COLAB: Collaborative and Efficient Processing of Replicated Cache Requests in GPU

Bo-Wun Cheng¹, En-Ming Huang¹, Chen-Hao Chao¹, Wei-Fang Sun¹, Tsung-Tai Yeh², and Chun-Yi Lee¹ ¹National Tsing Hua University, Hsinchu, Taiwan ²National Yang Ming Chiao Tung University, Hsinchu, Taiwan

Contribution

- We propose Cache line Ownership Lookup tABle (COLAB), an architecture that allows replicated cache requests to be redirected and serviced efficiently within a cluster by utilizing the cache line ownership information.
- The incorporation of COLAB is able to reduce the GPU NoC read traffic by an average of 38% and improve the overall throughput by an average of 43% while incurring minimal overhead.

Outline

- Introduction
- Methodology
- Experimental Results
- Conclusion
- References

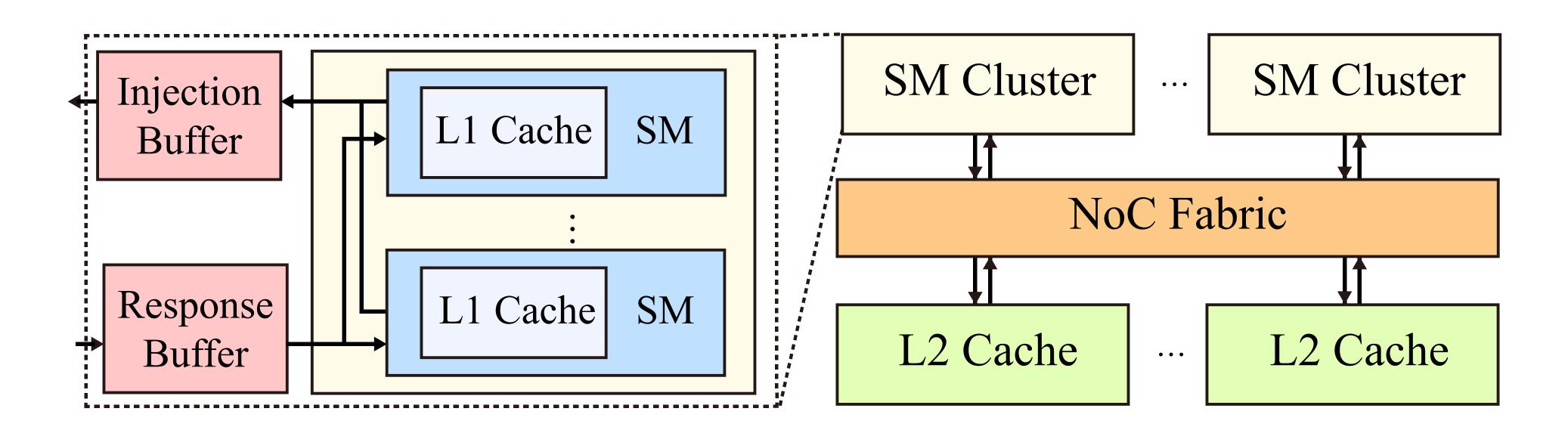
Graphics Processing Unit (GPU)

- Parallel processors that are originally built for graphics rendering.
- their:
 - Parallel processing power
 - Ease of programming
- Workloads that take advantage of GPUs' computing power:
 - Machine learning
 - **Graph algorithm**
 - Scientific computing

GPUs are increasingly utilized in general-purpose computing thanks to

Graphics Processing Unit (GPU) Architecture

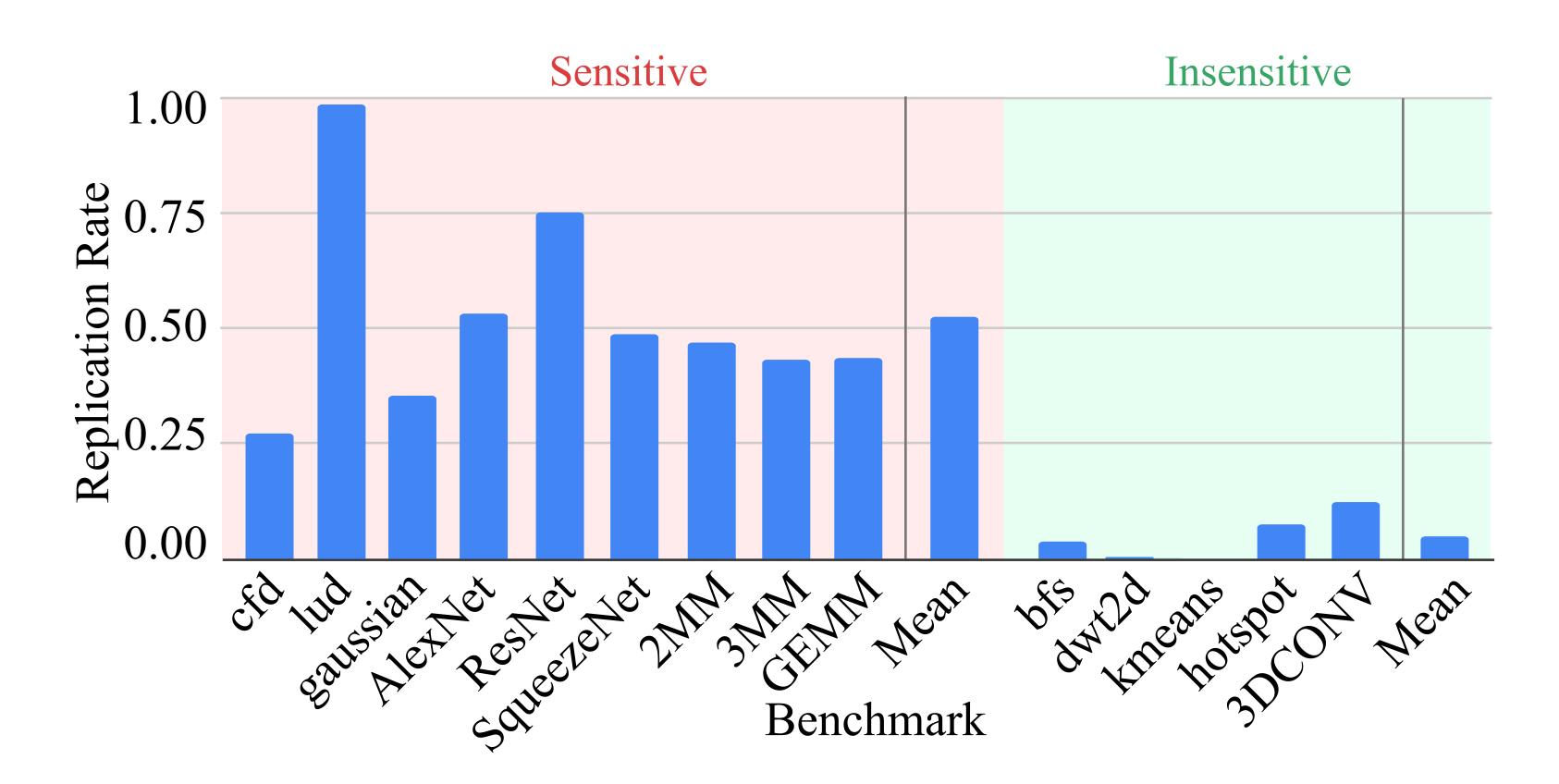
- Modern graphics processing unit (GPU) architectures feature a number
- of Stream Multiprocessor (SM) clusters, each of which consists of multiple SMs. [1]



Motivation - The issue with private L1 caches

- Network-on-chip (NoC) congestion
 - The NoC fabric has become the performance bottleneck in GPUs [2]
 - NoC bandwidth is crucial for GPU performance
- Replicated cache requests:
 - Multiple SMs request for the same cache line
 - The cache line is fetched repeatedly across the NoC from L2
 - Inefficient usage of NoC bandwidth
- Replicated cache requests exacerbate NoC congestion, leading to performance degradation

Introduction Motivation - Quantifying replicated cache requests For replication-sensitive benchmarks, an average of 52% of cache misses



could have been serviced by other SMs within the cluster.

Aim - capturing replicated cache requests

we can:

- Reduce NoC traffic
- Ease NoC congestion
- Reduce the number of stalled cycles caused by waiting for NoC
- Improve overall GPU performance
- the potential performance benefit is significant.

