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Introduction



Background

I As semiconductor fabrication technology improves by shrinking down its
scale to nanometer, the negative e�ect of the process variance will cause
yield reduction.

I For the SRAM array, the failure rate of each bitcell should be lower than
10−6 in order to ensure the quality of the SRAM array.

I Monte Carlo (MC) analysis is generally considered the gold standard for
yield estimation in industry and academia. However, MC requires a large
number (usually millions) of SPICE simulations, which will be
time-consuming.
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Importance Sampling Method

Importance Sampling Method

Importance sampling (IS) based approaches draw samples according to a
constructed distribution shifted to the likely-to-fail regions.
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Importance Sampling Method

I [TCAD’10]1

I [ISPD’16]2

I [DAC’18]3

1A. A. Bayrakci, A. Demir, and S. Tasiran, “Fast monte carlo estimation of timing yield with
importance sampling and transistor-level circuit simulation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 9, pp. 1328–1341, 2010.

2W. Wu, S. Bodapati, and L. He, “Hyperspherical clustering and sampling for rare event
analysis with multiple failure region coverage,” in Proceedings of the 2016 on International
Symposium on Physical Design, 2016, pp. 153–160.

3X. Shi, F. Liu, J. Yang, and L. He, “A fast and robust failure analysis of memory circuits using
adaptive importance sampling method,” in 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), IEEE, 2018, pp. 1–6.
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Surrogate Model Method

Surrogate Model Method
The main idea of surrogate model method is to use a data-driven model to
approximate the behavior of simulator the and provide a quick circuit
metric estimation for any corner process.
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Surrogate Model Method

I RBF Neural Network[VLSI’14]4

I Polynomial Chaos Expansion[DAC’19]5

I Bayesian Method[ASPDAC’20]6

4J. Yao, Z. Ye, and Y. Wang, “An e�cient sram yield analysis and optimization method with
adaptive online surrogate modeling,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 23, no. 7, pp. 1245–1253, 2014.

5X. Shi, H. Yan, Q. Huang, J. Zhang, L. Shi, and L. He, “Meta-model based high-dimensional yield
analysis using low-rank tensor approximation,” in Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1–6.

6S. Zhang, F. Yang, D. Zhou, and X. Zeng, “Bayesian methods for the yield optimization of
analog and sram circuits,” in 2020 25th Asia and South Pacific Design Automation Conference
(ASP-DAC), IEEE, 2020, pp. 440–445.
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Our Work

1. We use HSIC-Lasso feature selection algorithm to reduce the dimension
of the process variation inputs.

2. We use deep kernel learning gaussian process as our surrogate model to
capture the simulator behavior.

3. We proposed a scalable parallel acquisition strategy to enable massive
parallel model updates based on entropy reduction.

The open-source code is available at github7

7https://github.com/SawyDust1228/HSIC-DKL-Yield-Estimation
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Background



Parameter Definition

Parameter Definition

I Define x = [x(1), x(2), · · · , x(d)]T ∈ X denotes the variational parameters,
such as threshold voltage, channel length modulation e�ect, and bulk
e�ect.

I Define zk = [z(1), z(2), · · · , z(k)]T ∈ Rk as circuit performance metric, such
as amplifier gain and memory read/write delay.

I Define z0 as the circuit metric threshold.
I Define Pf as the circuit yield failure probability.
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Background

The SPICE simulation process can be seen as a black-box function f k,

zk = f k(x) (1)

Without loss of generality, x is assumed independent Gaussian distributed
after normalization,

p(x) =
d∏
i

exp
(
−(x(i))2/2

)
/
√

2π (2)
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Background

Define I : Rk → {0, 1} as a indication function of whether a performance
metric fails the predefined threshold.

I(zk) ,

0 ∀i z(i) < z0
i

1 ∃i z(i) > z0
i

(3)

We can compute pf by equation (4).

Pf ,
∫
X

I(f k(x))p(x)dx (4)
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Problem Defination

Suppose D as the currently available data observed from the simulator. We
can using a model g(x) to replace the simulator and approximate Pf by
equation (5).

