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Introduction

® FPGAs are popular computation platform that are found in SoC platforms up to the cloud
due to their good flexibility, computing and power efficiency

e Security is a crucial topic for FPGAs based system, especially since side-channel and fault
attacks can be implemented remotely through dedicated FPGA logic

¢ In this work, faults attacks performed from FPGA to CPU in an FPGA-SoC context are
considered
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Remote Fault Injection on Software
Induce fault during the execution of software without a laboratory fault injection setup
Existing possibilities:

¢ Rowhammer [2]

¢ Dynamic Voltage and Frequency Scaling (DVFS) [9]
® Combine DVFS with voltage-drop generated from FPGA logic [4]

Our Solution:
* Generate faults on software via FPGA logic only
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Threat Model

e Power Distribution Network
shared between FPGA and CPU

e Attacker located on CPU 0 or 1
with user privileges

o Attacker can partially reconfigure
the FPGA from software

e Attacker logic generate voltage
drops that affect Victim’s
execution
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Methodology - Fault Injection through Glitch Amplifcation

Concept introduced in [5] as
alternative to ring oscillators for

remote fault injection in FPGAs L dom pOWer-
Y burning D
Glitch amplification circuits rely on: data| T chain logic

* A glitch generator: Flip-flop +
"delay logic" + XOR

® Power-burning network: Wires +
logic along the routing path that
consume dynamic power

Mathieu Gross (TUM) 6/26



Power-hammering Circuit

® Power-hammering based on AES out round N-1
rounds was presented in [8] PRESENT PRESENT PRESENT

° Power-hammering CirCUit data| T round O round 1 D *** [ round N D
implemented with PRESENT [1] z:: :ZE:S:i
rounds and XORs between
rounds

e Better "voltage-drop granularity”
than AES rounds
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Fault injection Parameters

¢ Number of rounds per PRESENT
power-hammer and the number of
PRESENT power-hammer
instances

e Activation delay offset after a
trigger signal

¢ Total duration of the fault injection
® Period of the enable signal
e Duty-cycle of the enable signal
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Experimental Setups
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FPGA PRESENT
power . Activation
clock Duration Duty
Platform -hammer freq.
freq. (cycles) cycle
(MHz) (number, (MHz)
rounds)
40
(bare-
metal)
Pyng-Z1 222 (13,16) 450 1.48
30-40
(best 31)
(Linux)
Terasic 99
DE{-SoC 250 (14,13) 10 000 0.408 (bare-
metal)
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Fault Model Evaluation

¢ Can instructions be skipped, executed multiple times or be faulted ?
* |s it possible to fault the data transfer from DDR to the processor’s caches ?

¢ |s any of the knowledge obtained through those experiments exploitable for a concrete
attack ?
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Fault Model Evaluation - Processor Instructions

©® N o g A W =

©
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#define N 500
#define NUMBER_OF_NOPS 100

int j = 0;

/*Attacker starts injecting faults from herex*/

NUMBER_OF _NOPS*nops () ;

jtts
// N consecutive j++ instructions

jt++s

NUMBER_OF _NOPS*nops () ;

Listing 1: Faulting add instructions
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#define N 5
#define MULTIPLIER 11
#define NUMBER_OF_NOPS 500

uint32_t j = 3;
// Attacker starts injecting faults from here
NUMBER_OF_NOPS*nops () ;
j *= MULTIPLIER;
. // N consecutive j *= MULTIPLIER
j *= MULTIPLIER;
NUMBER_OF _NOPS*nops () ;

Listing 2: Faulting a victim code based on a
multiplication instruction

11/26




Faulty Output Distribution on the Variable Incrementation

1000 faulty outputs were collected for the Pyng-Z1 and Terasic-DE1 SoC

|
i Eitj ltuyt [0- | [450- | ]500- | [503927-
3 | 5 450] | 500[ | 600] | 504058]
= range
2 Distinct
8 faulty 39 14 11 4
-8 2l outputs
o Faulty
output 150 463 23 364
0 ' distribution
S} Q I S . - . : —
v ¥ & ® Table: Faulty outputs distribution during Listing 1
Faulty output execution on the Terasic DE1-SoC
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Faulty Output Distribution on the Exponentiation Code

¢ 1000 faulty outputs were collected for the Pyng-Z1 and Terasic-DE1 SoC
¢ Faulty outputs classified according to the greater power of 11 divisor

