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Contribution
• We propose Cache line Ownership Lookup tABle (COLAB), an architecture that 

allows replicated cache requests to be redirected and serviced efficiently within 

a cluster by utilizing the cache line ownership information. 

• The incorporation of COLAB is able to reduce  the  GPU NoC  read  traffic  by  

an  average  of  38%  and  improve  the  overall throughput by an average of 

43% while incurring minimal overhead.
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Introduction



Introduction 
Graphics Processing Unit (GPU)
• Parallel processors that are originally built for graphics rendering. 
• GPUs are increasingly utilized in general-purpose computing thanks to 

their: 
- Parallel processing power 
- Ease of programming  

• Workloads that take advantage of GPUs’ computing power: 
- Machine learning 
- Graph algorithm 
- Scientific computing
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Introduction 
Graphics Processing Unit (GPU) Architecture
Modern  graphics  processing  unit  (GPU)  architectures  feature  a  number  

of Stream Multiprocessor (SM) clusters, each of which consists of multiple 

SMs. [1] 
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Introduction 
Motivation - The issue with private L1 caches
• Network-on-chip (NoC) congestion  

• The NoC fabric has become the performance bottleneck in GPUs [2] 

• NoC bandwidth is crucial for GPU performance 

• Replicated cache requests: 

• Multiple SMs request for the same cache line 

• The cache line is fetched repeatedly across the NoC from L2 

• Inefficient usage of NoC bandwidth 

• Replicated cache requests exacerbate NoC congestion, leading to 

performance degradation   7



Introduction 
Motivation - Quantifying replicated cache requests
For replication-sensitive benchmarks, an average of 52% of cache misses 

could have been serviced by other SMs within the cluster.
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Introduction 
Aim - capturing replicated cache requests
• By capturing replicated cache requests and servicing them between SMs, 

we can: 

- Prevent replicated cache requests from being directed to L2 across NoC 

- Reduce NoC traffic 

- Ease NoC congestion  

- Reduce the number of stalled cycles caused by waiting for NoC 

- Improve overall GPU performance 

• Given that 52% of requests can potentially be serviced within the cluster, 

the potential performance benefit is significant. 9



Introduction 
Proposed method - COLAB
• In this work, we propose incorporating COLAB to achieve our goal of 

capturing replicated cache requests. 

• It does so by keeping track of the ownership information of cache lines 

stored in the cluster. 

• By consulting COLAB, a replaced cache request can know which SM 

within the cluster holds a copy of the requested line. 

• COLAB can redirect the request to one of the SMs according to the 

information it stores  
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Methodology
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Methodology 
Overview
• COLAB keeps track of the ownership information of cache lines 

• By consulting COLAB, a cache request can be redirected. 

SM0L1 Cache
Line A

Service

Consult

RedirectCOLAB

SM
0 holds 

Line A

C
luster

SM7L1 Cache

12



Methodology 
Workflow - Updating COLAB 
• As a cache request return from L2 via the NoC, COLAB is updated to 

associate the cache line with the requesting SM. 
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Methodology 
Workflow - Accessing COLAB
• As a cache request misses the L1 cache, it is sent to the input queue of 

COLAB to access COLAB. 

• If input queue is full, the request is directed to the L2 cache via the NoC .
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Methodology 
Workflow - Redirect Request and L1 Access 
• If the request results in a hit in COLAB, it is directed to the access queue of 

the SM indicated by COLAB. 

• A normal L1 lookup is performed.
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Methodology 
Workflow - Returning Requested Line
• If the L1 lookup results in a hit, the requested cache line is pushed to the 

tail of the response buffer to be sent to the requesting SM.
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Methodology 
Workflow - Service of Replicated Request
• As the request reaches the head of the response buffer, it is sent to the 

requesting SM, completing the inter-SM access process.  

• The requested line is not cached by the requesting SM.
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Methodology 
Workflow - In Case of A L1 Miss
• If the L1 access result in a miss due to outdated information in COLAB, the 

request is sent to the L2 cache via the NoC.
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Methodology 
Workflow - In Case of A COLAB Miss
• If the access to COLAB results in a miss or if the access queue of the 

targeted SM is full, the request is sent to the L2 cache via the NoC.
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Methodology 
Workflow - False-Positive and False-Negative Errors
• False-Negative: 

- An entry in COLAB may be evicted before its corresponding line is evicted 

from the L1 cache. 

- Miss opportunity. 

• False-Positive: 

- COLAB does not update when a line is evicted from the L1 cache: 

- Add extra latency to cache request  

- Occupy L1 bandwidth 
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Methodology 
Workflow - Arbitration Policy between COLAB and Local L1 Requests  

• L1 cache access bandwidth is shared. 

• We prioritize COLAB requests over L1 requests.
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Methodology 
COLAB Organization 
• Similar to a set-associative cache 

• Stores a SM pointer instead of the data line. 

• Utilizes DMUX to route requests to SMs.
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Methodology 
Hardware Overhead
• The number of entries in COLAB matches the total number of the L1 cache 

entries within a cluster. 

• Each COLAB is equipped with a 32-entry input queue. 

• Each SM is equipped with an 8-entry access queue. 

• The total overhead is only 2% of the L1 cache capacity.
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Experimental Results
Experimental Setup  - Tools
• The GPU architecture is simulated using GPGPU-sim [6] 

• The power consumption and latency of COLAB are estimated 

conservatively using CACTI [7] 

• The power consumption of the rest of the GPU components is calculated 

using GPUWattch [8] 

• The benchmarks used in our experiments are selected from the Rodinia [9], 

Tango [10], and Polybench [11] benchmark suites  
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Experimental Results
Experimental Setup  - GPU Configuration
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Experimental Results
Experimental Results - NoC Read Traffic Reduction 

On average, the incorporation of COLAB can reduce 38% of NoC read traffic 

for replication-sensitive benchmarks by capturing replicated cache requests.
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Experimental Results
Experimental Results - Stalls Reduction 

By reducing traffic, the number of stalled cycles due to NoC congestion is 

reduced by 40% for replication-sensitive benchmarks.
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Experimental Results
Experimental Results - Performance Improvement

By reducing the number of stalled cycles, the computing throughput of the 

GPU is improved by an average of 43% for the replication-sensitive 

benchmarks.
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Experimental Results
Experimental Results - Energy Evaluation 

By reducing the NoC traffic and L2 accesses, COLAB can reduce the overall 

energy consumption of the replication-sensitive benchmark by 17%. 
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Experimental Results
Ablation Analysis - Arbitration Policy

The proposed arbitration policy that prioritizes COLAB requests allows 

COLAB to capture the most replicated cache requests compared to other 

policies.
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Experimental Results
Ablation Analysis - Cluster Size 

COLAB is able to provide performance improvement regardless of the cluster 

size. However, the improvement is most significant when the cluster size is 8.
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Conclusion 

•We propose COLAB, an addition to the baseline GPU architecture that captures 

and redirects replicated cache requests within an SM cluster. 

•By servicing replicated cache requests cooperatively within an SM cluster, 

COLAB is able to prevent replicated cache requests from entering the NoC 

network and consuming its precious bandwidth. 

•Our experimental results demonstrate that COLAB can indeed reduce NoC read 

traffic and GPU stalled cycles and improve overall GPU performance while 

incurring limited hardware overhead.  

•Our ablation analysis validates the design choices made while designing COLAB.
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