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WHAT’S BUFFERING & HOW GENERATIVE ML HELPS?

Buffering: insert buffers to interconnects to improve timing, NP-complete problem
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Q Sinks and 6
delay targets Steiner tree generation & Timing-driven minimum
wire segmenting cost buffer insertion

Buffered tree for

Conventional methods: two-stage, use heuristics, better timing
vet not scale well with large nets

Net instance

Generative ML model

BufFormer: the first generative ML-based framework for scalable buffermgl
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PROBLEM FORMULATION

Sinks, their polarities
and locations

Driver, Its
input slew

and location Buffer-embedded tree

Abstract tree topology

Location&size of buffers

Delay targets for
each driver-sink pair

Buffer & inverter librar
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BUFFORMER FRAMEWORK
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(a) Tree generation process
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TREE GENERATION PROCESS @ clusters

Original tree  Clustering of sinks Buffer insertion for each cluster

Regard inserted buffers as dummy sinks

Properties
** Recursive process
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Libcell

BUFFOMER-NET

shared module

embedding
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Connection Clustering

1. If two sinks are close in the
representation space, then
regard them as connected

2. Each connected component of
sinks is viewed as a cluster



SELF-SUPERVISED TRAINING SCHEME
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preparation:
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L oss functions: Multi-objective training for shared parameters:
for clustering 1. Compute the gradients of each loss w.r.t. shared
parameters
for BUF size . .
| 2. Compute a minimum-norm vector in the convex
3. MSE loss for BUF location hull of the set of gradient vectors
4. MSE loss for delay 3. Update parameters in the direction of the

MiniMum-norm vector
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EXPERIMENT RESULTS

Setups )
»* Baseline: FLUTE + Lillis implemented in OpenPhySyn mﬂmﬂﬁmﬂ .
*** NanGate45 cell library
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*»» Artificial nets

Table 1: Characteristics of Samples

\

Buffer area of ML-generated trees (um?)

-

Driver-sink delays of ML-generated trees (ps)

characteristic train set test set o
net count 23083 1620 Buffer EDI'EB of ts;ES gen?rated b? baselir:i:- mEthjﬁE (um?) Driver—sinli dela;gnuf trézﬂs ge;;iateddgﬂy ba;enfine n:{:lthnd (ps)
tree count 343004 32031
sink count range & avg. 1,150], 48 0,98], 56
buffer area range & avg. (pm2) 0,151], 37 0,99], 43 -
driver-sink delay range & avg. (ps) [0,1128], 186 [0,609], 200 % BufFormer on a NVIDIA Tesla V100 GPU
HPWL range & avg. (um) [0, 2214] , 863 | [0, 2796], 1270 141 Baseline on a single CPU thread
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Results:

*** Highly comparable performance to the baseline

Runtime per net (s)

“** Up to 160X speedup for large nets

04 1 * * * *
l:“J ZID 4ID E:ID SID 160 150
Num of sinks

*** Parity constraint, capacitance and slew limits are met



EXPERIMENT RESULTS (CONT.)

Table 2: Results of Ablation Studies

cluster | libcell | loc RMSE | delay tar. buf. area diff. (um?) || driver-sink delay diff.(ps)
factors method

acc ace (um) RMSE (ps) || cor mean | std || cor mean std
default 92.6% | 91.6% 34 10 0.977 | 4.8 4.9 |1 0934 | 0 25
data 40% 91.1% 88.7% 36 11 0.964 | 4.6 5.9 0.762 | 7 51
amount 23% 837.0% | 84.5% 40 14 0.939 | 1.3 7.1 || 0.761 | & 50
model larger 93.1% | 92.5% 34 10 0.975 | 6.3 5.3 || 0931 | O 25
s1ze smaller 92.9% | 90.7% 34 10 0.970 | 4.7 54 || 0927 | O 26
train loss weighted 82.9% | 95.8% 34 8 0.976 | 4.1 4.5 || 0.873 | O 35
model arch. separate 90.8% | 95.5% 36 8 0.964 | 6.8 6.1 || 0.762 | 7 51
clusterin AC / / / / 0.974 | 4.2 4.9 0.916 | O 23
o IE AP / / / / 0.972 | 6.1 | 54 || 0.905 | 0 30
5 DBSCAN / / / / 0.932 | -2.1 | 7.9 || 0.676 | 11 67




SNAPSHOT OF TREE GENERATION BY BUFFORMER
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- i < Up to 160X speedup i
Tree generated by baseline (FLUTE+Lillis) Tree generated by our BufFormer i “» Meet constraints i
Total BF area: 31.7um?2 Total BUF area: 28.5um?2

Avg driver-sink delay: 155ps Avg driver-sink delay: 143ps
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CONCLUSIONS

“** The first successful attempt at generative ML-based buffering

“** A generative ML framework, named Bufformer, which can learn
from archived samples and generate buffered tree without Steiner
tree construction

*** Compared with a FLUTE-Lillis baseline running on a single CPU,
BufFormer can generate buffered trees for unseen nets very close
to baseline results, and achieve up to 160X speedup on a GPU



FUTURE DIRECTIONS

“** Train BufFormer with commercial tool post-routing data

»* Extend to handle realistic layout environment

** Circuit-level optimization
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