By capturing replicated cache requests and servicing them between SMs,

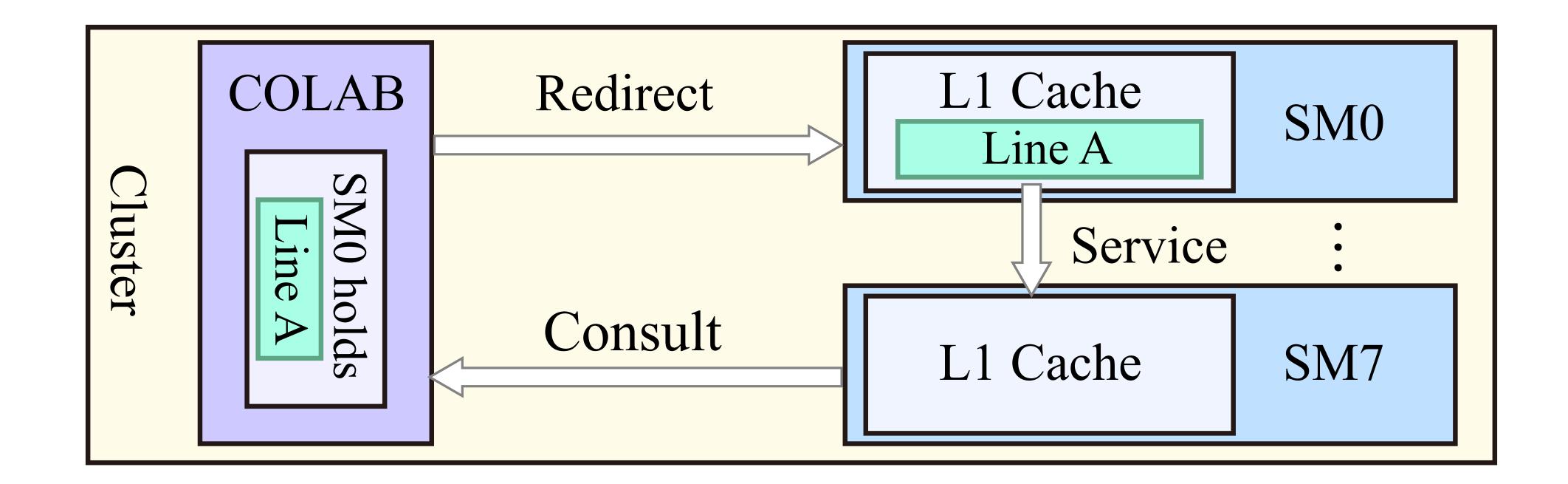
Prevent replicated cache requests from being directed to L2 across NoC

Given that 52% of requests can potentially be serviced within the cluster,

- **Proposed method COLAB**
- In this work, we propose incorporating COLAB to achieve our goal of capturing replicated cache requests.
- It does so by keeping track of the ownership information of cache lines stored in the cluster.
- By consulting COLAB, a replaced cache request can know which SM within the cluster holds a copy of the requested line.
- COLAB can redirect the request to one of the SMs according to the information it stores

Overview

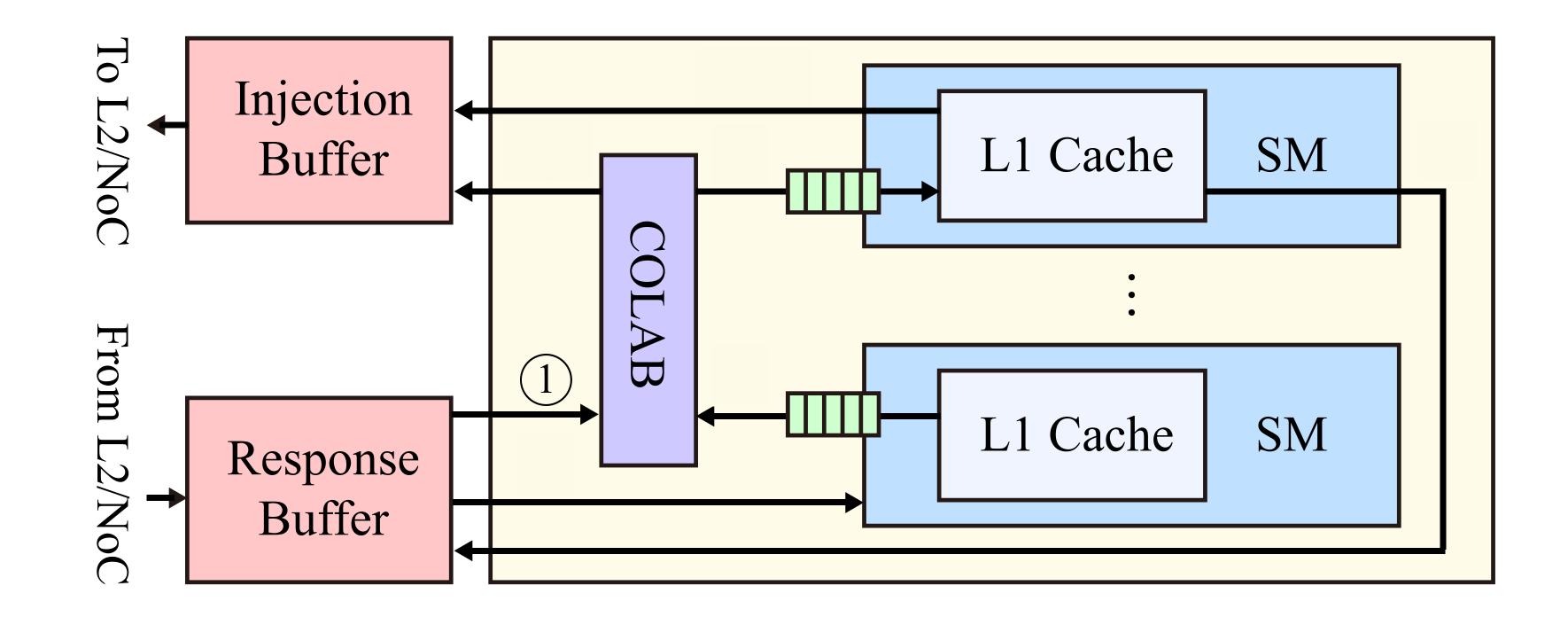
- COLAB keeps track of the ownership information of cache lines
- By consulting COLAB, a cache request can be redirected.



rship information of cache lines equest can be redirected.

Methodology **Workflow - Updating COLAB**

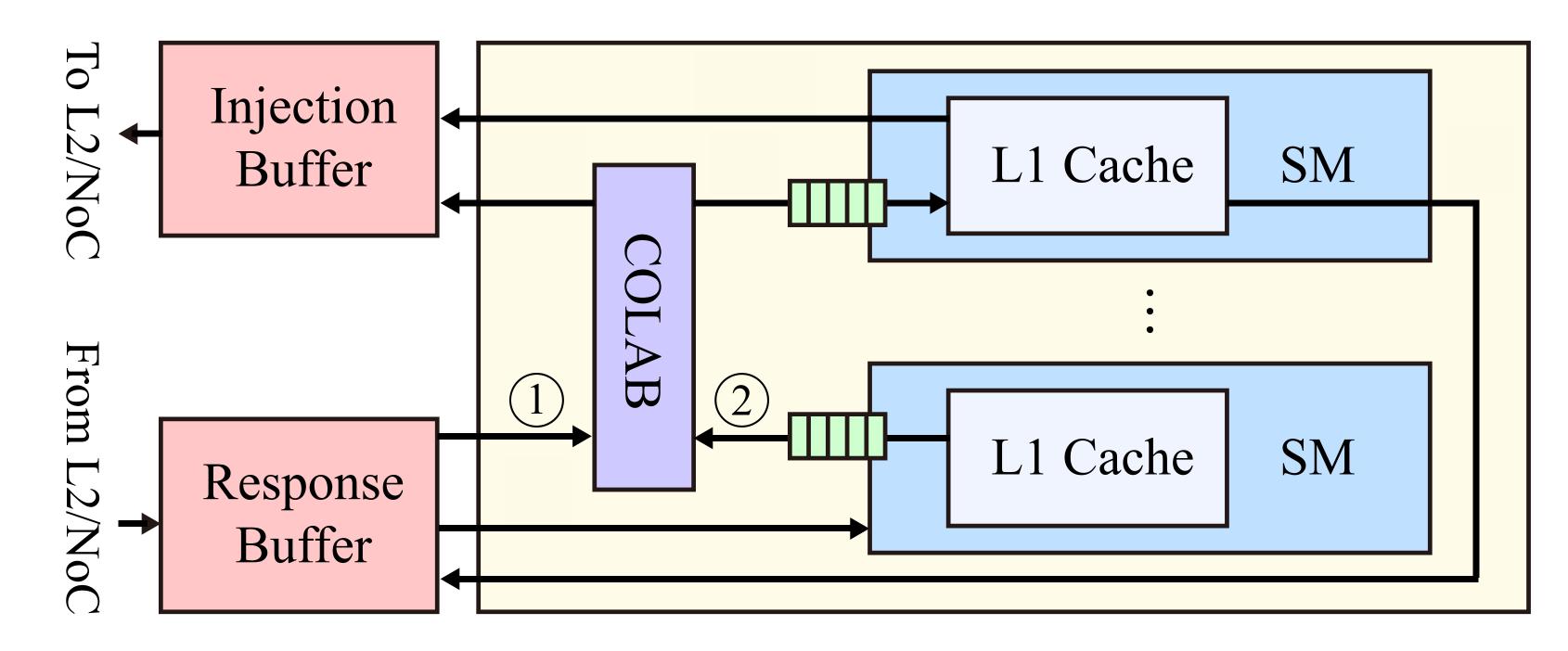
associate the cache line with the requesting SM.



