v

@2 NVIDIA.
o= ~ j \ A\ ®
_ \ “ s Y. \ \’ ‘ .
- - -~ \ % M ' \’ . \. ' . b
"\ B= L3 P \ | \ y e

. “"
) ‘.i

. A\ b - | X " ‘
.'4', . J \: O 1 “’.. "‘ '."‘,./ r, ‘ P .
" .BUFFORMER: A GENERATIVE ML FRAMEWORK FOR’SGALABLE BUFFERING

RONGJIAN LIANG*, SIDDHARTHA NATH*, ANAND RAJARAM*; JIANG HU+, AND MARK REN*
*NVIDIA +TEXAS A&M UNIVERSITY

OUTLINE

INTRODUCTION

PROBLEM FORMULATION

METHODOLOGY

EXPERIMENTAL VALIDATION
CONCLUSTIONS AND FUTURE DIRECTIONS

WHAT’S BUFFERING & HOW GENERATIVE ML HELPS?

Buffering: insert buffers to interconnects to improve timing, NP-complete problem

driver candidate ~——) < > final

///Q BUF loc. — FI‘_"%_" BUFI(

v — \ —

N Bty

\ .

Q Sinks and 6
delay targets Steiner tree generation & Timing-driven minimum
wire segmenting cost buffer insertion

Buffered tree for

Conventional methods: two-stage, use heuristics, better timing
vet not scale well with large nets

Net instance

Generative ML model

BufFormer: the first generative ML-based framework for scalable buffermgl

OUTLINE

INTRODUCTION

PROBLEM FORMULATION

METHODOLOGY

EXPERIMENTAL VALIDATION
CONCLUSTIONS AND FUTURE DIRECTIONS

PROBLEM FORMULATION

Sinks, their polarities
and locations

Driver, Its
input slew

and location Buffer-embedded tree

Abstract tree topology

Location&size of buffers

Delay targets for
each driver-sink pair

Buffer & inverter librar

OUTLINE

INTRODUCTION

PROBLEM FORMULATION

METHODOLOGY

EXPERIMENTAL VALIDATION
CONCLUSTIONS AND FUTURE DIRECTIONS

BUFFORMER FRAMEWORK

’/
o
>

- ~ \ e
’ ~ \ y
’ \ .
.- v/
\ ' clusters
N ,,
B

Original tree Clustering of sinks Buffer insertion for each cluster

Regard inserted buffers as dummy sinks

Updated tree Clustering of sinks Buffer insertion for each cluster

2nd 1st
[layer | layer/

Updated tree Clustering Buffer insertion
S S for each cluster Complete buffer tree

Libcell
embedding
Input slew

Input cap

Location
isDriver

Delay target

>

Representation for
clustering

Parity

Tokens for driver a

Answer

Input-label pairs

[height=2 |
height=3 /

Intermediate
nd sinks representation for sinks Clustering
' algorithm

\

Self-

Attentionl
i as the attention

weight mask

height=1 Input Q 0 Q e
' DD DO

Input-label pairl

Q: No buffer

Input DBQ BBQ
Label BQQ QQQ

Buffer tree sample Input-label pair2 Input-label pair3

(a) Tree generation process

(c) Training scheme

TREE GENERATION PROCESS @ clusters

Original tree Clustering of sinks Buffer insertion for each cluster

Regard inserted buffers as dummy sinks

Properties
** Recursive process

X Layer- by-Iayer bottom-u P Updated tree Clustering of sinks ~ Buffer insertion for each cluster
Process

’:’ CIUStering'base Process
an 1st
[layer | layer/

Updated tree Clustering Buffer insertion
of sinks for each cluster

Complete buffer tree

Libcell

BUFFOMER-NET

shared module

embedding
Input slew
Input cap FCLO
Location * Atten »
isDriver Representation for
Delay target clustering
PRty // Intermediate
\ :
Tokens for driver and sinks representation for sinks_ Clustering
'5 ‘ / ‘ \ algorithm

\ 4

Nat it et Clustering result
as the attention

’I weight mask
Nun| Ill illi

Buffer size Buffer iocation Delay target

\ [

Attent|0n1 Attent|0n2

module for
delay

module for
BUF location

module for
BUF size

Connection Clustering

1. If two sinks are close in the
representation space, then
regard them as connected

2. Each connected component of
sinks is viewed as a cluster

SELF-SUPERVISED TRAINING SCHEME

height=1 Input Q Q O O

[height=2 | [

oht=2 [Label

Input-label i /b%@ Ib ol B.Q
_ nput-label pairl

g nput B B © D P O

Q: No buffer

preparation:

"0 label P QO Q OO
Buffer tree sample Input-label pair2 Input-label pair3

L oss functions: Multi-objective training for shared parameters:
for clustering 1. Compute the gradients of each loss w.r.t. shared
parameters
for BUF size . .
| 2. Compute a minimum-norm vector in the convex
3. MSE loss for BUF location hull of the set of gradient vectors
4. MSE loss for delay 3. Update parameters in the direction of the

MiniMum-norm vector

OUTLINE

INTRODUCTION

PROBLEM FORMULATION

METHODOLOGY

EXPERIMENTAL VALIDATION
CONCLUSTIONS AND FUTURE DIRECTIONS

EXPERIMENT RESULTS

Setups)
»* Baseline: FLUTE + Lillis implemented in OpenPhySyn mﬂmﬂﬁmﬂ .
*** NanGate45 cell library

'

=
-
o]

0o
-]
I

** 5 buffers & 4 inverters

#
s
F
F
e
&
] ry
400 - ° ’
F
o
F

F
F
r
F
r
100 -
r
s
”
”
e
i

=)
-]
b
*
‘\'
b
b
.
b
bt
Y

*»» Artificial nets

Table 1: Characteristics of Samples

\

Buffer area of ML-generated trees (um?)

