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Background

¢ Core problem of circuit simulation

> Solving the systems of linear equation generated from circuits

¢ Features of the systems
> Large
« ~100K nodes, even more
> Very sparse, nonzero diagonal
> Fixed-structure

* Linear circuit: values don't change

* Nonlinear circuit: same pattern, changed values

Ax =Db




Background

& Direct solver
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> LU factorization [“’1
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> Good for linear circuit
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N Background

& Iterative solver
> Preconditioned GMRES

Ax =b<:>g')1Ax =P~ 1p
> Preconditioner

* diag(A)
* Incomplete LU factorization (ILU)

* graph spectral sparsification



Background

¢ |ILU(K) factorization o a4t 6 78 910
> Level of fill-ins Tix| [x|x X
21X |x|1]|X 1| X
lower part upper part 3w | x| x| x 1
fill-in nonzero nonzero
\ 41 x| x|1|x 1
g " max S(level aji)+level(a,)+1), aij ¢S 5 X | % X
level(f@;7) = <4k %k < | (1)
( {0_ aij €8 6 X |1|x]|X 1|2
! X X
3 x|1{x|x|4]|1
> Ignore fill-ins whose level > k o [x|2]2] |x| |2|x]1
10 X|2|X X|1|2]|X

> ILU(0): ignore all fill-ins
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. Related work

¢ Up-looking algorithm for ILU(O) L 2345678910

Algorithm 1 Conventional ILU(0) factorization 1|x
Input: A € RVXN, 2 X

1: fori=2,...,N do > up-looking(i) 3| X|X|X

2: fork=1,...,i—1do > row-update(i, k) 41 X|X|X|X

3: if a;; E/S then 5 X

4: ajl. |= A}

51 for j=k+1,..., N do 6 2| 2

6: if a;j € Sand a;; € S then 7 X

7: L L djj —:aikakj. 8 X| X[ X|X

9 X X X | X

¢ ILU(K)? Add a symbolic factorization = 10L_Ix| [X X X

11
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Related work

¢ Row-level parallelism and data dependencies
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Figure 1: The dependency DAG of a matrix with given lower
triangular structure. k — i means row i depends on row k.
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. Related work

How to schedule?

¢ Dynamic task pool

> Too much overhead

¢ Static scheduling

> Fixed-structure

> Pre-analyze the dependency at setup stage

> Overhead can be amortized

13



Related work

¢ Level-scheduling [Dutto, IINMF g9]
> No dependencies in same level

> Barriers between levels

& NISCLU [Chen, TCAD 13]

» Dual-mode level scheduling

> Same for upper levels

> Pipeline mode for bottom levels with very few nodes

14



. Related work

¢ Pipeline mode
> Remove barriers between levels
> Add dependency handling before row-update

Algorithm 1 Conventional ILU(0) factorization

Input: A € RNXN,
1: fori=2,..., N do > up-looking (i)
2: fork=1,..., i—1do > row-update(i, k) . . . -
) if ) < S then Wait until row k finished
4: a;i. [= app-
5: for j=k+1,..., N do
6: L if a;j € Sand i ; € S then
7 L L L aij —= aikakj.

15
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Proposed Parallel ILU based Iterative Solver

Algorithm 3 ILU-GMRES solver (sketch)

Input: Equation Ax = b, initial guess x(O), Lrestart-
1:| Incomplete LU factorization A ~ LU.

cet up preconditioner

2: repeat . .
3: pr =b- Ax". > compute initial residue Parallel ILU faCtorlzatlon
s oW =r/llrlly, s = lIrll,.
I = o it srecondiionine__, PaTallel forward/backward
7: w= Az, > sparse matrix-vector multiplication substitutions
8 fork=1,...,ido > modified Gram-Schmidt
9: C h = w,o0) w=w—h 00
to hivss = [wll, 0 = w/hisai Others: Parallel BLAS
11: Apply Ji,...,Ji-1 onh.;, and construct Givens rotation
~ Jiacting on h;; and hj+1’j so that (]jh;’j)ﬂ_l =0.s = J;s. ° Eg |n‘te| MKL
12: Solve triangular system Hy = s. x(9) = x(0) 4+ 3. ;2(0),

13: until residual tolerence satisfied

17
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Subtree-based Parallel ILLU Factorization

Problems of level-based scheduling

¢ Load-balancing

> Barriers between levels

> More levels to pipeline mode?

» Overhead for dependency handling

¢ Data locality
> Memory access order: 1257[(36|48|910

> Larger matrix -> poorer cache efficiency

19



Subtree-based Parallel ILLU Factorization

Assume we have partitioned the rows
iInto P balanced private queue and 1
small shared queue

& P : number of threads

¢ All tasks in one private queue have no
dependencies on tasks in any other queue

o N N S S S

private queue 1

private queue 2

shared queue




Subtree-based Parallel ILLU Factorization

¢ Each thread works on its private queue

> In natural order: Better data locality

> No inter-thread communication

¢ After one finishing its private queue
> Work on shared queue in pipeline mode
> No barrier before shared queue

> Better load-balancing

o N N S S S

private queue 1

private queue 2

shared queue




Subtree-based Parallel ILLU Factorization

How to obtain the partition?