As a cache request return from L2 via the NoC, COLAB is updated to

Workflow - Accessing COLAB

COLAB to access COLAB.

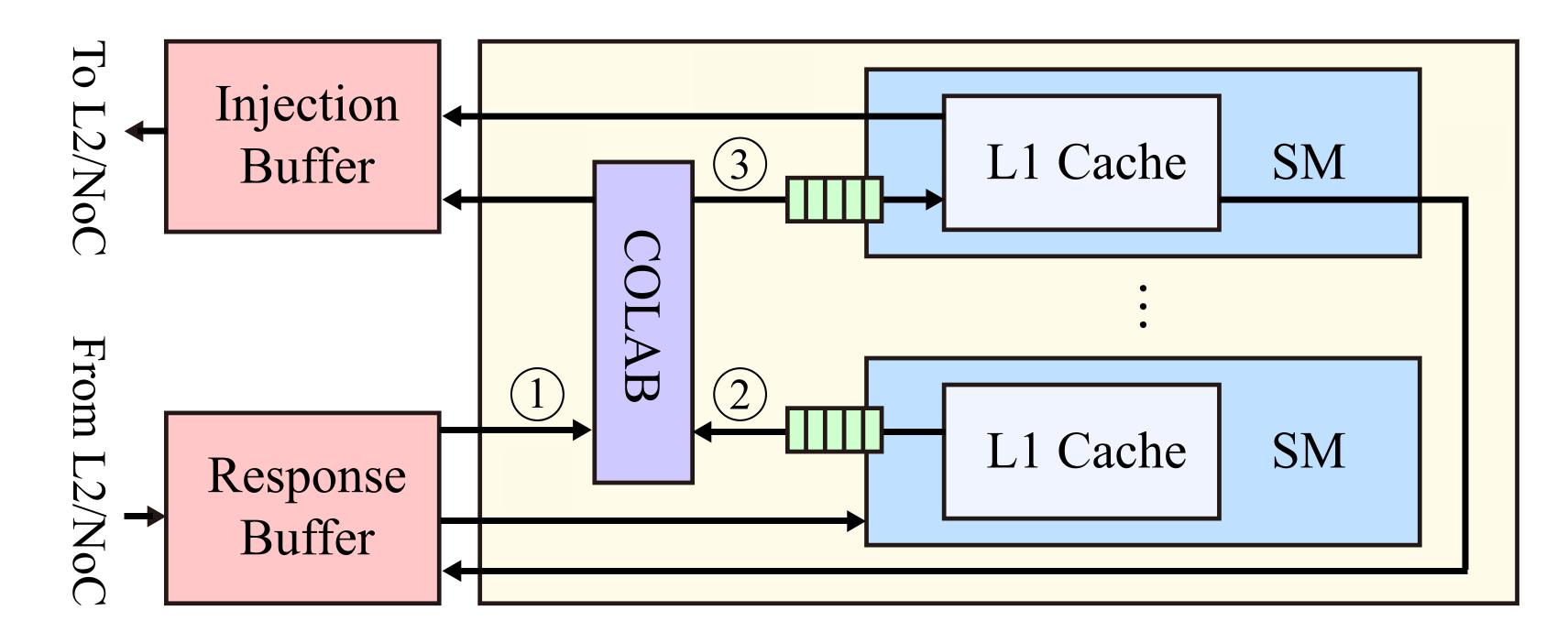


As a cache request misses the L1 cache, it is sent to the input queue of

If input queue is full, the request is directed to the L2 cache via the NoC.

Workflow - Redirect Request and L1 Access

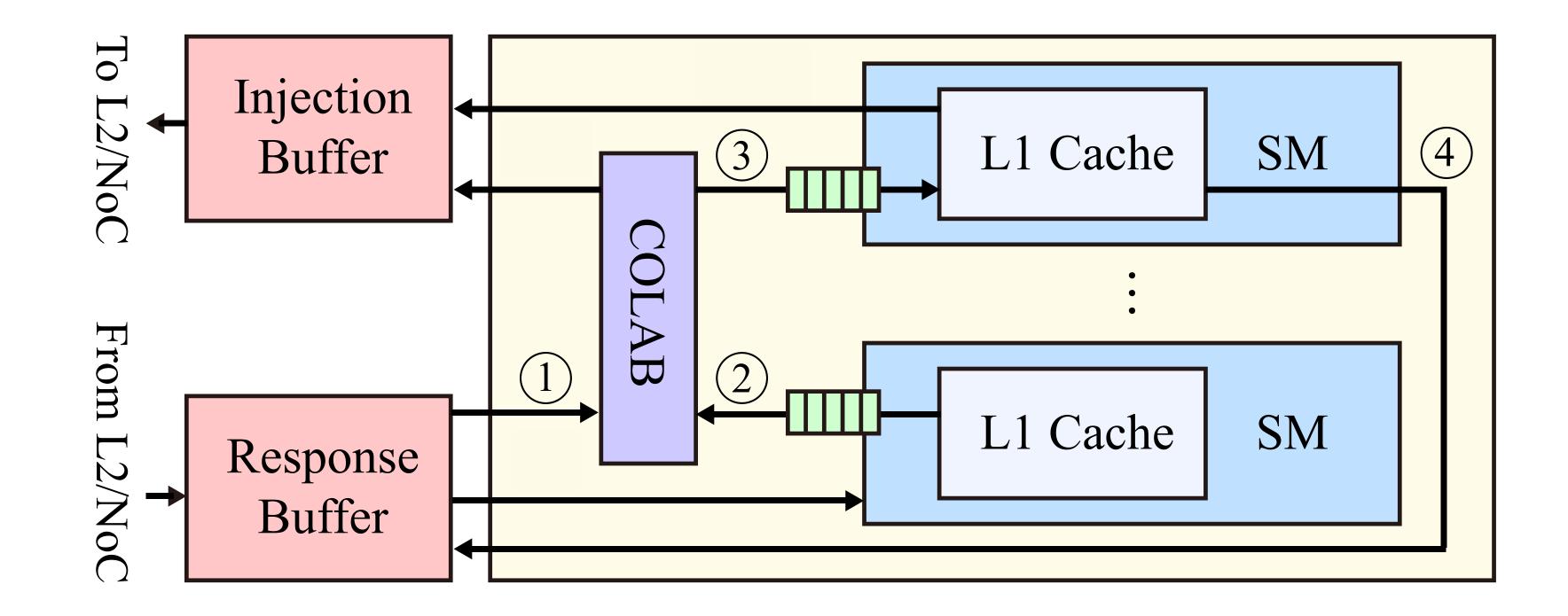
- the SM indicated by COLAB.
- A normal L1 lookup is performed.



