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Introduction

• FPGAs are popular computation platform that are found in SoC platforms up to the cloud
due to their good flexibility, computing and power efficiency

• Security is a crucial topic for FPGAs based system, especially since side-channel and fault
attacks can be implemented remotely through dedicated FPGA logic

• In this work, faults attacks performed from FPGA to CPU in an FPGA-SoC context are
considered
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Remote Fault Injection on Software
Induce fault during the execution of software without a laboratory fault injection setup

Existing possibilities:
• Rowhammer [2]
• Dynamic Voltage and Frequency Scaling (DVFS) [9]
• Combine DVFS with voltage-drop generated from FPGA logic [4]

Our Solution:
• Generate faults on software via FPGA logic only
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Threat Model

• Power Distribution Network
shared between FPGA and CPU

• Attacker located on CPU 0 or 1
with user privileges

• Attacker can partially reconfigure
the FPGA from software

• Attacker logic generate voltage
drops that affect Victim’s
execution
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Methodology - Fault Injection through Glitch Amplifcation
Concept introduced in [5] as
alternative to ring oscillators for
remote fault injection in FPGAs

Glitch amplification circuits rely on:
• A glitch generator: Flip-flop +

"delay logic" + XOR
• Power-burning network: Wires +

logic along the routing path that
consume dynamic power
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Power-hammering Circuit

• Power-hammering based on AES
rounds was presented in [8]

• Power-hammering circuit
implemented with PRESENT [1]
rounds and XORs between
rounds

• Better "voltage-drop granularity"
than AES rounds
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Fault injection Parameters

• Number of rounds per PRESENT
power-hammer and the number of
PRESENT power-hammer
instances

• Activation delay offset after a
trigger signal

• Total duration of the fault injection
• Period of the enable signal
• Duty-cycle of the enable signal
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Experimental Setups

Platform

FPGA
clock
freq.

(MHz)

PRESENT
power

-hammer
(number,
rounds)

Duration
(cycles)

Activation
freq.

(MHz)

Duty
cycle

Pynq-Z1 222 (13,16) 450 1.48

40
(bare-
metal)

30-40
(best 31)
(Linux)

Terasic
DE1-SoC 250 (14,13) 10 000 0.408

99
(bare-
metal)
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Fault Model Evaluation

• Can instructions be skipped, executed multiple times or be faulted ?
• Is it possible to fault the data transfer from DDR to the processor’s caches ?
• Is any of the knowledge obtained through those experiments exploitable for a concrete

attack ?
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Fault Model Evaluation - Processor Instructions

1 #define N 500
2 #define NUMBER_OF_NOPS 100
3 ...
4 int j = 0;
5 /*Attacker starts injecting faults from here*/
6 NUMBER_OF_NOPS*nops();
7 j++;
8 ... // N consecutive j++ instructions
9 j++;

10 NUMBER_OF_NOPS*nops();
11 ...

Listing 1: Faulting add instructions

1 #define N 5
2 #define MULTIPLIER 11
3 #define NUMBER_OF_NOPS 500
4 ...
5 uint32_t j = 3;
6 // Attacker starts injecting faults from here
7 NUMBER_OF_NOPS*nops();
8 j *= MULTIPLIER;
9 ... // N consecutive j *= MULTIPLIER

10 j *= MULTIPLIER;
11 NUMBER_OF_NOPS*nops();
12 ...

Listing 2: Faulting a victim code based on a
multiplication instruction
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Faulty Output Distribution on the Variable Incrementation

1000 faulty outputs were collected for the Pynq-Z1 and Terasic-DE1 SoC
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[503927-
504058]

Distinct
faulty
outputs

39 14 11 4

Faulty
output
distribution

150 463 23 364

Table: Faulty outputs distribution during Listing 1
execution on the Terasic DE1-SoC
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Faulty Output Distribution on the Exponentiation Code

• 1000 faulty outputs were collected for the Pynq-Z1 and Terasic-DE1 SoC
• Faulty outputs classified according to the greater power of 11 divisor

Value/
max(11N )
divisor

0 3 11 112 113 114 115 116 others

Distinct
faulty
outputs

1 1 6 12 11 11 1 1 12

Faulty
output
distribution

141 17 29 279 314 179 1 1 39

Table: Faulty output distribution during Listing 2
execution on the Pynq-Z1

Value/
max(11N )
divisor

0 3 11 112 113 114 115 116 others

Distinct
faulty
outputs

1 0 4 1 6 7 0 0 9

Faulty
output
distribution

1 0 241 3 276 281 0 0 198

Table: Faulty output distribution during Listing 2
execution on the Terasic DE1-SoC
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Deduced Fault Model

• Instructions skips and multiple execution of an instruction: Fault in the program counter
register or processor’s pipeline ?

• Faults observed on the ADD and MUL instructions
• Instruction skips has been exploited for privilege escalation [10] on an ARM-Cortex A9
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Faulting Data Transfer from DDR Memory to the processor’s cache

• Fault observed in consecutive
words within a cache line (4 or 8
faulty words)

• Multiple types of faults observed
within a word: random, single
byte, multi-bytes

• Fault primitive used for
implementing a fault attack on an
AES T-Tables implementation

1 #define ARRAY_SIZE 1024
2 #define FILL_PATTERN 0xFFFFFFFF
3 ...
4 uint32_t array_attacked[ARRAY_SIZE];
5

6 fill_array(array_attacked,FILL_PATTERN);
7 flush_caches();
8 // Attacker starts injecting faults from here
9 verify_fill_pattern(array_attacked,FILL_PATTERN);

10 ...

Listing 3: Faulting data transfer from memory to the cache
hierarchy
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The AES Block Cipher

• Symetric block cipher that
operates on 16 Bytes block

• Possible key size: 128, 192, 256
bits

• A 32-bit implementation using 4
Transformation-Tables of 1 kB is
used in this work (mbedTLS
library)
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Differential Fault Attack (DFA) on AES

• Based on the attack from Piret et
al. [7]

• Goal: Inject a single fault between
MC8 and SB9 that lead to a 4
bytes state difference

• Fault observed during the transfer
from a T-Tables memory block (no
fault observed if all the T-Tables
are already cached)
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Results of the DFA

• Experiments evaluated in a
bare-metal scenario

• Fault injection results evaluated
with 100 plaintexts, 15
configurations (each configuration
is used for 10 measurements)
and 10 different keys

• No T-Tables in the cache before
an AES encryption

Number of total
faults

Number of exploitable
faults Ratio

Worst 595 40 6.72%
Average 620 61 9.88%

Best 607 74 12.19%
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Discussion and Countermeasures
Fault attacks with Linux running is challenging because of the crashes:

• Which power-hammering configuration is optimal for avoiding crashes and injecting
sufficient faults for a DFA ?

• Parameterspace explored with an automated board reset framework under a crash, but no
"optimal configuration" found so far

• Future work could explore the use of reinforcement learning algorithms for parameter space
exploration [6]

Possible countermeasures:
• Bitstream scanning for malicious circuit signatures [3]
• Detection of voltage drop with voltage sensors [8]: decrease the CPU clock and program a

safe FPGA configuration if an attack scenario is detected
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Conclusion

• Fault attacks from FPGA to CPU are possible
• The fault injection is precise enough for implementing a DFA on an AES T-Tables

implementation and skip instructions
• Future work should investigate faults attacks further on a Linux setup and evaluate the

effectiveness of countermeasures
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Thank you for your attention!
Questions ?
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