¢ Hard on arbitrary DAG, but easy on tree

¢ Elimination tree (ETree) [Gilbert, SIMAX 93]
» Generated from DAG
» The dependencies of LU factorization for L + LT

» Overestimates the dependencies

¢ Subtree partitioning

22



Subtree-based Parallel ILLU Factorization

Algorithm 5 Build private queues based on ETree

Input: Dependency DAG G, P threads, relaxing parameter «.

1:

_ =
= O

12:

13:

O e N1 Oy ol W N

Build ETree T based on G. Setu P
Subtree set S = {T'}. o
Let wg denote the total weight of subtrees in S. ( )
Let Is denote the root of the subtree with largest weight in S. O N I Og N
> subtree partitioning < Lo
while S # @ and weight(subtree(ls)) X Pa > ws do — DIVIde SU btree
u=Ig. o
=S5\ {subtree(u)}. In most cases:
for all v € children of u do o)
| $=SU {subtree(n)}. shared queue < 5%

: Evenly assign each subtree in S to one of the P threads based

on their weights. N ASSig n task

Build P private queues according to the subtree assignment, B U | | d p I‘iV ate q ueues
and sort each queue in natural order.

Build the shared queue with the remaining nodes, and sort the «—kn—— B u | | d S h 3 red q ueues
queue in level order of G.

23
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Parallel Forward/backward Substitutions

¢ Very similar row-level parallelism to the ILU factorization
> Forward substitution: structure of L

» Backward substitution: structure of U
¢ Similar static scheduling

& Fewer FLOPs

> Synchronization and memory access affects more

> Subtree-based > level-based

¢ Parallel efficiency in shared queue remains to be a problem

25



Parallel Forward/backward Substitutions

¢ Task granularity: improve the data locality of the shared queue
> At most g adjacent tasks are aggregated into a task pack

> each thread takes a pack of tasks instead of one task

¢ To minimize the loss of parallelism: 2-round execution

Algorithm 1 Conventional ILU(0) factorization

Input: A € RNXN,

1: fori=2,..., N do > up-looking(i)

2: fork=1,..., i—1do > row-update(i, k) . e

: if ay. < 5 then If row k not flnlshed

" ak /= axx. 15t round: skip to next task
5: for j=k+1,..., N do nd . :

6: L if a;j € Sand a;; € S then 2" round: wait

| L Aij == Qjk Ak j- 26




Parallel Forward/backward Substitutions

¢ Node stripping: minimize the size of shared queue

> When reordering matrix to get a better ETree of the factorization, ETree of
U tends to be badly degenerated

Figure 4: The dependency DAG and ETree for U in backward
substitution. Note that ETree(U) is badly degenerated.
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Parallel Forward/backward Substitutions

¢ Node stripping: minimize the size of the shared queue
> At most f x N nodes are stripped from the top levels of DAG

> Top levels: level-based scheduling

> Rest of DAG: subtree-based scheduling
B, = 20%, B, = 50%
shared queue < 2%

cluster mode 109

private queue 1 | 4321
private queue 2 | 8765
shared queue empty

28
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Numerical Experiments

¢ Overview

Static scheduling ]
for ILU (setup) J

( Static scheduling
L for substitution (setup)

|

New Ai' bi

4 N

Solving A;x = b; with
parallel ILU-GMRES

(multiple times of parallel
\forward/backward substitution)/

o

factorization

of Ai

s ) ™
Parallel 1LU

J
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Numerical Experiments

¢ 1 setup + 100 factorization

Table 1: Runtime of performing ILU(k) factorization for 100
times (including the static schedule for “L” and “P”)

> S: sequential version matrix N oo TiLy (5) Sp.
> L: dual-mode level scheduling > - b
case9 3993 878 758 375 145 523 2.58
(NISCLU) casel0 12155 691 156 455 303  5.15 1.50
mult_deop 01 25187 7.7 0.149 00824 00751 198 1.10
> P: proposed subtree-based rajatls 37261 202 107 0288 0232 462 1.24
h d | ckt11752 tr 0 49702 18.8 1.62 0.468 0.392 4.14 1.20
scheauling ASIC 100ks 99190 58 0372 0.105 0.0958 388 1.10
ASIC_100k 99340 9.6 0.686 0.296  0.266 258 1.11
> 8 threads transd 116835 6.6 040 0.238 0208 190 1.14
transient 178866 6.0 0.636 0.276  0.242 2.63 1.16
¢ Better speedup for Rajl 263743 114 295 141 0800 369 177
nxpl 414604 107 442 246 113 390 2.17

larger/denser matrices

Level of fill (i.e. k) in ILU(k) varies among matrices for GMRES convergence.

transient, rajat15, nxp1: ILU(1); Raj1, ckt11752_tr_0: ILU(5); the others: ILU(0).