If the request results in a hit in COLAB, it is directed to the access queue of

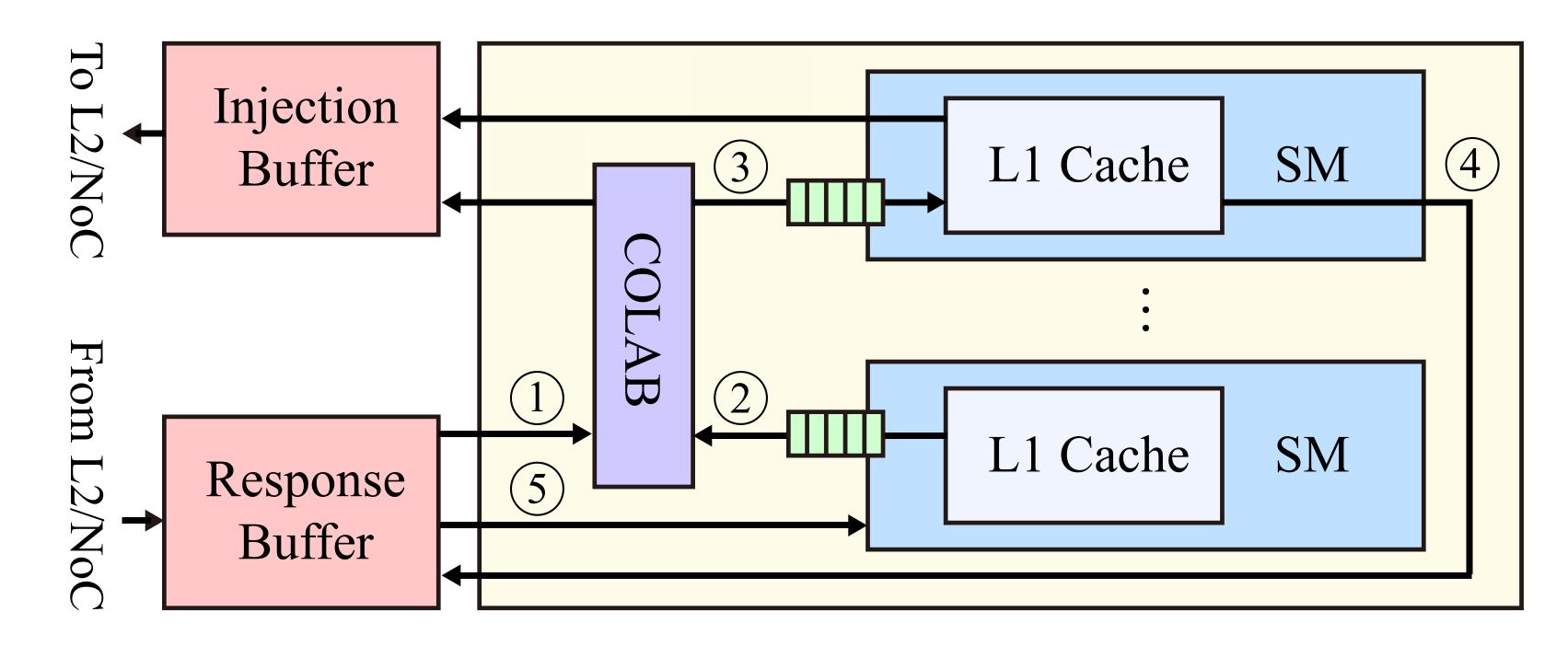
Workflow - Returning Requested Line

 If the L1 lookup results in a hit, the requested cache line is pushed to the tail of the response buffer to be sent to the requesting SM.



Workflow - Service of Replicated Request

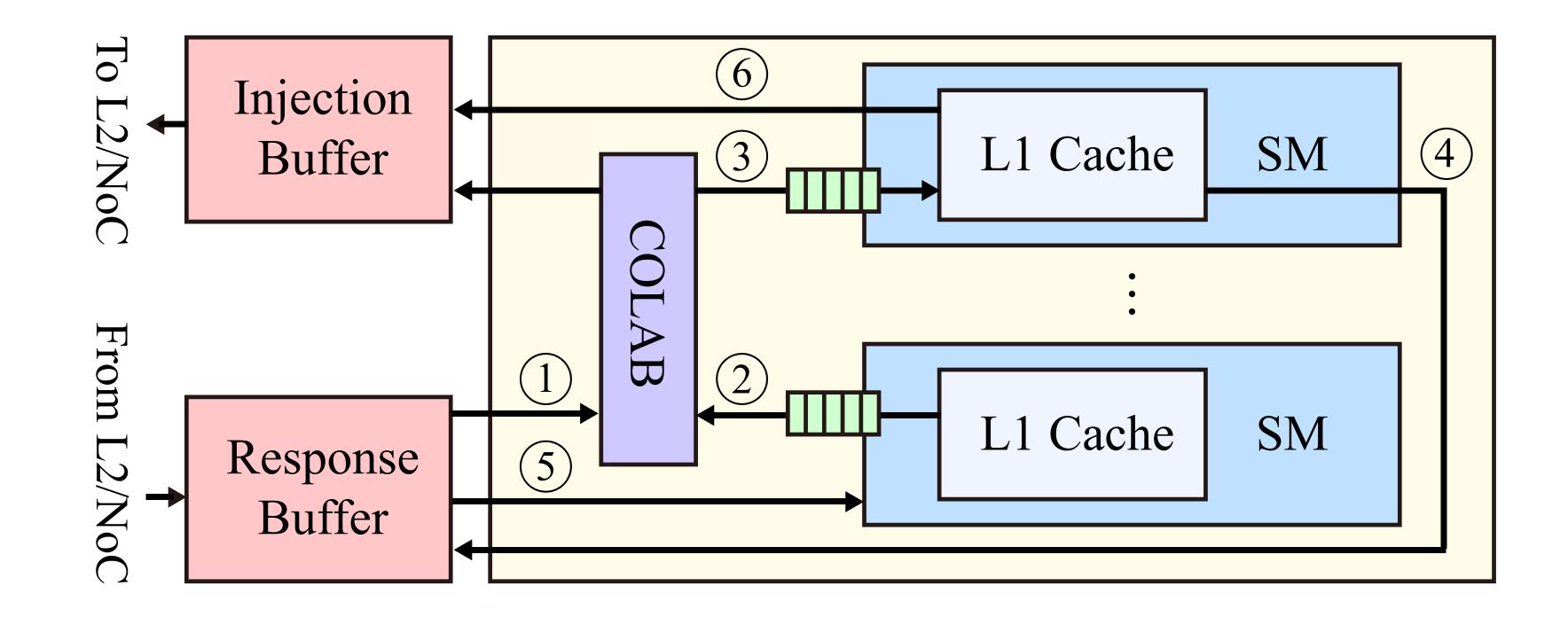
- As the request reaches the head of the response buffer, it is sent to the
- The requested line is not cached by the requesting SM.



requesting SM, completing the inter-SM access process.

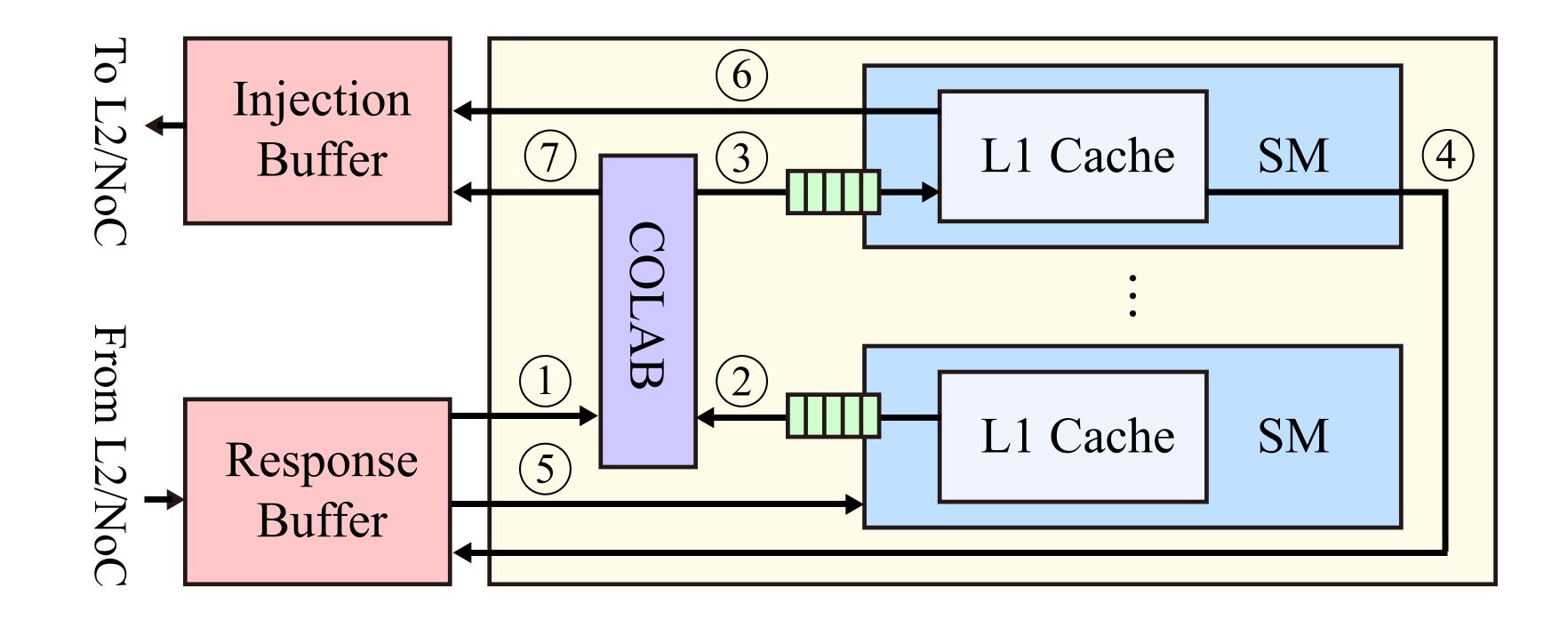
Workflow - In Case of A L1 Miss

request is sent to the L2 cache via the NoC.



