

Discovering the In-Memory Kernels of 3D Dot-Product Engines

Muhammad Rashedul Haq Rashed¹, Sumit Kumar Jha², Rickard Ewetz¹

¹University of Central Florida, ²University of Texas at San Antonio

Outline

- Preliminaries
- 3D DPE Level
 - Sharing of hardware
 - Hardware mapping
- Application level
 - Methodology
- Evaluation
- Summary

Why In-Memory Computing?

NVM Technology and In-Memory Computing

ReRAM

Matrix Vector Multipication³

Pro

- In-situ computation
- Extremely energy efficient

- 1. Ghazi Sarwat, Syed, et al. "Projected Mushroom Type Phase-Change Memory." Advanced Functional Materials 31.49 (2021): 2106547.
- 2. Seyedzadeh, Seyed Mohammad & Maddah, Rakan & Jones, Alex & Melhem, Rami. (2016). Leveraging ECC to Mitigate Read Disturbance, False Reads and Write Faults in STT-RAM.
- 3. 1. Wang, Feng, Guangyu Sun, and Guojie Luo. "SSR: A Skeleton-based Synthesis Flow for Hybrid Processing-in-RRAM Modes." 2021 ICCAD. IEEE, 2021.

2D vs 3D DPE

Previous Work

Table 1: Architectural comparison of dot-product engines

Work in	Form of DPE	# Metal layers
[9, 14, 18]	2D	2
[1, 4, 6, 13]	3D	2-3
This work	3D	2-8

- Previous works focused on mitigation of parasitics on the algorithmic level
- DAC and ADC operations are time multiplexed
- Efficient utilization of 3D ReRAM crossbars with more than three layers have not been explored

[1] G. C. Adam et al. 3d reram arrays and crossbars: Fabrication, characterization and applications. In 2017 leee-Nano, pages 844–849. IEEE, 2017

[4] B. Chakrabarti et al. A multiplyadd engine with monolithically integrated 3d memristor crossbar/cmos hybridcircuit. *Scientific reports*, 7(1):1–10, 2017.

[6] F. Chen et al., A novel zero-free dataflow accelerator for generative adversarial networks in 3d reram. In Proceedings of the 56th DAC 2019, pages 1–6, 2019.

[9] B. Feinberg et. Al, Enabling scientific computing on memristive accelerators. In 2018 ACM/IEEE 45th ISCA, pages 367–382. IEEE, 2018.

[13] M. A. Lastras-Montano et. Al, 3d-dpe: A 3d high-bandwidth dot-product engine for high-performance neuromorphic computing. In 2017 DATE, pages 1257–1260. IEEE, 2017.

[14] C. Li et al. Analogue signal and image processing with large memristor crossbars. Nature Electronics, 1(1):52, 2018.

[18] A. Shafiee et. al., : A convolutional neural network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH Computer Architecture News, 44(3):14–26, 2016.

MVM in In-memory DPE

Hardware constraint: Maximum Crossbar Dimension

Overhead Comparison

Table 2: Overhead comparison of 2D vs 3D architecture.

	2D Architecture	3D Architecture
Crossbar footprint on chip	4X	1X
# DACs	4X	2X
ADC timesteps	4X	2X

Problem 1: Hardware Mapping

3D Hardware

Shareability Opportunity

 Two adjacent crossbars in a 3D stack can share a set of DACs if the mapped matrix segments are in the same column i.e., to be multiplied with the same input vector

 The dot product output if two adjacent crossbars in a 3D stack can combined if the mapped matrix segments are in the same row i.e., contributing to the same output vector

Problem 2: Discovering In-memory 3D DPE Kernel

Discovering In-memory 3D DPE Kernel

Discovering In-memory 3D DPE Kernel

Kernel 2

Discovering In-memory 3D DPE Kernel

Library of In-memory 3D DPE Kernel

Kernel 1Kernel 2Kernel 3

Overhead Comparison

Application level

Problem:

 Matrix dimension might exceed crossbar dimension

Solution:

 Partitioning Matrix into segments

Greedy Kernel Cover of Sparse System

Target:

• Covering non-zero blocks using the kernel library

Evaluation

Area-power cost of architectural components

Component	Parameter	Specs	Area	Power
Crossbar	Size	128×128	$25 \ \mu \mathrm{m}^2$	0.3 mW
DAC	Resolution	1 bit	$0.17 \ \mu \mathrm{m}^2$	0.004 mW
ADC	Resolution	8 bits	0.0012 mm^2	2 mW
Sample+Hold	# Unit	1	$0.04~\mu\mathrm{m}^2$	10 nW
Shift+Add	# Unit	1	$60 \ \mu \mathrm{m}^2$	0.05 mW
	# Crossbar	1		
2D Crossbar	# DACs	128	51.25 μm^2	0.80 mW
	# Sample+Hold	128		
	# Crossbar	7		
3D Crossbar	# DACs	4×128	122.28 $\mu \mathbf{m}^2$	4.10 mW
	# Sample+Hold	2×128		
eDRAM Buffer	Size	128 KB	0.17 mm^2	41.4 mW
IR	Size	4 KB	4200 μm^2	2.48 mW
OR	Size	512 B	$1500 \mu \mathrm{m}^2$	0.46 mW
Bus	Bandwidth	128-bits	15.7 mm ²	13 mW

Table 4: Overview of benchmarks from the SuiteSparse Matrix Collection.

Applications	Systems	Matrix Dimensions	#Non-zeros
bcsstk34	Structural Problem	588×588	21418
eris1176	Power Network Problem	1176×1176	18552
coater1	Computational Fluid Dynamics	1348×1348	19457
cegb2919	Structural Problem	2919×2919	321543
mycielskian12	Undirected Graph	3071×3071	407200
raefsky1	Computational Fluid Dynamics	3242×3242	293409
crystk01	Materials Problem	4875×4875	315891
fxm3_6	Optimization Problem	5026×5026	94026
Na5	Theoretical/Quantum Chemistry	5832×5832	305630
EX5	Combinatorial Problem	6545×6545	295680
fp	Electromagnetics Problem	7548×7548	834222
ex40	Computational Fluid Dynamics	7740×7740	456188
benzene	Theoretical/Quantum Chemistry	8219 × 8219	242669
bcsstk33	Structural Problem	8738 × 8738	591904
graham1	Computational Fluid Dynamics	9035×9035	335472
net25	Optimization Problem	9520×9520	401200
bundle1	Computer Graphics/Vision	10581×10581	770811
Si10H16	Theoretical/Quantum Chemistry	17077×17077	875923
Goodwin_040	Computational Fluid Dynamics	17922×17922	561677
pkustk06	Structural Problem	43164×43164	2571768

Improvements:

- Area by 2.02X
- Latency by 2.45X
- Energy by 2.37X

Summary

Thank You

Contact us:

rashed09@knights.ucf.edu sumit.jha@utsa.edu rickard.ewetz@ucf.edu