11

Condition of resource evaluation

• Queue overflow probability < 1e-15

• Clock constraint = 100 MHz

• placement&routing in FPGA (field programmable

gate array, user reconfigurable circuits)

Conclusion
• Weighted decoding with non-uniformity is a necessity

• We made it with results of
• Iterative greedy matching within average 370 ns

• Support surface code up to d=11

• Implementable with mid-class classical commercial device

44

No support weighted
Small code onlyPrevious work

