
COLAB:
Collaborative and Efficient Processing of
Replicated Cache Requests in GPU

Bo-Wun Cheng1, En-Ming Huang1, Chen-Hao Chao1, Wei-Fang Sun1,
Tsung-Tai Yeh2, and Chun-Yi Lee1

1National Tsing Hua University, Hsinchu, Taiwan
2National Yang Ming Chiao Tung University, Hsinchu, Taiwan

Contribution
• We propose Cache line Ownership Lookup tABle (COLAB), an architecture that

allows replicated cache requests to be redirected and serviced efficiently within

a cluster by utilizing the cache line ownership information.

• The incorporation of COLAB is able to reduce the GPU NoC read traffic by

an average of 38% and improve the overall throughput by an average of

43% while incurring minimal overhead.

2

Outline

• Introduction

• Methodology

• Experimental Results

• Conclusion

• References

3

Introduction

Introduction
Graphics Processing Unit (GPU)
• Parallel processors that are originally built for graphics rendering.
• GPUs are increasingly utilized in general-purpose computing thanks to

their:
- Parallel processing power
- Ease of programming

• Workloads that take advantage of GPUs’ computing power:
- Machine learning
- Graph algorithm
- Scientific computing

5

Introduction
Graphics Processing Unit (GPU) Architecture
Modern graphics processing unit (GPU) architectures feature a number

of Stream Multiprocessor (SM) clusters, each of which consists of multiple

SMs. [1]

NoC Fabric

L2 Cache L2 Cache

SM Cluster SM Cluster
SML1 Cache

Response
Buffer

Injection
Buffer

SML1 Cache

6

Introduction
Motivation - The issue with private L1 caches
• Network-on-chip (NoC) congestion

• The NoC fabric has become the performance bottleneck in GPUs [2]

• NoC bandwidth is crucial for GPU performance

• Replicated cache requests:

• Multiple SMs request for the same cache line

• The cache line is fetched repeatedly across the NoC from L2

• Inefficient usage of NoC bandwidth

• Replicated cache requests exacerbate NoC congestion, leading to

performance degradation 7

Introduction
Motivation - Quantifying replicated cache requests
For replication-sensitive benchmarks, an average of 52% of cache misses

could have been serviced by other SMs within the cluster.
R

ep
lic

at
io

n
R

at
e

0.00

0.25

0.50

0.75

1.00

lud

Alex
Net

ResN
et

Squ
eez

eN
et

ga
uss

ian

2M
M

3M
M
GEMM

Mean bfs
dw

t2d

km
ean

s

ho
tsp

ot

3D
CONV

Meancfd

Benchmark

Sensitive Insensitive

8

Introduction
Aim - capturing replicated cache requests
• By capturing replicated cache requests and servicing them between SMs,

we can:

- Prevent replicated cache requests from being directed to L2 across NoC

- Reduce NoC traffic

- Ease NoC congestion

- Reduce the number of stalled cycles caused by waiting for NoC

- Improve overall GPU performance

• Given that 52% of requests can potentially be serviced within the cluster,

the potential performance benefit is significant. 9

Introduction
Proposed method - COLAB
• In this work, we propose incorporating COLAB to achieve our goal of

capturing replicated cache requests.

• It does so by keeping track of the ownership information of cache lines

stored in the cluster.

• By consulting COLAB, a replaced cache request can know which SM

within the cluster holds a copy of the requested line.

• COLAB can redirect the request to one of the SMs according to the

information it stores

10

Methodology

11

Methodology
Overview
• COLAB keeps track of the ownership information of cache lines

• By consulting COLAB, a cache request can be redirected.

SM0L1 Cache
Line A

Service

Consult

RedirectCOLAB

SM
0 holds

Line A

C
luster

SM7L1 Cache

12

Methodology
Workflow - Updating COLAB
• As a cache request return from L2 via the NoC, COLAB is updated to

associate the cache line with the requesting SM.

13

SML1 Cache

C
O

LA
B

4

5Response
Buffer

3

21

6Injection
Buffer

SML1 Cache

7

To L2/N
oC

From
 L2/N

oC

Methodology
Workflow - Accessing COLAB
• As a cache request misses the L1 cache, it is sent to the input queue of

COLAB to access COLAB.

• If input queue is full, the request is directed to the L2 cache via the NoC .

14

SML1 Cache

C
O

LA
B

4

5Response
Buffer

3

21

6Injection
Buffer

SML1 Cache

7

To L2/N
oC

From
 L2/N

oC

Methodology
Workflow - Redirect Request and L1 Access
• If the request results in a hit in COLAB, it is directed to the access queue of

the SM indicated by COLAB.

• A normal L1 lookup is performed.

SML1 Cache

C
O

LA
B

4

5Response
Buffer

3

21

6Injection
Buffer

SML1 Cache

7

To L2/N
oC

From
 L2/N

oC

15

Methodology
Workflow - Returning Requested Line
• If the L1 lookup results in a hit, the requested cache line is pushed to the

tail of the response buffer to be sent to the requesting SM.

