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Background
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Background

◆ Core problem of circuit simulation

➢ Solving the systems of linear equation generated from circuits

◆ Features of the systems

➢ Large

• ~100K nodes, even more

➢ Very sparse, nonzero diagonal

➢ Fixed-structure

• Linear circuit: values don’t change

• Nonlinear circuit: same pattern, changed values
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Background

◆Direct solver

➢ LU factorization

➢ Good for linear circuit

• Only need to factorize once

➢ Potentially huge number of fill-ins

• Even after reorder
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Background

◆ Iterative solver

➢ Preconditioned GMRES

➢ Preconditioner

• diag(A)

• Incomplete LU factorization (ILU)

• graph spectral sparsification

• …
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Background

◆ ILU(k) factorization

➢ Level of fill-ins

➢ Ignore fill-ins whose level > k

➢ ILU(0): ignore all fill-ins

9

1 2 3 4 5 6 7 8 9 10
1 x x x x
2 x x 1 x 1 x
3 x x x x 1
4 x x 1 x 1
5 x x x
6 x 1 x x 1 2
7 x x
8 x 1 x x 4 1
9 x 2 1 x 2 x 1
10 x 2 x x 1 2 x

lower part
nonzero 

upper part
nonzero fill-in
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Related work

◆ Up-looking algorithm for ILU(0)

◆ ILU(k)? Add a symbolic factorization
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Related work

◆ Row-level parallelism and data dependencies
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Related work

How to schedule?

◆ Dynamic task pool

➢ Too much overhead

◆ Static scheduling

➢ Fixed-structure

➢ Pre-analyze the dependency at setup stage

➢ Overhead can be amortized
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Related work

◆ Level-scheduling [Dutto, IJNMF 99]

➢ No dependencies in same level

➢ Barriers between levels

◆NISCLU [Chen, TCAD 13]

➢ Dual-mode level scheduling

➢ Same for upper levels

➢ Pipeline mode for bottom levels with very few nodes
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Related work

◆ Pipeline mode

➢ Remove barriers between levels

➢ Add dependency handling before row-update
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Wait until row k finished
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Proposed Parallel ILU based Iterative Solver
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Parallel ILU factorization

Parallel forward/backward 

substitutions

Others: Parallel BLAS

• E.g. Intel MKL
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Subtree-based Parallel ILU Factorization

Problems of level-based scheduling

◆ Load-balancing

➢ Barriers between levels

➢ More levels to pipeline mode?

• Overhead for dependency handling

◆ Data locality

➢ Memory access order: 1 2 5 7 | 3 6 | 4 8 | 9 10

➢ Larger matrix -> poorer cache efficiency
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Subtree-based Parallel ILU Factorization

Assume we have partitioned the rows 

into P balanced private queue and 1 

small shared queue

◆ P : number of threads

◆ All tasks in one private queue have no 

dependencies on tasks in any other queue 
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Subtree-based Parallel ILU Factorization

◆ Each thread works on its private queue

➢ In natural order: Better data locality

➢ No inter-thread communication

◆After one finishing its private queue

➢ Work on shared queue in pipeline mode

➢ No barrier before shared queue

➢ Better load-balancing
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Subtree-based Parallel ILU Factorization

How to obtain the partition?

◆ Hard on arbitrary DAG, but easy on tree

◆ Elimination tree (ETree) [Gilbert, SIMAX 93]

➢ Generated from DAG

➢ The dependencies of LU factorization for L + LT

➢ Overestimates the dependencies

◆ Subtree partitioning
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Subtree-based Parallel ILU Factorization
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O(N log N)

In most cases:
shared queue < 5%

Setup

Divide subtree 

Assign task

Build private queues

Build shared queues
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Parallel Forward/backward Substitutions

◆ Very similar row-level parallelism to the ILU factorization

➢ Forward substitution: structure of L

➢ Backward substitution: structure of U

◆ Similar static scheduling

◆ Fewer FLOPs

➢ Synchronization and memory access affects more

➢ Subtree-based > level-based

◆ Parallel efficiency in shared queue remains to be a problem
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Parallel Forward/backward Substitutions

◆ Task granularity: improve the data locality of the shared queue

➢ At most g adjacent tasks are aggregated into a task pack

➢ each thread takes a pack of tasks instead of one task

◆ To minimize the loss of parallelism: 2-round execution
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If row k not finished

1st round: skip to next task
2nd round: wait



Parallel Forward/backward Substitutions

◆ Node stripping: minimize the size of shared queue

➢ When reordering matrix to get a better ETree of the factorization, ETree of 

U tends to be badly degenerated
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Parallel Forward/backward Substitutions

◆ Node stripping: minimize the size of the shared queue

➢ At most 𝛽 × 𝑁 nodes are stripped from the top levels of DAG

➢ Top levels: level-based scheduling

➢ Rest of DAG: subtree-based scheduling
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𝛽1 = 20%, 𝛽2 = 50%
shared queue < 2%
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Numerical Experiments

◆Overview
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Solving 𝑨𝑖𝒙 = 𝒃𝑖 with

parallel ILU-GMRES

(multiple times of parallel 

forward/backward substitution)

Static scheduling

for ILU (setup)

Static scheduling

for substitution (setup)

Parallel ILU

factorization

of 𝑨𝑖

New 𝑨𝑖 , 𝒃𝑖



Numerical Experiments

◆ 1 setup + 100 factorization

➢ S: sequential version

➢ L: dual-mode level scheduling 

(NISCLU)

➢ P: proposed subtree-based 

scheduling

➢ 8 threads

◆ Better speedup for 

larger/denser matrices
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Numerical Experiments

◆ GMRES until convergence

➢ relative tolerance: 10-4

◆ Higher speedup for 

substitution than 

factorization

◆ Around 4X (up to 4.5X) 

overall speedup with

8 cores
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Numerical Experiments

◆ Results on power grid transient simulation
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Numerical Experiments
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Numerical Experiments

◆ Results on nonlinear circuit simulation

➢ ngspice*(P): modified ngspice that uses proposed parallel iterative solver
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Numerical Experiments

◆ Results on nonlinear circuit simulation
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Conclusions

◆ In this work, we have presented a subtree-based parallel ILU factorization 

and forward/backward substitution algorithm for fixed-structure matrices in 

circuit simulation, and an ILU-GMRES solver incorporating them.

◆ With matrices from circuit simulation, the proposed ILU-GMRES solver using 

8 threads is up to 5.23X faster than the sequential baseline for solving fixed-

structure equations.

◆ Experiments involving transient simulation of linear and nonlinear circuits 

show that the proposed parallel algorithms are faster than the parallel 

baselines derived from the dual-mode level scheduling in NICSLU with up to 

2.1X speedup.

◆ The large benefit over HSPICE for solving large nonlinear circuits is also 

demonstrated.
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