RONGJIAN LIANG*, SIDDHARTHA NATH*, ANAND RAJARAM*, JIANG HU+, AND MARK REN* +TEXAS A&M UNIVERSITY *NVIDIA

BUFFORMER: A GENERATIVE ML FRAMEWORK FOR SCALABLE BUFFERING

- PROBLEM FORMULATION
- METHODOLOGY
- EXPERIMENTAL VALIDATION
- CONCLUSTIONS AND FUTURE DIRECTIONS

WHAT'S BUFFERING & HOW GENERATIVE ML HELPS?

Buffering: insert buffers to interconnects to improve timing, NP-complete problem

- PROBLEM FORMULATION
- METHODOLOGY
- EXPERIMENTAL VALIDATION
- CONCLUSTIONS AND FUTURE DIRECTIONS

Sinks, their polarities and locations Driver, its input slew and location +

Delay targets for each driver-sink pair

PROBLEM FORMULATION

Buffer-embedded tree Abstract tree topology Location&size of buffers

- PROBLEM FORMULATION
- METHODOLOGY
- EXPERIMENTAL VALIDATION
- CONCLUSTIONS AND FUTURE DIRECTIONS

(a) Tree generation process

BUFFORMER FRAMEWORK

(c) Training scheme

TREE GENERATION PROCESS

Properties

Recursive process

Clustering-base process

module for BUF size

BUFFOMER-NET

module for BUF location module for delay

Connection Clustering

- 1. If two sinks are close in the representation space, then regard them as connected
- 2. Each connected component of sinks is viewed as a cluster

Input-label preparation:

Loss functions:

- 1. Contractive loss for clustering
- 2. Focal loss for BUF size
- 3. MSE loss for BUF location
- 4. MSE loss for delay

SELF-SUPERVISED TRAINING SCHEME

Multi-objective training for shared parameters: 1. Compute the gradients of each loss w.r.t. shared

- parameters
- minimum-norm vector

2. Compute a minimum-norm vector in the convex hull of the set of gradient vectors

3. Update parameters in the direction of the

- PROBLEM FORMULATION
- METHODOLOGY
- **EXPERIMENTAL VALIDATION**
- CONCLUSTIONS AND FUTURE DIRECTIONS

Setups

- Baseline: FLUTE + Lillis implemented in OpenPhySyn
- NanGate45 cell library
- ✤ 5 buffers & 4 inverters
- Artificial nets

Table 1: Characteristics of Samples

characteristic	train set	test set		
net count	23083	1620		
tree count	343004	32031		
sink count range & avg.	[1,150], 48	[0,98], 56		
buffer area range & avg. (μm ²)	[0,151], 37	[0,99], 43		
driver-sink delay range & avg. (ps)	[0,1128], 186	[0,609], 200		
HPWL range & avg. (µm)	[0, 2214], 863	[0, 2796], 1270		

EXPERIMENT RESULTS

EXPERIMENT RESULTS (CONT.)

factors	method	cluster	libcell	loc RMSE	delay tar.	buf. area diff. (μm^2)			driver-sink delay diff.(ps)		
Tactors		acc	acc	(μm)	RMSE (ps)	cor	mean	std	cor	mean	std
	default	92.6%	91.6%	34	10	0.977	4.8	4.9	0.934	0	25
data	40%	91.1%	88.7%	36	11	0.964	4.6	5.9	0.762	7	51
amount	25%	87.0%	84.5%	40	14	0.939	1.3	7.1	0.761	8	50
model	larger	93.1%	92.5%	34	10	0.975	6.3	5.3	0.931	0	25
size	smaller	92.9%	90.7%	34	10	0.970	4.7	5.4	0.927	0	26
train loss	weighted	82.9%	95.8%	34	8	0.976	4.1	4.5	0.873	0	35
model arch.	separate	90.8%	95.5%	36	8	0.964	6.8	6.1	0.762	7	51
clustering algorithm	AC	/	/	/	/	0.974	4.2	4.9	0.916	0	28
	AP	/	/	/	/	0.972	6.1	5.4	0.905	0	30
	DBSCAN	/	/	/	/	0.932	-2.1	7.9	0.676	11	67

Table 2: Results of Ablation Studies

SNAPSHOT OF TREE GENERATION BY BUFFORMER

Tree generated by baseline (FLUTE+Lillis) Total BF area: 31.7um2 Avg driver-sink delay: 155ps

Tree generated by our BufFormer Total BUF area: 28.5um2 Avg driver-sink delay: 143ps

Comparable performance Up to 160X speedup Meet constraints

- PROBLEM FORMULATION
- METHODOLOGY
- EXPERIMENTAL VALIDATION
- CONCLUSTIONS AND FUTURE DIRECTIONS

tree construction

CONCLUSIONS

The first successful attempt at generative ML-based buffering

A generative ML framework, named Bufformer, which can learn from archived samples and generate buffered tree without Steiner

Compared with a FLUTE-Lillis baseline running on a single CPU, BufFormer can generate buffered trees for unseen nets very close to baseline results, and achieve up to 160X speedup on a GPU

Circuit-level optimization

FUTURE DIRECTIONS

Train BufFormer with commercial tool post-routing data

Extend to handle realistic layout environment