• If the L1 access result in a miss due to outdated information in COLAB, the

Workflow - In Case of A COLAB Miss



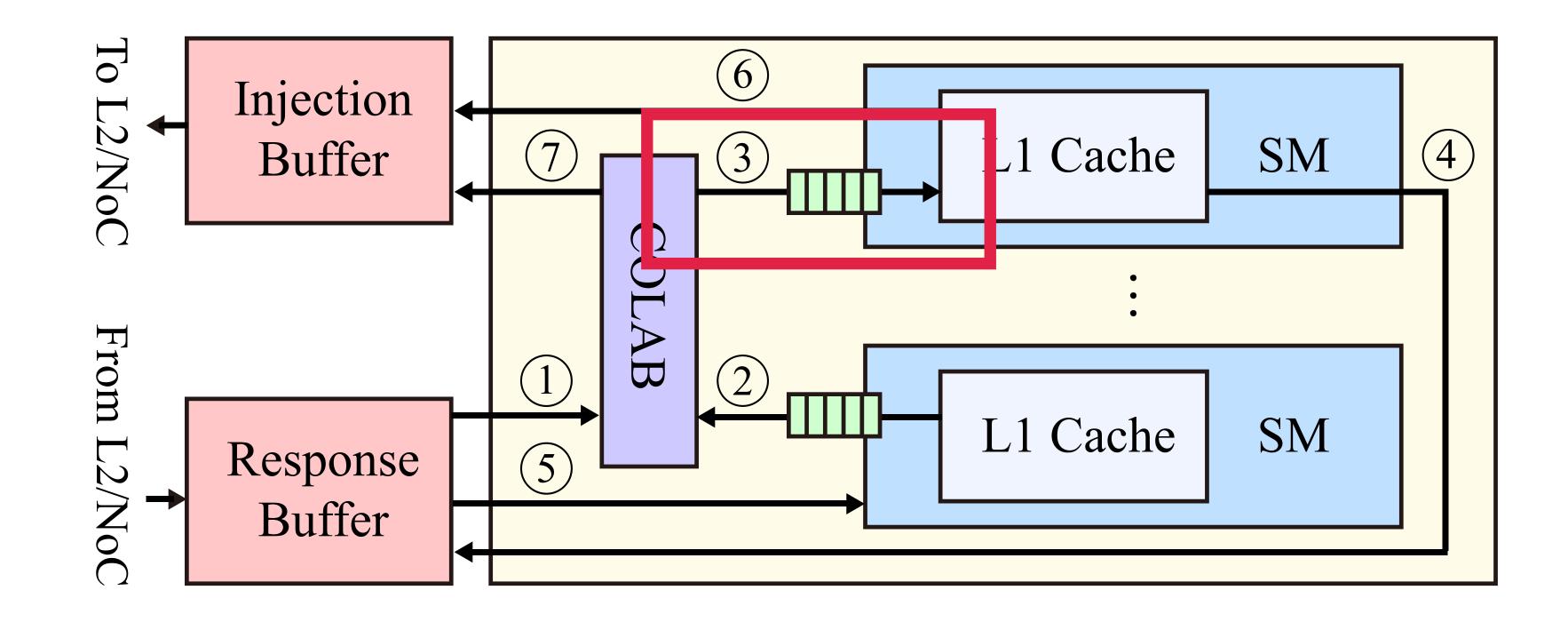
If the access to COLAB results in a miss or if the access queue of the targeted SM is full, the request is sent to the L2 cache via the NoC.

Workflow - False-Positive and False-Negative Errors

- False-Negative:
 - An entry in COLAB may be evicted before its corresponding line is evicted from the L1 cache.
 - Miss opportunity.
- False-Positive:

 - COLAB does not update when a line is evicted from the L1 cache: - Add extra latency to cache request
 - Occupy L1 bandwidth

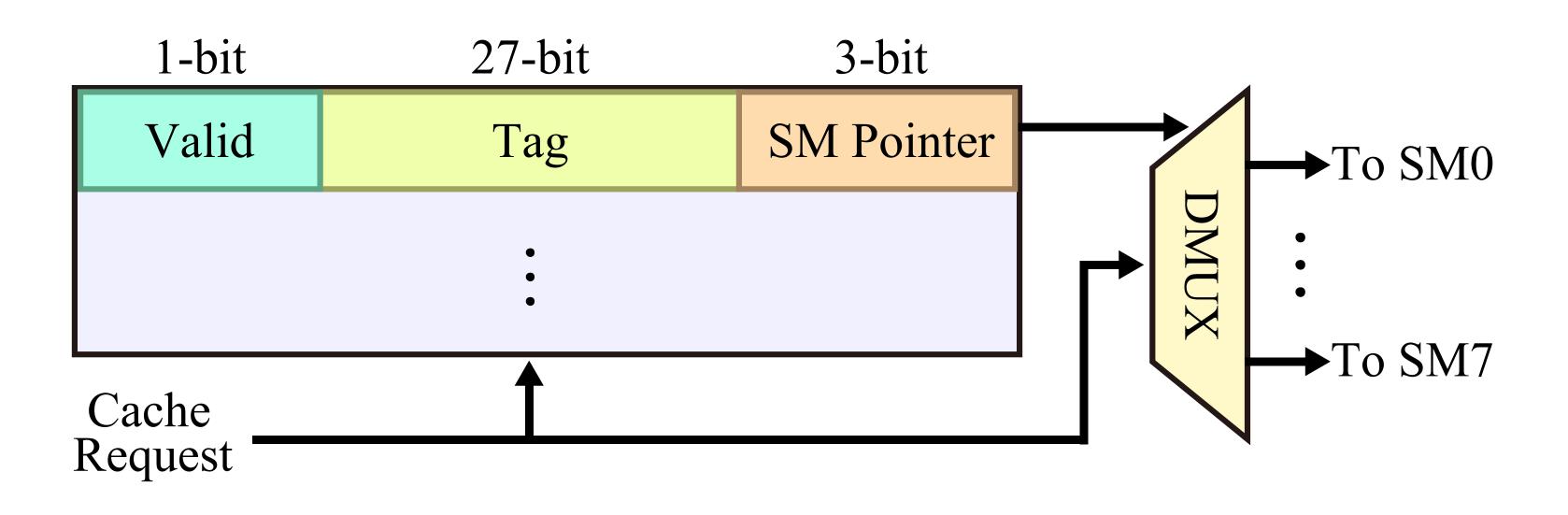
- L1 cache access bandwidth is shared.
- We prioritize COLAB requests over L1 requests.



Workflow - Arbitration Policy between COLAB and Local L1 Requests

Methodology **COLAB Organization**

- Similar to a set-associative cache
- Stores a SM pointer instead of the data line.
- Utilizes DMUX to route requests to SMs.



Methodology Hardware Overhead

- entries within a cluster.
- Each COLAB is equipped with a 32-entry input queue.
- Each SM is equipped with an 8-entry access queue.
- The total overhead is only 2% of the L1 cache capacity.

Module	# of entries	Size/Entry	Total size
COLAB	$64 (set) \times 6 (way) \times 8 (SM) = 3,072$	31 bits	11.625KB
Queues	32 (input) + 8 (access) × 8 (SM) = 96	8 bytes	0.75KB

• The number of entries in COLAB matches the total number of the L1 cache

Experimental Results

Experimental Results Experimental Setup - Tools

- The GPU architecture is simulated using GPGPU-sim [6]
- The power consumption and latency of COLAB are estimated conservatively using CACTI [7]
- using GPUWattch [8]
- Tango [10], and Polybench [11] benchmark suites