3
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. Numerical Experiments

Table 2: Time for executing GMRES iterations with the ILU(k)
preconditioners (same k as the experiment for Table 1)

¢ GMRES until convergence

> relative tolerance: 104 i gior Toubs (ms)  Sp. Tovies (ms) - Sp,
S L PPSPL S L PP/SPL

case9 109 725 505 163 4.4 3.1 1107 649 309 3.6 2.1

¢ Higher speedup for

substitution than casel0 25 420 288 106 4.0 2.7 641 375 192 3.3 2.0
o mult_deop 01 17 10.1 478 3.24 3.1 1.5 20.8 8.10 6.51 3.2 1.2
factorization rajatl5 168 268 135 78.4 3.4 1.7 632 217 160 3.9 1.4
ckt11752 tr 0 51 111 524 24.2 4.6 2.2 237 815 53.24.5 15

& Around 4X (up to 4.5X) ASIC_100ks 5 9.51 3.16 2.54 3.7 1.2 205 5.51 5.03 4.1 1.1
. ASIC 100k 5 12.9 5.09 4.17 3.1 1.2 27.1 9.61 8.78 3.1 1.1

overall speedup with fransd 45 97.4 48.4 359 27 1.4 343 105 91.1 3.8 1.2
transient 180 561 286 187 3.0 1.5 2290 674 566 4.0 1.2

38 cores Rajl 427 3300 1955 1024 3.2 1.9 9096 3210 2273 4.0 1.4

nxpl 3394087 2503 1372 3.0 1.8 11694 4078 2958 4.0 1.4
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Numerical Experiments

¢ Results on power grid transient simulation

Table 3: Computational time for power grid transient simu-

lation (unit in second)

circuit

KLU § L P Sp.

T

T;r Ty #iter Err(mV) Ty P/K P/S P/L

ibmpg3t
ibmpg4t
ibmpg5t
ibmpg6t

115
138
96.9
117

172 79.7 147 2.0/1.0 389 3.0 44
124 56.7 15.1 0.20/0.07 35.7 3.9 3.5
177 89.8 11.2 0.84/0.56 46.0 2.1 3.8
247 123 11.2 1.4/0.82 614 1.9 4.0

2.1
1.6
2.0
2.0

T;,: time for linear equation solutions in simulation; #iter: average GMRES
iterations; Err(mV): maximum/average errors of the solutions.

33



Numerical Experiments
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Figure 6: The transient simulation results at a VDD (up) and
a GND (down) node in case “ibmpg3t”, obtained with direct
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equation solver and the proposed ILU-GMRES solver.
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Numerical Experiments

& Results on nonlinear circuit simulation

> ngspice*(P): modified ngspice that uses proposed parallel iterative solver

Table 4: Time for DC analysis and each time-point advancing
for transient simulation of nonlinear circuits (unit in second)

circuit N sDev. HSPICE ngspice  ngspice” (P)

TDC Ttrans TDC T[rans TDC Ttrans

cktl 164899 47614 32.8 0.741 945 458 2.9 0.190
ckt2 1043446 201056 384 2.25 fail fail 259 1.90
ckt3 1214290 265946 128 15.3 fail fail 29.8 2.03

#Dev: the number of nonlinear devices; Tpc: time for DC analysis including
setup time; Tirans: average time for a time step.
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Numerical Experiments

& Results on nonlinear circuit simulation

Table 5: The total time for equation solutions with “S”, “L”
and “P” in the transient simulation based on ngspice”

ILU-GMRES time (s) Sp.
S L P P/S  P/L

cktl  10.0 3.08 2.55 3.92 1.21
ckt2 170 79.5 447 3.80 1.78
ckt3 209  96.8 52.7 3.97 1.84

circuit
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Conclusions

¢

In this work, we have presented a subtree-based parallel ILU factorization
and forward/backward substitution algorithm for fixed-structure matrices in
circuit simulation, and an ILU-GMRES solver incorporating them.

With matrices from circuit simulation, the proposed ILU-GMRES solver using
8 threads is up to 5.23X faster than the sequential baseline for solving fixed-
structure equations.

Experiments involving transient simulation of linear and nonlinear circuits
show that the proposed parallel algorithms are faster than the parallel
baselines derived from the dual-mode level scheduling in NICSLU with up to
2.1X speedup.

The large benefit over HSPICE for solving large nonlinear circuits is also
demonstrated.
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