Value/ Value/

max(11N) | 0 3 11 | 112 | 113 | 114 | 115 | 118 | others max(11V) | 0 | 3 | 11 112 | 118 | 11 | 115 | 116 | others
divisor divisor

Distinct Distinct

faulty 1 1|6 |12 | 11 11 1 1 12 faulty 11014 1 6 7 0 0 9
outputs outputs

Faulty Faulty

output 141 | 17 | 29 | 279 | 314 | 179 | 1 1 39 output 1 0 | 241 3 276 | 281 0 0 198
distribution distribution

Table: Faulty output distribution during Listing 2 Table: Faulty output distribution during Listing 2
execution on the Pyng-Z1 execution on the Terasic DE1-SoC
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Deduced Fault Model

¢ [nstructions skips and multiple execution of an instruction: Fault in the program counter
register or processor’s pipeline ?

¢ Faults observed on the ADD and MUL instructions

¢ [nstruction skips has been exploited for privilege escalation [10] on an ARM-Cortex A9

Mathieu Gross (TUM) 14/26



mm

Faulting Data Transfer from DDR Memory to the processor’s cache

e [ault observed in consecutive
words within a cache line (4 or 8
faulty words)

1 #define ARRAY_SIZE 1024
2
S
4
e Multiple types of faults observed 5
6
8
9

2 #define FILL_PATTERN OxFFFFFFFF
uint32_t array_attacked [ARRAY_SIZE];

fill_array(array_attacked,FILL_PATTERN) ;

7 flush_caches();

// Attacker starts injecting faults from here

9 verify_fill_pattern(array_attacked,FILL_PATTERN) ;

within a word: random, single
byte, multi-bytes

e Fault primitive used for

implementing a fault attack on an 10 ...
AES T-Tables implementation Listing 3: Faulting data transfer from memory to the cache
hierarchy
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The AES Block Cipher

¢ Symetric block cipher that
operates on 16 Bytes block

® Possible key size: 128, 192, 256
bits

® A 32-bit implementation using 4
Transformation-Tables of 1 kB is
used in this work (mbedTLS
library)
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Plaintext
RKO
[ ROUND 1 J<—RK1
[ ROUND 2 J<—RK2
[ ROUND 3 J<—RK3
[ ROUND 4 J<—RK4
[ ROUND 5 ]« RKS
[ ROUND 6 ]« RK6
[ ROUND 7 J«<- RK7
[ ROUND 8 }<—RK8
[ ROUND 9 ]« RK9
RK10
Ciphertext

Datal Block

|

MIXCOLUMNS

ADDROUNDKEY

Data;BIock
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Differential Fault Attack (DFA) on AES

¢ Based on the attack from Piret et
al. [7]

¢ Goal: Inject a single fault between
MCg and SBy that lead to a 4
bytes state difference

¢ Fault observed during the transfer
from a T-Tables memory block (no
fault observed if all the T-Tables
are already cached)
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Results of the DFA

e Experiments evaluated in a
bare-metal scenario

® Fault injection results evaluated
with 100 plaintexts, 15
configurations (each configuration
is used for 10 measurements)
and 10 different keys

¢ No T-Tables in the cache before
an AES encryption
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Number of total

Number of exploitable

faults faults Ratio
Worst 595 40 6.72%
Average 620 61 9.88%
Best 607 74 12.19%
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Discussion and Countermeasures

Fault attacks with Linux running is challenging because of the crashes:

¢ Which power-hammering configuration is optimal for avoiding crashes and injecting
sufficient faults for a DFA ?

® Parameterspace explored with an automated board reset framework under a crash, but no
"optimal configuration" found so far

e Future work could explore the use of reinforcement learning algorithms for parameter space
exploration [6]

Possible countermeasures:
¢ Bitstream scanning for malicious circuit signatures [3]

¢ Detection of voltage drop with voltage sensors [8]: decrease the CPU clock and program a
safe FPGA configuration if an attack scenario is detected
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Conclusion

¢ Fault attacks from FPGA to CPU are possible

* The fault injection is precise enough for implementing a DFA on an AES T-Tables
implementation and skip instructions

¢ Future work should investigate faults attacks further on a Linux setup and evaluate the
effectiveness of countermeasures
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Thank you for your attention!
Questions ?
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