-

Driver-sink delays of ML-generated trees (ps)

characteristic train set test set o
net count 23083 1620 Buffer EDI'EB of ts;ES gen?rated b? baselir:i:- mEthjﬁE (um?) Driver—sinli dela;gnuf trézﬂs ge;;iateddgﬂy ba;enfine n:{:lthnd (ps)
tree count 343004 32031
sink count range & avg. 1,150], 48 0,98], 56
buffer area range & avg. (pm2) 0,151], 37 0,99], 43 -
driver-sink delay range & avg. (ps) [0,1128], 186 [0,609], 200 % BufFormer on a NVIDIA Tesla V100 GPU
HPWL range & avg. (um) [0, 2214] , 863 | [0, 2796], 1270 141 Baseline on a single CPU thread

-
M
I

-
o
|

[———— —— — — — — ——— — — — ——— — — — ——— — — — ——— — — —— —— — — —

Results:

*** Highly comparable performance to the baseline

Runtime per net (s)

“** Up to 160X speedup for large nets

04 1 * * * *
l:“J ZID 4ID E:ID SID 160 150
Num of sinks

*** Parity constraint, capacitance and slew limits are met

EXPERIMENT RESULTS (CONT.)

Table 2: Results of Ablation Studies

cluster | libcell | loc RMSE | delay tar. buf. area diff. (um?) || driver-sink delay diff.(ps)
factors method

acc ace (um) RMSE (ps) || cor mean | std || cor mean std
default 92.6% | 91.6% 34 10 0.977 | 4.8 4.9 |1 0934 | 0 25
data 40% 91.1% 88.7% 36 11 0.964 | 4.6 5.9 0.762 | 7 51
amount 23% 837.0% | 84.5% 40 14 0.939 | 1.3 7.1 || 0.761 | & 50
model larger 93.1% | 92.5% 34 10 0.975 | 6.3 5.3 || 0931 | O 25
s1ze smaller 92.9% | 90.7% 34 10 0.970 | 4.7 54 || 0927 | O 26
train loss weighted 82.9% | 95.8% 34 8 0.976 | 4.1 4.5 || 0.873 | O 35
model arch. separate 90.8% | 95.5% 36 8 0.964 | 6.8 6.1 || 0.762 | 7 51
clusterin AC / / / / 0.974 | 4.2 4.9 0.916 | O 23
o IE AP / / / / 0.972 | 6.1 | 54 || 0.905 | 0 30
5 DBSCAN / / / / 0.932 | -2.1 | 7.9 || 0.676 | 11 67

SNAPSHOT OF TREE GENERATION BY BUFFORMER

>
>
» e
\E.j’ C /
AN
e /
/® o -
. | . x- .
T 1
f e i *** Comparable performance i
- i < Up to 160X speedup i
Tree generated by baseline (FLUTE+Lillis) Tree generated by our BufFormer i “» Meet constraints i
Total BF area: 31.7um?2 Total BUF area: 28.5um?2

Avg driver-sink delay: 155ps Avg driver-sink delay: 143ps

OUTLINE

INTRODUCTION

PROBLEM FORMULATION

METHODOLOGY

EXPERIMENTAL VALIDATION
CONCLUSTIONS AND FUTURE DIRECTIONS

CONCLUSIONS

“** The first successful attempt at generative ML-based buffering

“** A generative ML framework, named Bufformer, which can learn
from archived samples and generate buffered tree without Steiner
tree construction

*** Compared with a FLUTE-Lillis baseline running on a single CPU,
BufFormer can generate buffered trees for unseen nets very close
to baseline results, and achieve up to 160X speedup on a GPU

FUTURE DIRECTIONS

“** Train BufFormer with commercial tool post-routing data

»* Extend to handle realistic layout environment

** Circuit-level optimization

	Slide 1: BuFFormer: A generative ML framework for scalable buffering
	Slide 2: Outline
	Slide 3: What’s Buffering & how generative ML helps?
	Slide 4: Outline
	Slide 5: Problem formulation
	Slide 6: Outline
	Slide 7: Bufformer framework
	Slide 8: Tree generation process
	Slide 9: Buffomer-net
	Slide 10: Self-supervised training scheme
	Slide 11: Outline
	Slide 12: Experiment Results
	Slide 13: Experiment results (cont.)
	Slide 14: Snapshot of tree generation by bufformer
	Slide 15: Outline
	Slide 16: conclusions
	Slide 17: Future directions