SML1 Cache

C
O

LA
B

4

5Response
Buffer

3

21

6Injection
Buffer

SML1 Cache

7

To L2/N
oC

From
 L2/N

oC

16

Methodology
Workflow - Service of Replicated Request
• As the request reaches the head of the response buffer, it is sent to the

requesting SM, completing the inter-SM access process.

• The requested line is not cached by the requesting SM.

SML1 Cache

C
O

LA
B

4

5Response
Buffer

3

21

6Injection
Buffer

SML1 Cache

7

To L2/N
oC

From
 L2/N

oC

17

Methodology
Workflow - In Case of A L1 Miss
• If the L1 access result in a miss due to outdated information in COLAB, the

request is sent to the L2 cache via the NoC.

SML1 Cache

C
O

LA
B

4

5Response
Buffer

3

21

6Injection
Buffer

SML1 Cache

7

To L2/N
oC

From
 L2/N

oC

18

Methodology
Workflow - In Case of A COLAB Miss
• If the access to COLAB results in a miss or if the access queue of the

targeted SM is full, the request is sent to the L2 cache via the NoC.

SML1 Cache

C
O

LA
B

4

5Response
Buffer

3

21

6Injection
Buffer

SML1 Cache

7

To L2/N
oC

From
 L2/N

oC

19

Methodology
Workflow - False-Positive and False-Negative Errors
• False-Negative:

- An entry in COLAB may be evicted before its corresponding line is evicted

from the L1 cache.

- Miss opportunity.

• False-Positive:

- COLAB does not update when a line is evicted from the L1 cache:

- Add extra latency to cache request

- Occupy L1 bandwidth

20

Methodology
Workflow - Arbitration Policy between COLAB and Local L1 Requests

• L1 cache access bandwidth is shared.

• We prioritize COLAB requests over L1 requests.

SML1 Cache

C
O

LA
B

4

5Response
Buffer

3

21

6Injection
Buffer

SML1 Cache

7

To L2/N
oC

From
 L2/N

oC

21

Methodology
COLAB Organization
• Similar to a set-associative cache

• Stores a SM pointer instead of the data line.

• Utilizes DMUX to route requests to SMs.

D
M

U
X

To SM0

To SM7

1-bit 27-bit 3-bit

SM PointerTagValid

22

Methodology
Hardware Overhead
• The number of entries in COLAB matches the total number of the L1 cache

entries within a cluster.

• Each COLAB is equipped with a 32-entry input queue.

• Each SM is equipped with an 8-entry access queue.

• The total overhead is only 2% of the L1 cache capacity.

23

Experimental Results

24

Experimental Results
Experimental Setup - Tools
• The GPU architecture is simulated using GPGPU-sim [6]

• The power consumption and latency of COLAB are estimated

conservatively using CACTI [7]

• The power consumption of the rest of the GPU components is calculated

using GPUWattch [8]

• The benchmarks used in our experiments are selected from the Rodinia [9],

Tango [10], and Polybench [11] benchmark suites

25

Experimental Results
Experimental Setup - GPU Configuration

26

Experimental Results
Experimental Results - NoC Read Traffic Reduction

On average, the incorporation of COLAB can reduce 38% of NoC read traffic

for replication-sensitive benchmarks by capturing replicated cache requests.
N

or
m

al
iz

ed
 N

oC

R
ea

d
Tr

af
fic

0.00

0.25

0.50

0.75

1.00

1.25

Benchmark

cfd lud

ga
uss

ian

Alex
Net

ResN
et

Squ
eez

eN
et
2M

M
3M

M
GEMM

Mean bfs
dw

t2d

ho
tsp

ot

km
ean

s

3D
CONV

Mean

Sensitive Insensitive

27

Experimental Results
Experimental Results - Stalls Reduction

By reducing traffic, the number of stalled cycles due to NoC congestion is

reduced by 40% for replication-sensitive benchmarks.
N

or
m

al
iz

ed
 #

 o
f

SM
 S

ta
lls

0.00

0.25

0.50

0.75

1.00

cfd lud

ga
uss

ian

Alex
Net

ResN
et

Squ
eez

eN
et

2M
M

3M
M

GEMM
Mean

28

Experimental Results
Experimental Results - Performance Improvement

By reducing the number of stalled cycles, the computing throughput of the

GPU is improved by an average of 43% for the replication-sensitive

benchmarks.