The power consumption of the rest of the GPU components is calculated

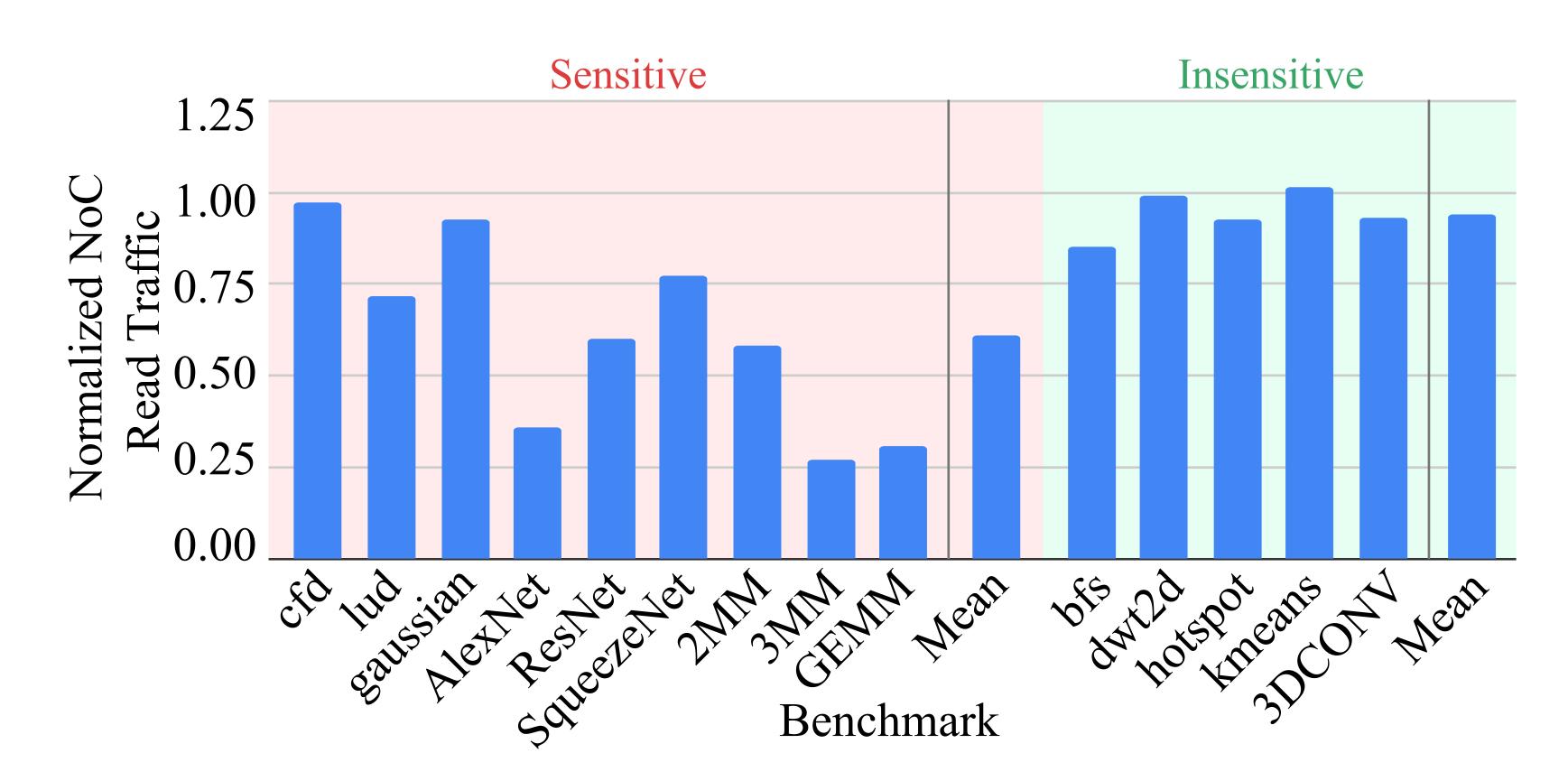
The benchmarks used in our experiments are selected from the Rodinia [9],

Experimental Results Experimental Setup - GPU Configuration

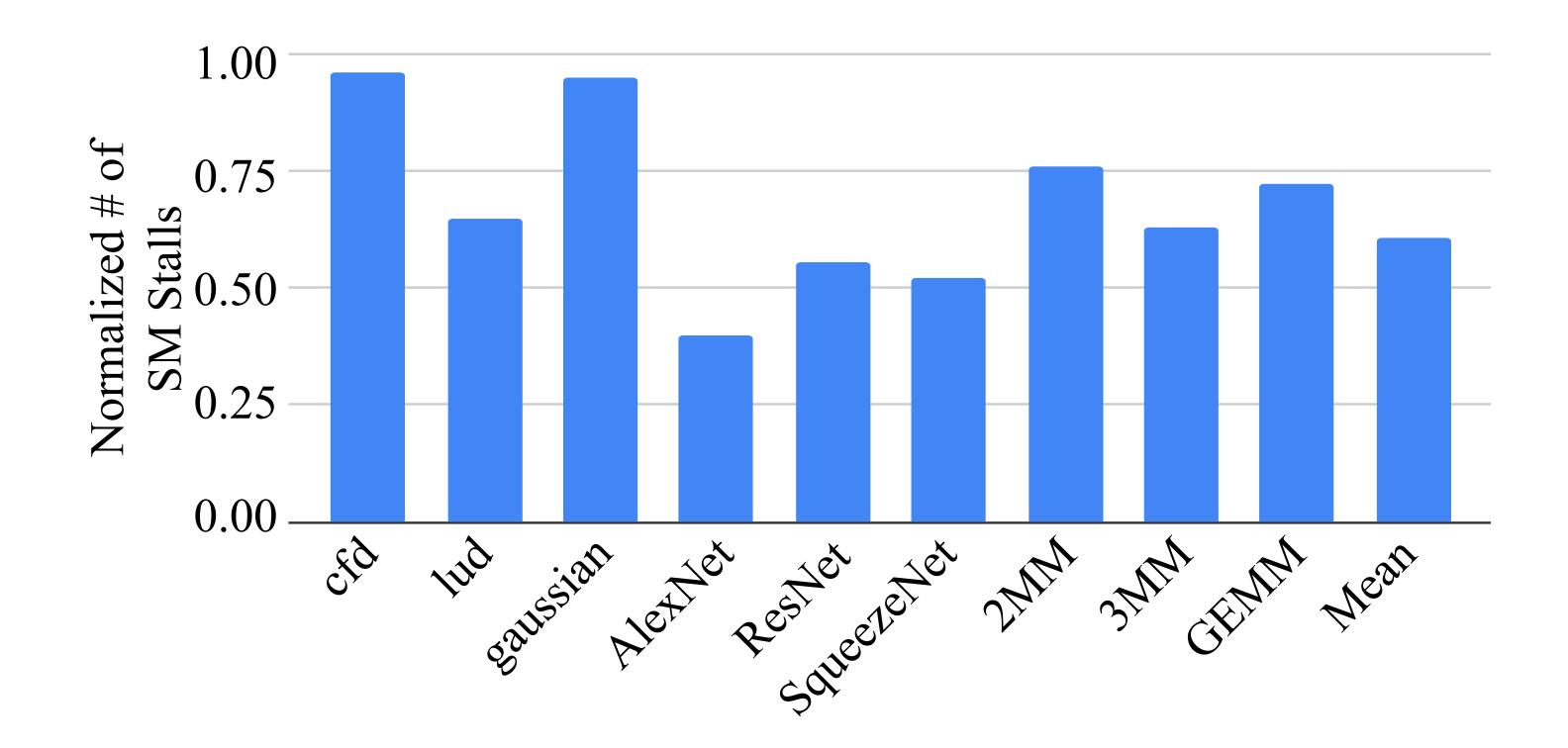
# of SMs	80, 8 p
	96KB
Resources/SM	64KB
Resources/Sivi	Max.
	Max.
	Data:
I 1 Cachae/SM	Textu
L1 Caches/SM	Const
	Instru
In Casha	128KF
L2 Cache	128 by
NoC	10×2
ррам	11 pai
DRAM	Hynix
	Per-cl
COLAB	latenc

per cluster @1,481MHz shared memory, register, 2048 thread 32 thread blocks. 48KB, 6-way, latency=28 cycles, ire: 48KB, 24-way. tant: 12KB, 2-way. uction: 4KB, 4-way. B 16-way/Channel (2.75MB total), ytes per line, Latency=120 cycles. 22 crossbar @2,962MHz rtitions of GDDR5 @2,750MHz. x GDDR5 timing luster 64-set 48-way lookup table cy=8 cycles

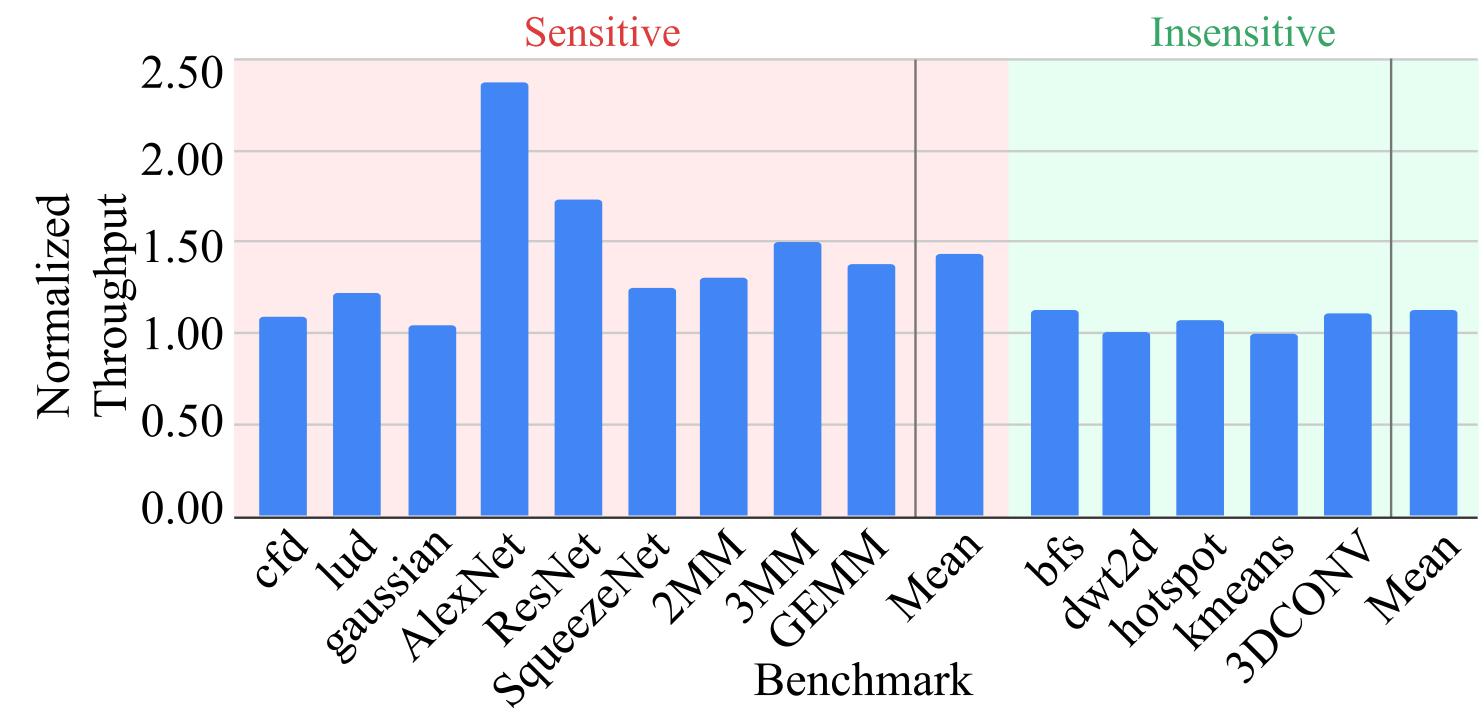
Experimental Results Experimental Results - NoC Read Traffic Reduction On average, the incorporation of COLAB can reduce 38% of NoC read traffic for replication-sensitive benchmarks by capturing replicated cache requests.



