
Lingjie Li, Zhiqiang Liu, Kan Liu, Shan Shen, Wenjian Yu

Dept. Computer Science & Tech., BNRist,

Tsinghua University, Beijing, China

Jan. 18, 2023

ASP-DAC 2023

Parallel Incomplete LU Factorization Based

Iterative Solver for Fixed-Structure Linear

Equations in Circuit Simulation

Speaker’s bio

◆ Lingjie Li is a Ph.D candidate from the

Department of Computer Science and

Technology, Tsinghua University, Beijing,

China. His supervisor is Prof. Wenjian Yu.

◆ His research interests include

➢ High-performance numerical algorithms

➢ Circuit simulation

➢ Tensor computation

➢ Data compression

2

Outline

◆ Background

◆ Related work

◆ Proposed Parallel ILU based Iterative Solver

➢ Subtree-based parallel ILU factorization

➢ Parallel forward/backward substitutions

◆Numerical Experiments

◆ Conclusions

3

Outline

◆ Background

◆ Related work

◆ Proposed Parallel ILU based Iterative Solver

➢ Subtree-based parallel ILU factorization

➢ Parallel forward/backward substitutions

◆Numerical Experiments

◆ Conclusions

4

Background

5

Functional Design

High-level Synthesis

Logic Synthesis

Layout & Routing

Verification

Fabrication

Packaging & Testing

Parasitic Extraction

Circuit Simulation

…

Netlist

Nonlinear Equations

Linear Equations

Circuit

Analysis

DAEs

FDM

Newton s

Method

SPICE

Background

◆ Core problem of circuit simulation

➢ Solving the systems of linear equation generated from circuits

◆ Features of the systems

➢ Large

• ~100K nodes, even more

➢ Very sparse, nonzero diagonal

➢ Fixed-structure

• Linear circuit: values don’t change

• Nonlinear circuit: same pattern, changed values

6

Background

◆Direct solver

➢ LU factorization

➢ Good for linear circuit

• Only need to factorize once

➢ Potentially huge number of fill-ins

• Even after reorder

7

Background

◆ Iterative solver

➢ Preconditioned GMRES

➢ Preconditioner

• diag(A)

• Incomplete LU factorization (ILU)

• graph spectral sparsification

• …

8

Background

◆ ILU(k) factorization

➢ Level of fill-ins

➢ Ignore fill-ins whose level > k

➢ ILU(0): ignore all fill-ins

9

1 2 3 4 5 6 7 8 9 10
1 x x x x
2 x x 1 x 1 x
3 x x x x 1
4 x x 1 x 1
5 x x x
6 x 1 x x 1 2
7 x x
8 x 1 x x 4 1
9 x 2 1 x 2 x 1
10 x 2 x x 1 2 x

lower part
nonzero

upper part
nonzero fill-in

Outline

◆ Background

◆ Related work

◆ Proposed Parallel ILU based Iterative Solver

➢ Subtree-based parallel ILU factorization

➢ Parallel forward/backward substitutions

◆Numerical Experiments

◆ Conclusions

10

Related work

◆ Up-looking algorithm for ILU(0)

◆ ILU(k)? Add a symbolic factorization

11

1 2 3 4 5 6 7 8 9 10
1 x x x
2 x x x x x
3 x x x x
4 x x x x x
5 x x x
6 x x x x
7 x x x
8 x x x x x
9 x x x x
10 x x x x

Related work

◆ Row-level parallelism and data dependencies

12

1 2 3 4 5 6 7 8 9 10
1 x x x
2 x x x x x
3 x x x x
4 x x x x x
5 x x x
6 x x x x
7 x x x
8 x x x x x
9 x x x x
10 x x x x

Related work

How to schedule?

◆ Dynamic task pool

➢ Too much overhead

◆ Static scheduling

➢ Fixed-structure

➢ Pre-analyze the dependency at setup stage

➢ Overhead can be amortized

13

Related work

◆ Level-scheduling [Dutto, IJNMF 99]

➢ No dependencies in same level

➢ Barriers between levels

◆NISCLU [Chen, TCAD 13]

➢ Dual-mode level scheduling

➢ Same for upper levels

➢ Pipeline mode for bottom levels with very few nodes

14

Related work

◆ Pipeline mode

➢ Remove barriers between levels

➢ Add dependency handling before row-update

15

Wait until row k finished

Outline

◆ Background

◆ Related work

◆ Proposed Parallel ILU based Iterative Solver

➢ Subtree-based parallel ILU factorization

➢ Parallel forward/backward substitutions

◆Numerical Experiments

◆ Conclusions

16

Proposed Parallel ILU based Iterative Solver

17

Parallel ILU factorization

Parallel forward/backward

substitutions

Others: Parallel BLAS

• E.g. Intel MKL

Outline

◆ Background

◆ Related work

◆ Proposed Parallel ILU based Iterative Solver

➢ Subtree-based parallel ILU factorization

➢ Parallel forward/backward substitutions

◆Numerical Experiments

◆ Conclusions

18

Subtree-based Parallel ILU Factorization

Problems of level-based scheduling

◆ Load-balancing

➢ Barriers between levels

➢ More levels to pipeline mode?