0.00

0.50

1.00

1.50

2.00

2.50

Benchmark

cfd lud

ga
uss
ian

Al
ex
Ne
t

Re
sN
et

Sq
ue
eze
Ne
t
2M
M
3M
M
GE
MM Me

an bfs
dw
t2d

ho
tsp
ot

km
ean
s

3D
CO
NVMe

an

N
or
m
al
iz
ed

Th
ro
ug
hp
ut

Sensitive Insensitive

29

Experimental Results
Experimental Results - Energy Evaluation

By reducing the NoC traffic and L2 accesses, COLAB can reduce the overall

energy consumption of the replication-sensitive benchmark by 17%.
N

or
m

al
iz

ed

En
er

gy
 C

on
su

m
pt

io
n

0.00

0.25

0.50

0.75

1.00

1.25
Sensitive Insensitive

cfd lud

ga
uss

ian

Alex
Net

ResN
et

Squ
eez

eN
et

2M
M

3M
M
GEMM

Mean bfs
dw

t2d

ho
tsp

ot

km
ean

s

3D
CONV

Mean

NoC L2 Others Overall

Benchmark 30

Experimental Results
Ablation Analysis - Arbitration Policy

The proposed arbitration policy that prioritizes COLAB requests allows

COLAB to capture the most replicated cache requests compared to other

policies.
R

ep
lic

at
ed

 C
ac

he
 R

eq
ue

st
 C

ap
tu

re
 R

at
e

0.00

0.25

0.50

0.75

1.00

cfd lud

ga
uss

ian

Alex
Net

ResN
et

Squ
eez

eN
et

2M
M

3M
M

GEMM
Mean

Ours AP1/2 AP1/4 AP1/8 Local

31

Experimental Results
Ablation Analysis - Cluster Size

COLAB is able to provide performance improvement regardless of the cluster

size. However, the improvement is most significant when the cluster size is 8.

cfd lud

ga
uss

ian

Alex
Net

ResN
et

Squ
eez

eN
et

2M
M

3M
M

GEMM
Mean

N
or

m
liz

ed
 T

hr
ou

gh
pu

t
Im

pr
ov

em
en

t

0.0

0.5

1.0

1.5

2.0

2.5
Cluster-2 Cluster-4 Ours Cluster-16

32

Conclusion

33

Conclusion

•We propose COLAB, an addition to the baseline GPU architecture that captures

and redirects replicated cache requests within an SM cluster.

•By servicing replicated cache requests cooperatively within an SM cluster,

COLAB is able to prevent replicated cache requests from entering the NoC

network and consuming its precious bandwidth.

•Our experimental results demonstrate that COLAB can indeed reduce NoC read

traffic and GPU stalled cycles and improve overall GPU performance while

incurring limited hardware overhead.

•Our ablation analysis validates the design choices made while designing COLAB.
34

References

35

References

• [1] NVIDIA. 2020. NVIDIA AMPERE GA102 GPU ARCHITECTURE. Retrieved July 27, 2022 from https://www.nvidia.com/
content/PDF/nvidia-ampere-ga-102-gpu- architecture- whitepaper-v2.pdf

• [2] Saumay Dublish, Vijay Nagarajan, and Nigel Topham. 2016. Cooperative Caching for GPUs. ACM Trans. Archit. Code
Optim. 13, 4, Article 39 (dec 2016), 25 pages.

• [3] Mohamed Assem Ibrahim, Hongyuan Liu, Onur Kayiran, and Adwait Jog. 2019. Analyzing and Leveraging Remote-Core
Bandwidth for Enhanced Performance in GPUs. In 2019 28th International Conference on Parallel Architectures and
Compilation Techniques (PACT). 258–271.

• [4] Jianfei Wang, Li Jiang, Jing Ke, Xiaoyao Liang, and Naifeng Jing. 2019. A Sharing- Aware L1.5D Cache for Data Reuse in
GPGPUs. In Proceedings of the 24th Asia and South Pacific Design Automation Conference (Tokyo, Japan) (ASPDAC ’19).
Association for Computing Machinery, New York, NY, USA, 388–393.

• [5] Mohamed Assem Ibrahim, Onur Kayiran, Yasuko Eckert, Gabriel H. Loh, and Adwait Jog. 2021. Analyzing and
Leveraging Decoupled L1 Caches in GPUs. In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 467–478.

36

References

• [6] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers. 2020. Accel-Sim: An Extensible Simulation Framework for

Validated GPU Modeling. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). 473–486.

• [7] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. 2007. Op- timizing NUCA Organizations and Wiring Alternatives

for Large Caches with CACTI 6.0. In 40th Annual IEEE/ACM International Symposium on Microarchitec- ture (MICRO 2007). 3–14.

• [8] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim, Tor M. Aamodt, and Vijay Janapa Reddi. 2013.

GPUWattch: Enabling Energy Optimizations in GPGPUs. In Proceedings of the 40th Annual International Symposium on Computer

Architecture (Tel-Aviv, Israel) (ISCA ’13). Association for Computing Machinery, New York, NY, USA, 487–498.

• [9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang- Ha Lee, and Kevin Skadron. 2009. Rodinia: A

benchmark suite for heterogeneous computing. In 2009 IEEE International Symposium on Workload Characterization (IISWC). 44–54.

• [10] Aajna Karki, Chethan Palangotu Keshava, Spoorthi Mysore Shivakumar, Joshua Skow, Goutam Madhukeshwar Hegde, and Hyeran

Jeon. 2019. Detailed Charac- terization of Deep Neural Networks on GPUs and FPGAs. In Proceedings of the 12th Workshop on General

Purpose Processing Using GPUs (Providence, RI, USA)

• [11] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John Cavazos. 2012. Auto-tuning a high-level language

targeted to GPU codes. In 2012 Innovative Parallel Computing (InPar). 1–10.

  37

Q & A

38