P̂f = lim
N→∞

1
N

N∑
i=1

I(g(xi)) (5)

In order to make the g(x) best represent the simulator, We need to define a
strategy to find the best candidates {x∗, f k(x∗)} based on the currently
available data D to update model g(x).

? Bayesian Optimization
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Surrogate Model Based Yield Estimation
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Figure 1: Illustration of the surrogate model based yield estimation: 1© 5©. Conduct
the SPICE simulator to get performance metrics; 2© 6©. Update the surrogate model;
3© 4©. Compute the acquisition function and find the observation candidates. 11
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Gaussian Process

Gaussian Process

f (x)|θ ∼ GP(µ(x), k(x, x′|θ)) (6)

µ is the mean function and k is the kernel function parameterized by θ.

? curse of dimensionality
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Deep Kernel Learning8

Spectral Mixture Base Kernel

kθ(xi, xj)→ kw,θ(φ(xi,w), φ(xj,w)) (7)

Where φ(x,w) is a non-linear mapping parameterized by weights w, given by
a deep neural network, such as a multi-layer perception (MLP) with multiple
hidden layers.

1. Reduce training cost.
2. Further feature extraction.

8A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Deep kernel learning,” in Artificial
intelligence and statistics, PMLR, 2016, pp. 370–378.
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Deep Kernel Learning

Figure 2: Illustration of the Structure of Deep kernel learning
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Feature Selection

Motivation

I Previous research [DAC’18]9 noticed that not all variational parameters
are equally important.

This finding makes "dimension reduction" possible to reduce the input
dimension such that only the key parameters are preserved.

Because the inputs are fully independent. Thus, no dimension reduction
techniques, e.g., PCA and KPCA, should be directly applied.

9J. Zhai, C. Yan, S.-G. Wang, and D. Zhou, “An e�cient bayesian yield estimation method for
high dimensional and high sigma sram circuits,” in 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC), IEEE, 2018, pp. 1–6.
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HISC-Lasso

HSIC Lasso
Hilbert-Schmidt Independence Criterion Lasso1011 is a nonlinear feature
selection algorithm using kernel transfermation.

argmin
α

1
2 ||L̃−

D∑
d=1

K(d)α(d)||2 + λ||α||1 (8)

10M. Yamada, W. Jitkrittum, L. Sigal, E. P. Xing, and M. Sugiyama, “High-dimensional feature
selection by feature-wise kernelized lasso,” Neural computation, vol. 26, no. 1, pp. 185–207,
2014.
11https://github.com/riken-aip/pyHSICLasso
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Acquisition Function

Motivation
Since the deep kernel learning model can provide us with the uncertainty of
the predicted value. So we can compute the probability that a simulation
output may be failed by comparing to the threshold z0.

Advantages:

I Avoid observation in the region that the simulation performance z will
"absolutely" pass or fail the threshold.

I Find multiple candidates at one iteration, which can make full use of the
parallel mechanism of the SPICE simulator.
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Parameter Definition

I Define f (x) = [f0(x), f1(x) . . . fk(x)]T as a GP model.
I Define l(x) , p(̃I(x) = 1) as an approximate probability that certain

variation parameter x can pass threshold, where Ĩ(x) = I(f (x)).

We can compute l(x) by equation (9):

l(x) =
K∏

k=1
p
(

f̃k(x) ≥ zk

)
=

K∏
k=1

Φ(
µk(x)− z0

k
vk(x)

) (9)

Where Φ(·) is the cumulative density function (CDF) of a normal distribution.
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Entropy Reduction

Probability Information Entropy

I Then we can compute probability information entropy H(x) for the yield
posterior of Ĩ(x), which is the entropy of a Bernoulli distribution,

H(x) = −l(x) log (l(x))− (1− l(x)) log (1− l(x)) (10)

I We then define the total integral entropy as

IH =

∫
X

H(x)p(x)dx (11)

IH (11) indicates the uncertainty of surrogate model g(x) based on the current
observations D.
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Maximum Integral Entropy Reduction

In order to reduce the uncertainty of Pf , we can propose a candidate base on
maximizing the expected integral entropy reduction.

x∗ = argmax
x∈X

Ef [(IH(x|D)− IH(D ∪ x))]

= argmin
x∈X

Ef [IH(D ∪ x)]
(12)

More specifically, we use multi-start points strategy to propose multiple
candidates at each iteration.

