Decoupling Capacitor Insertion Minimizing IR-Drop Violations and Routing DRVs

Daijoon Hyun^{*}, **Younggwang Jung**[†], Insu Cho[†], and Youngsoo Shin[†]

^{*}Department of EE, Cheongju University, Korea [†]School of EE, KAIST, Korea

Outline

- Introduction
- Motivation
- Proposed method
 - DRV penalty prediction
 - Decoupling capacitance insertion
- Experimental results
- Summary

- Typical decoupling capacitor (decap)
 - Reduce dynamic IR-drop by supplying current to local switching cells
 - Drawbacks
 - Large gate leakage, accounting for 10% of total power [TVLSI'09]
 - Risk of oxide breakdown [ISQED'06]

- Cross-coupled decap [ISQED'06, TVLSI'08]
 - Gate voltage is decreased by 10%
 - 41% smaller gate leakage
 - Improved ESD reliability
 - Internal metal patterns in M2 are exposed as routing blockage

- Several works for decap budgeting
 - Adjoint sensitivity-based budgeting [ISPD'02, ISQED'05]
 - Budgeting using charge-based model [DAC'06, DATE'09]
 - Fast budgeting by random work approach [ASPDAC'07]
 - Hierarchical budgeting using cross-entropy method [DAC'10, TCAD'11]

There is no work for considering complex decap cell

- Budgeting using charge-based model [DAC'06]
 - 1. Compute capacitance for each sample node to supply demanded charge (Q=CV) for satisfying IR-drop constraint using LP
 - 2. Place decaps uniformly in violation region

Zhao, Min, et al. "A fast on-chip decoupling capacitance budgeting algorithm using macromodeling and linear programming." DAC, 2006.

sample nodes

Motivation

- In conventional methods
 - As a result, decap cells are placed close to violated nodes
 - Routing DRV can be severly increased (up to 40%)
- Decap insertion considering routing DRV
 - Reduce the increase in routing DRV to 12%

S₁ 0.1	0.2			0.9			0.2
	0.5	0.8			0.8	0.4	0.3

Overall Flow

- Given a circuit layout after cell placement
 - 1. Perform IR drop analysis & identify dynamic IR-drop violations
 - 2. Extract sublayouts and time windows
 - 3. DRV penalty prediction for every possible decap insertion
 - 4. Decap insertion considering DRV penalty
 - MIQCP formulation
 - Heuristic method

DRV Penalty Prediction

- DRV penalty
 - Total sum of DRV probabilities changed from a decap insertion
 - Require two times of DRV probability predictions
- DRV probability prediction
 - Input features are prepared for each partition of layout
 - Input feature
 - Cell density map
 - Pin density map
 - Decap metal density map
 - Metal density maps after first iteration of detailed routing
 - Output
 - DRV probability map

DRV Penalty Prediction

- ML model: U-Net + graph convolutional network (GCN)
 - One U-Net for a layout partition
 - 5 convolutional and 5 deconvolutional layers
 - Skip connection
 - Multiple U-Nets intersect in GCN with the weight of distance between partitions

- Circuit modeling
 - Sublayout is modeled by a RC network with current sources
 - Standard cell \rightarrow time-varying current source
 - Candidate site \rightarrow capacitor
 - Power rail \rightarrow resistor
 - PDN from via to power PAD \rightarrow effective resistances

- MIQCP formulation
 - Goal is to minimize IR-drop violation and DRV penalty
 - Constraints
 - Cell overlapping is not allowed
 - In KCL, differential term is reduced to linear form using backward Euler

Objective:	Minimize	ΔV_{max} +	$-\delta P_t$
Subject to:			
$x_{i,j}=0,$			$\forall (i,j) \in O_c$
$x_{i,j} + x_i$	$y_{,j'} \leq 1,$		$\forall (i,j,i',j') \in O_d$
$c_i = \sum_{j \in I}$	$c_j^d x_{i,j},$		$\forall i \in N_d$
$\mathbf{G}\cdot\mathbf{V}(\mathbf{t})$	$+ \mathbf{C} \cdot \frac{d\mathbf{V}(\mathbf{t})}{dt} =$	= I(t),	$\forall t \in T$
$P_t = \sum_{i \in N}$	$\sum_{N_d} \sum_{j \in D} p_{i,j} x_{i,j}$,	
ΔV_{max}	$\geq (1-\alpha)V_{DD}$	$v - v_i(t),$	$\forall i \in N, \ \forall t \in T$
ΔV_{max}	≥ 0.		

- Heuristic algorithm
 - 1. Derive voltage equations in circuit model
 - Use modified nodal analysis & backward Euler method
 - 2. Find total capacitance C_T resolving violation
 - Iteratively add unit capacitance to each node with smallest IR-drop
 - 3. Decap insertion with <u>constrained minimum cost MIS^{*} search</u>

*) MIS: maximum independent set

4. Iteratively reduce the size of decap with largest sensitivity

• Sensitivity
$$S_{i,j} = \frac{\Delta p_{i,j}}{\Delta c_j \Delta \overline{V}_i^{max}}$$

- Constrained minimum cost MIS search
 - Graph modeling
 - Vertex v_i^j : placing decap of size *j* on site *i*
 - Edge $\left(v_{i}^{j}, v_{i'}^{j'}\right)$ exists when two vertices cannot be existing together
 - Cost of vertex v_i^j : $cost_{i,j} = p_{i,j} \beta c_j \Delta \bar{V}_i^{max}$

- Algorithm
 - 1. Select a vertex (V_{min}) with the smallest cost and the next one except its neighbors (red)
 - 2. Select two vertices with smallest cost on neighbors of V_{min} (green)
 - 3. Compare the cost sums of (1) and (2), and select the smaller one in the vertex set with smaller cost
 - 4. Remove the vertex and its neighbors
 - 5. Repeat (1)-(4) until total capacitance is greater than C_T
 - 6. If the capacitance is not over C_T , increase β and repeat all process

•
$$cost_{i,j} = p_{i,j} - \beta c_j \Delta \overline{V}_i^{max}$$

Experimental Results

- Assessment of routing DRV
 - Achieves 16% less routing DRVs and 48% smaller routing runtime
 - Compared to charge-based method, not considering routing DRVs

Experimental Results

- Analysis of runtime
 - Proportional to product of total number of nodes and total number of time steps
 - Large runtime is spent for fft_128 due to the largest number of sublayout with violations

Experimental Results

- Assessment of ML model
 - F1-score of 82% and AUC of 0.86
 - 7.3% and 0.09 higher than GNN-based prediction (GraphSAGE)

X. Chen, Z. Di, W. Wu, Q. Wu, J. Shi and Q. Feng, "Detailed Routing Short Violation Prediction Using Graph-Based Deep Learning Model," in TCAS II: Express Briefs, Feb. 2022.

Summary

- Post-placement decap insertion considering routing DRVs is addressed
- Proposed method
 - ML model (U-Net + GCN), which predicts DRV penalty from a decap insertion
 - MIQCP formulation and heuristic algorithm for decap insertion
 - It achieves 16% less DRVs while satisfying dynamic IR-drop