Experimental Results Experimental Results - Stalls Reduction By reducing traffic, the number of stalled cycles due to NoC congestion is reduced by 40% for replication-sensitive benchmarks.



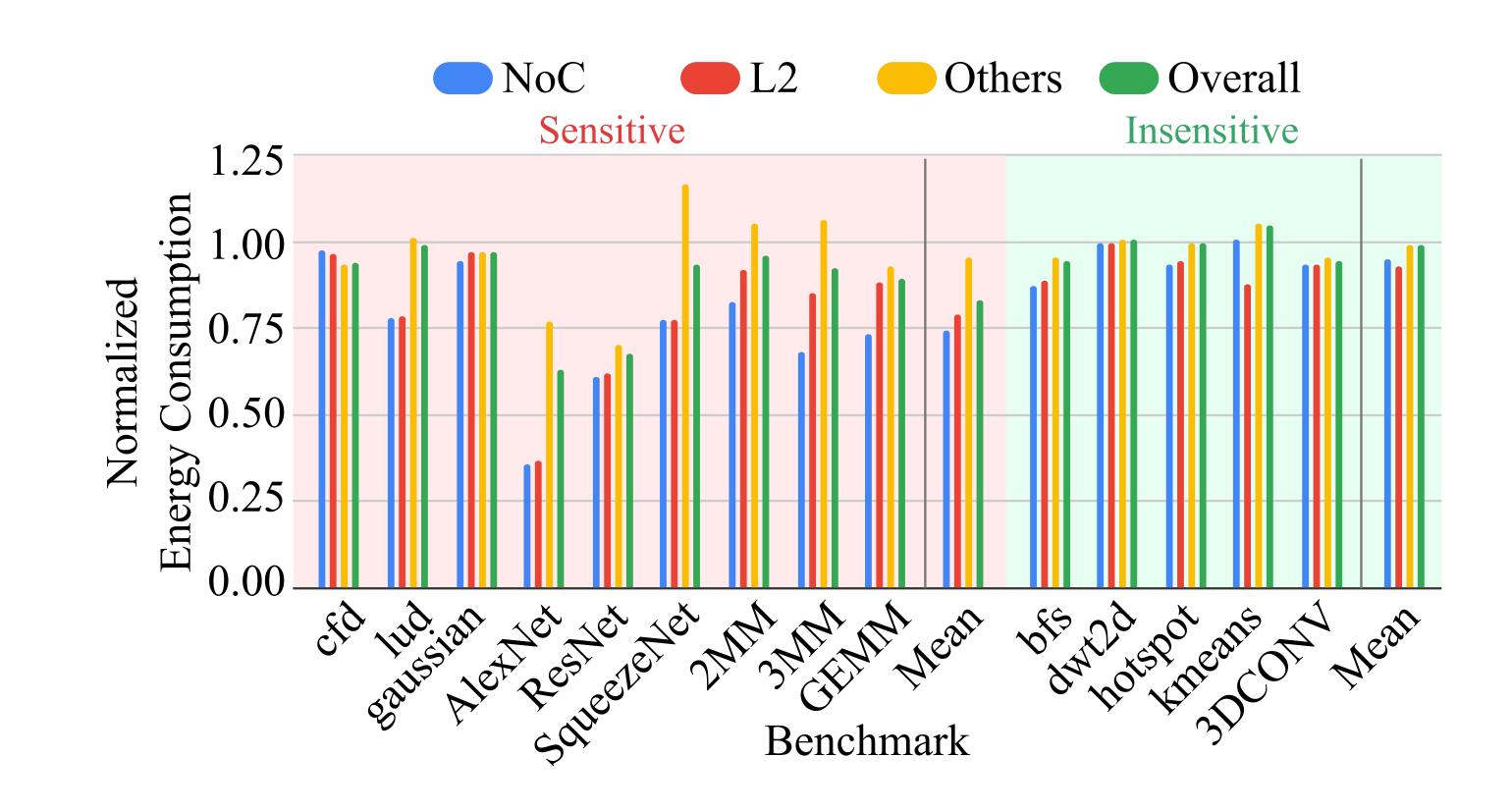
Experimental Results Experimental Results - Performance Improvement GPU is improved by an average of 43% for the replication-sensitive benchmarks.



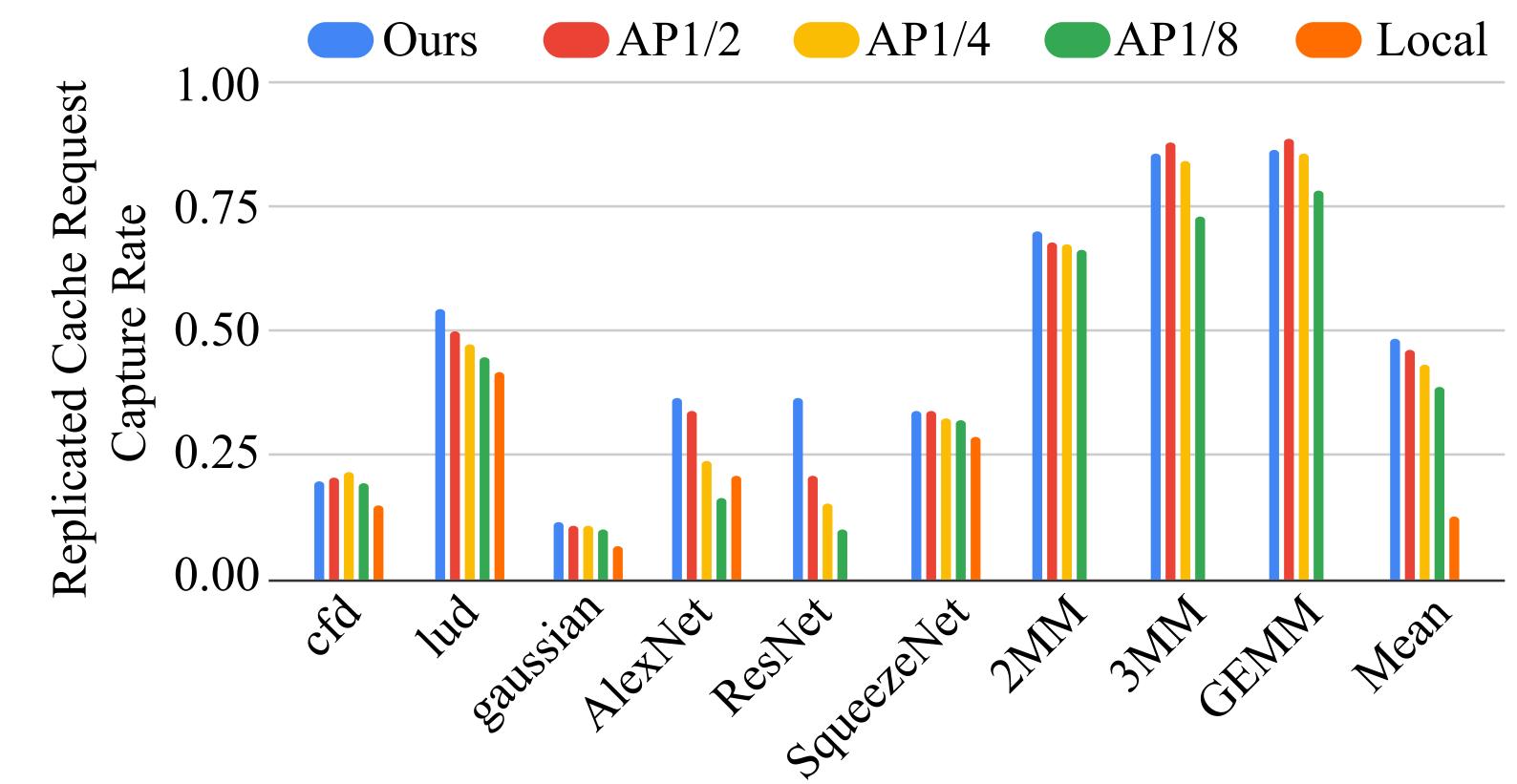
By reducing the number of stalled cycles, the computing throughput of the

Experimental Results Experimental Results - Energy Evaluation By reducing the NoC traffic and L2 accesses, COLAB can reduce the overall

energy consumption of the replication-sensitive benchmark by 17%.