• Overhead for dependency handling

◆ Data locality

➢ Memory access order: 1 2 5 7 | 3 6 | 4 8 | 9 10

➢ Larger matrix -> poorer cache efficiency

19

Subtree-based Parallel ILU Factorization

Assume we have partitioned the rows

into P balanced private queue and 1

small shared queue

◆ P : number of threads

◆ All tasks in one private queue have no

dependencies on tasks in any other queue

20

Subtree-based Parallel ILU Factorization

◆ Each thread works on its private queue

➢ In natural order: Better data locality

➢ No inter-thread communication

◆After one finishing its private queue

➢ Work on shared queue in pipeline mode

➢ No barrier before shared queue

➢ Better load-balancing

21

Subtree-based Parallel ILU Factorization

How to obtain the partition?

◆ Hard on arbitrary DAG, but easy on tree

◆ Elimination tree (ETree) [Gilbert, SIMAX 93]

➢ Generated from DAG

➢ The dependencies of LU factorization for L + LT

➢ Overestimates the dependencies

◆ Subtree partitioning

22

Subtree-based Parallel ILU Factorization

23

O(N log N)

In most cases:
shared queue < 5%

Setup

Divide subtree

Assign task

Build private queues

Build shared queues

Outline

◆ Background

◆ Related work

◆ Proposed Parallel ILU based Iterative Solver

➢ Subtree-based parallel ILU factorization

➢ Parallel forward/backward substitutions

◆Numerical Experiments

◆ Conclusions

24

Parallel Forward/backward Substitutions

◆ Very similar row-level parallelism to the ILU factorization

➢ Forward substitution: structure of L

➢ Backward substitution: structure of U

◆ Similar static scheduling

◆ Fewer FLOPs

➢ Synchronization and memory access affects more

➢ Subtree-based > level-based

◆ Parallel efficiency in shared queue remains to be a problem

25

Parallel Forward/backward Substitutions

◆ Task granularity: improve the data locality of the shared queue

➢ At most g adjacent tasks are aggregated into a task pack

➢ each thread takes a pack of tasks instead of one task

◆ To minimize the loss of parallelism: 2-round execution

26

If row k not finished

1st round: skip to next task
2nd round: wait

Parallel Forward/backward Substitutions

◆ Node stripping: minimize the size of shared queue

➢ When reordering matrix to get a better ETree of the factorization, ETree of

U tends to be badly degenerated

27

Parallel Forward/backward Substitutions

◆ Node stripping: minimize the size of the shared queue

➢ At most 𝛽 × 𝑁 nodes are stripped from the top levels of DAG

➢ Top levels: level-based scheduling

➢ Rest of DAG: subtree-based scheduling

28

𝛽1 = 20%, 𝛽2 = 50%
shared queue < 2%

Outline

◆ Background

◆ Related work

◆ Proposed Parallel ILU based Iterative Solver

➢ Subtree-based parallel ILU factorization

➢ Parallel forward/backward substitutions

◆Numerical Experiments

◆ Conclusions

29

Numerical Experiments

◆Overview

30

Solving 𝑨𝑖𝒙 = 𝒃𝑖 with

parallel ILU-GMRES

(multiple times of parallel

forward/backward substitution)

Static scheduling

for ILU (setup)

Static scheduling

for substitution (setup)

Parallel ILU

factorization

of 𝑨𝑖

New 𝑨𝑖 , 𝒃𝑖

Numerical Experiments

◆ 1 setup + 100 factorization

➢ S: sequential version

➢ L: dual-mode level scheduling

(NISCLU)

➢ P: proposed subtree-based

scheduling

➢ 8 threads

◆ Better speedup for

larger/denser matrices

31

Numerical Experiments

◆ GMRES until convergence

➢ relative tolerance: 10-4

◆ Higher speedup for

substitution than

factorization

◆ Around 4X (up to 4.5X)

overall speedup with

8 cores

32

Numerical Experiments

◆ Results on power grid transient simulation

33

Numerical Experiments

34

Numerical Experiments

◆ Results on nonlinear circuit simulation

➢ ngspice*(P): modified ngspice that uses proposed parallel iterative solver

35

Numerical Experiments

◆ Results on nonlinear circuit simulation

36

Outline

◆ Background

◆ Related work

◆ Proposed Parallel ILU based Iterative Solver

➢ Subtree-based parallel ILU factorization

➢ Parallel forward/backward substitutions

◆Numerical Experiments

◆ Conclusions

37

Conclusions

◆ In this work, we have presented a subtree-based parallel ILU factorization

and forward/backward substitution algorithm for fixed-structure matrices in

circuit simulation, and an ILU-GMRES solver incorporating them.

◆ With matrices from circuit simulation, the proposed ILU-GMRES solver using

8 threads is up to 5.23X faster than the sequential baseline for solving fixed-

structure equations.

◆ Experiments involving transient simulation of linear and nonlinear circuits

show that the proposed parallel algorithms are faster than the parallel

baselines derived from the dual-mode level scheduling in NICSLU with up to

2.1X speedup.

◆ The large benefit over HSPICE for solving large nonlinear circuits is also

demonstrated.
38

References

39

Thank You !

40