X∗ = argmin
X∈X

Ef [IH(D ∪ x1 ∪ · · · ,∪xQ)] (13)
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Experiment



Baseline

I LRTA[DAC’19]12

I HSCS[ISPD’16]13

I HDBO[DAC’19]14

12X. Shi, H. Yan, Q. Huang, J. Zhang, L. Shi, and L. He, “Meta-model based high-dimensional yield
analysis using low-rank tensor approximation,” in Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1–6.
13W. Wu, S. Bodapati, and L. He, “Hyperspherical clustering and sampling for rare event
analysis with multiple failure region coverage,” in Proceedings of the 2016 on International
Symposium on Physical Design, 2016, pp. 153–160.
14H. Hu, P. Li, and J. Z. Huang, “Enabling high-dimensional bayesian optimization for e�cient
failure detection of analog and mixed-signal circuits,” in 2019 56th ACM/IEEE Design
Automation Conference (DAC), IEEE, 2019, pp. 1–6.
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Experiment Setting

To determine when to stop the yield estimation process, we follow the widely
used1516 figure of Merit (FOM) ρ in the yield estimation literature as the
stopping criteria.

ρ =

√
σ2

pf

pf
(14)

Where Pf denotes the mean failure probability estimation, and σpf the
standard deviation of Pf .
15X. Shi, H. Yan, Q. Huang, J. Zhang, L. Shi, and L. He, “Meta-model based high-dimensional yield
analysis using low-rank tensor approximation,” in Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1–6.
16W. Wu, S. Bodapati, and L. He, “Hyperspherical clustering and sampling for rare event
analysis with multiple failure region coverage,” in Proceedings of the 2016 on International
Symposium on Physical Design, 2016, pp. 153–160.

22



Experiment On 6T SRAM Bitcell

Table 1: Final Pf estimation on 18-dimensional 6T SRAM

MC HSCS HDBO LRTA Proposed

Failure prob. 4.83e-4 5.15e-4 6.25e-4 6.40e-4 4.60e-4
Relative error Golden 6.62% 29.40% 19.46% 4.14%

# of Sim. 265000 8100 3500 2200 1350
Sim. speedup 1x 32.72x 75.71x 120.45x 196.30x
Training time N/A 5.28s 401.62s 53.50s 1537.73s
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Experiment On 6T SRAM Bitcell
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Figure 3: Pf and FOM on 18-dimensional 6T SRAM

24



Experiment On 6T SRAM Bitcell Array

Table 2: Final Pf on 569-dimensional SRAM column

MC HSCS HDBO LRTA Proposed

Failure prob. 4.70e-4 5.82e-4 3.87e-4 5.60e-4 4.39e-4
Relative error Golden 23.83% 17.66% 19.14% 6.60%

# of Sim 928500 44400 6100 5400 4000
Sim. speedup 1x 20.91x 152.21x 171.94x 232.13x
Training time N/A 112.53s 1001.73s 12403.21s 5546.56s
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Experiment On 6T SRAM Bitcell Array
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Figure 4: Pf and FOM on 569-dimensional SRAM column
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Ablation Study

Parallel Batch Update Convergence Validation
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Figure 5: Pf estimation with di�erent batch
size (6T SRAM Bitcell)
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Figure 6: Pf estimation with di�erent batch
size (6T SRAM Bitcell Array)

27



Ablation Study

Maximum Integral Entropy Infill Validation
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Figure 7: Acquisition function experiment
(6T SRAM Bitcell)
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Figure 8: Acquisition function experiment
(6T SRAM Bitcell Array)
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Ablation Study

Feature selection Validation.
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Figure 9: Feature reduction comparing to Factor Analysis (FA), Princi- pal Component
Analysis (PCA), Mutual Information (MI) [DAC’18], and Random Embedding (RE)
[DAC’19].
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