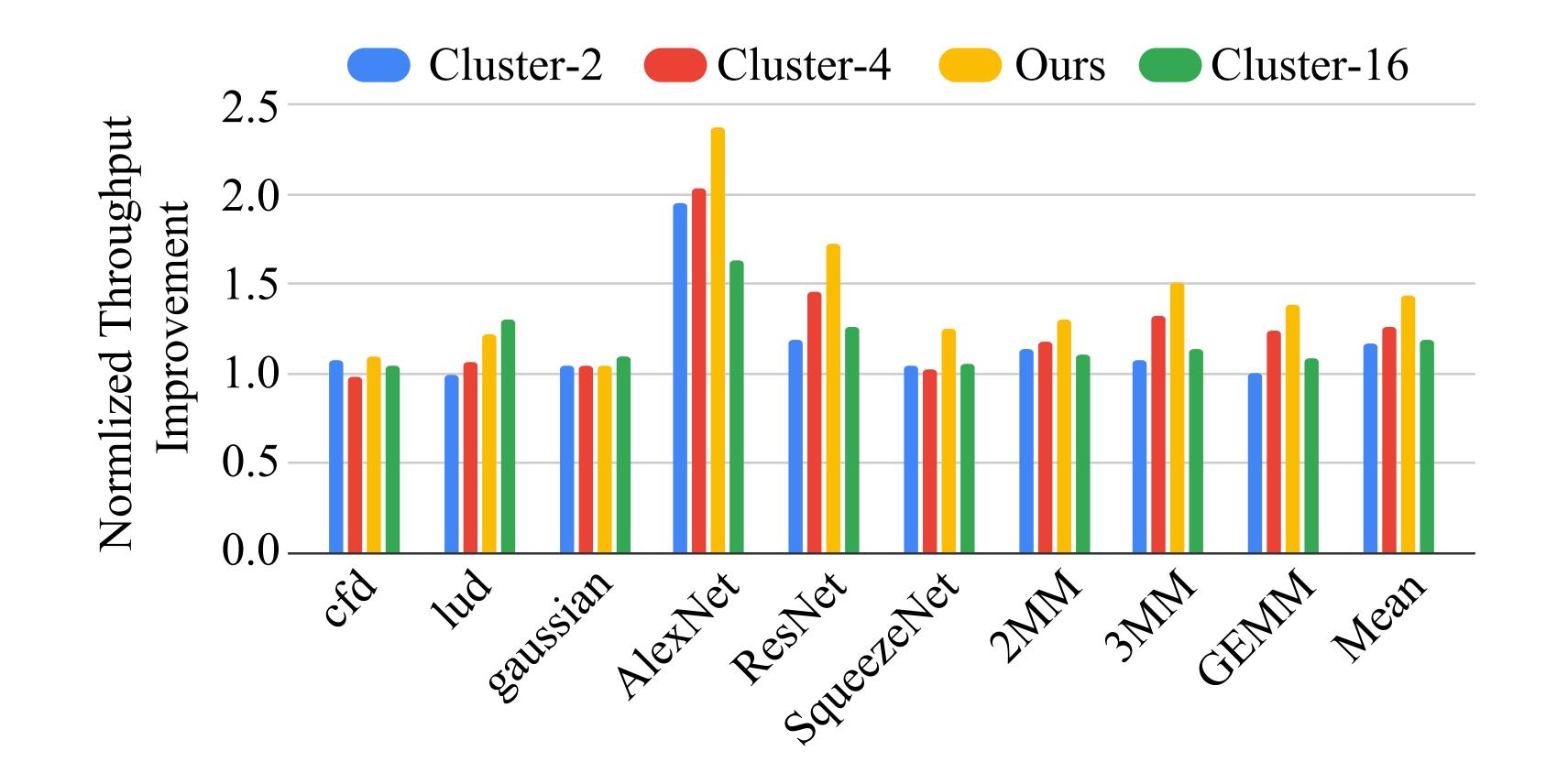


Experimental Results Ablation Analysis - Arbitration Policy The proposed arbitration policy that prioritizes COLAB requests allows policies. Ours



COLAB to capture the most replicated cache requests compared to other

Experimental Results Ablation Analysis - Cluster Size COLAB is able to provide performance improvement regardless of the cluster size. However, the improvement is most significant when the cluster size is 8.



Conclusion

Conclusion

- •We propose COLAB, an addition to the baseline GPU architecture that captures and redirects replicated cache requests within an SM cluster.
- •By servicing replicated cache requests cooperatively within an SM cluster, **COLAB** is able to prevent replicated cache requests from entering the NoC network and consuming its precious bandwidth.
- Our experimental results demonstrate that COLAB can indeed reduce NoC read traffic and GPU stalled cycles and improve overall GPU performance while incurring limited hardware overhead.
- •Our ablation analysis validates the design choices made while designing COLAB.



References

References

- content/PDF/nvidia-ampere-ga-102-gpu- architecture- whitepaper-v2.pdf
- Optim. 13, 4, Article 39 (dec 2016), 25 pages.
- Compilation Techniques (PACT). 258–271.
- Association for Computing Machinery, New York, NY, USA, 388–393.
- Architecture (HPCA). 467–478.

• [1] NVIDIA. 2020. NVIDIA AMPERE GA102 GPU ARCHITECTURE. Retrieved July 27, 2022 from https://www.nvidia.com/

• [2] Saumay Dublish, Vijay Nagarajan, and Nigel Topham. 2016. Cooperative Caching for GPUs. ACM Trans. Archit. Code

• [3] Mohamed Assem Ibrahim, Hongyuan Liu, Onur Kayiran, and Adwait Jog. 2019. Analyzing and Leveraging Remote-Core Bandwidth for Enhanced Performance in GPUs. In 2019 28th International Conference on Parallel Architectures and

• [4] Jianfei Wang, Li Jiang, Jing Ke, Xiaoyao Liang, and Naifeng Jing. 2019. A Sharing-Aware L1.5D Cache for Data Reuse in GPGPUs. In Proceedings of the 24th Asia and South Pacific Design Automation Conference (Tokyo, Japan) (ASPDAC '19).

• [5] Mohamed Assem Ibrahim, Onur Kayiran, Yasuko Eckert, Gabriel H. Loh, and Adwait Jog. 2021. Analyzing and

Leveraging Decoupled L1 Caches in GPUs. In 2021 IEEE International Symposium on High-Performance Computer

References

- Architecture (Tel-Aviv, Israel) (ISCA '13). Association for Computing Machinery, New York, NY, USA, 487–498.
- Purpose Processing Using GPUs (Providence, RI, USA)
- targeted to GPU codes. In 2012 Innovative Parallel Computing (InPar). 1–10.

• [6] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers. 2020. Accel-Sim: An Extensible Simulation Framework for Validated GPU Modeling. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). 473–486. • [7] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. 2007. Op-timizing NUCA Organizations and Wiring Alternatives for Large Caches with CACTI 6.0. In 40th Annual IEEE/ACM International Symposium on Microarchitec- ture (MICRO 2007). 3–14. • [8] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim, Tor M. Aamodt, and Vijay Janapa Reddi. 2013. GPUWattch: Enabling Energy Optimizations in GPGPUs. In Proceedings of the 40th Annual International Symposium on Computer

• [9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang- Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE International Symposium on Workload Characterization (IISWC). 44–54. • [10] Aajna Karki, Chethan Palangotu Keshava, Spoorthi Mysore Shivakumar, Joshua Skow, Goutam Madhukeshwar Hegde, and Hyeran Jeon. 2019. Detailed Charac- terization of Deep Neural Networks on GPUs and FPGAs. In Proceedings of the 12th Workshop on General

• [11] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John Cavazos. 2012. Auto-tuning a high-level language

