
FPGA Needle: Precise Remote Fault Attacks from FPGA to CPU

Mathieu Gross1 Jonas Krautter2 Dennis Gnad2 Michael Gruber1

Georg Sigl1 Mehdi Tahoori 2

1Technical University of Munich
Chair of Security in Information Technology
TUM School of Computation Information and Technology

2Karlsruhe Institute of Technology
Chair of Dependable Nano Computing

ASP-DAC, 18.01.2023



Introduction

• FPGAs are popular computation platform that are found in SoC platforms up to the cloud
due to their good flexibility, computing and power efficiency

• Security is a crucial topic for FPGAs based system, especially since side-channel and fault
attacks can be implemented remotely through dedicated FPGA logic

• In this work, faults attacks performed from FPGA to CPU in an FPGA-SoC context are
considered

Mathieu Gross (TUM) 2 / 26



Outline

Remote Fault Injection on Software

Threat Model

Fault Injection Methodology

Fault Model and Experimental Results

Conclusion

Mathieu Gross (TUM) 3 / 26



Remote Fault Injection on Software
Induce fault during the execution of software without a laboratory fault injection setup

Existing possibilities:
• Rowhammer [2]
• Dynamic Voltage and Frequency Scaling (DVFS) [9]
• Combine DVFS with voltage-drop generated from FPGA logic [4]

Our Solution:
• Generate faults on software via FPGA logic only

Mathieu Gross (TUM) 4 / 26



Threat Model

• Power Distribution Network
shared between FPGA and CPU

• Attacker located on CPU 0 or 1
with user privileges

• Attacker can partially reconfigure
the FPGA from software

• Attacker logic generate voltage
drops that affect Victim’s
execution

FPGA

CPU 0
 

Processing System

DDR memory

Mathieu Gross (TUM) 5 / 26



Methodology - Fault Injection through Glitch Amplifcation
Concept introduced in [5] as
alternative to ring oscillators for
remote fault injection in FPGAs

Glitch amplification circuits rely on:
• A glitch generator: Flip-flop +

"delay logic" + XOR
• Power-burning network: Wires +

logic along the routing path that
consume dynamic power

delay

chain

power-

burning

logicdata

Mathieu Gross (TUM) 6 / 26



Power-hammering Circuit

• Power-hammering based on AES
rounds was presented in [8]

• Power-hammering circuit
implemented with PRESENT [1]
rounds and XORs between
rounds

• Better "voltage-drop granularity"
than AES rounds

PRESENT

round 0

PRESENT

round 1

PRESENT

round N
...

...

...

...

out round N-1

out round N-2

out round N-3

data

Mathieu Gross (TUM) 7 / 26



Fault injection Parameters

• Number of rounds per PRESENT
power-hammer and the number of
PRESENT power-hammer
instances

• Activation delay offset after a
trigger signal

• Total duration of the fault injection
• Period of the enable signal
• Duty-cycle of the enable signal

0

50
0

10
00

15
00

20
00

0

20

40

60

Sample
TD

C
P

ro
pa

ga
tio

n

Power-hammering
Baseline

Mathieu Gross (TUM) 8 / 26



Experimental Setups

Platform

FPGA
clock
freq.

(MHz)

PRESENT
power

-hammer
(number,
rounds)

Duration
(cycles)

Activation
freq.

(MHz)

Duty
cycle

Pynq-Z1 222 (13,16) 450 1.48

40
(bare-
metal)

30-40
(best 31)
(Linux)

Terasic
DE1-SoC 250 (14,13) 10 000 0.408

99
(bare-
metal)

Mathieu Gross (TUM) 9 / 26



Fault Model Evaluation

• Can instructions be skipped, executed multiple times or be faulted ?
• Is it possible to fault the data transfer from DDR to the processor’s caches ?
• Is any of the knowledge obtained through those experiments exploitable for a concrete

attack ?

Mathieu Gross (TUM) 10 / 26



Fault Model Evaluation - Processor Instructions

1 #define N 500
2 #define NUMBER_OF_NOPS 100
3 ...
4 int j = 0;
5 /*Attacker starts injecting faults from here*/
6 NUMBER_OF_NOPS*nops();
7 j++;
8 ... // N consecutive j++ instructions
9 j++;

10 NUMBER_OF_NOPS*nops();
11 ...

Listing 1: Faulting add instructions

1 #define N 5
2 #define MULTIPLIER 11
3 #define NUMBER_OF_NOPS 500
4 ...
5 uint32_t j = 3;
6 // Attacker starts injecting faults from here
7 NUMBER_OF_NOPS*nops();
8 j *= MULTIPLIER;
9 ... // N consecutive j *= MULTIPLIER

10 j *= MULTIPLIER;
11 NUMBER_OF_NOPS*nops();
12 ...

Listing 2: Faulting a victim code based on a
multiplication instruction

Mathieu Gross (TUM) 11 / 26



Faulty Output Distribution on the Variable Incrementation

1000 faulty outputs were collected for the Pynq-Z1 and Terasic-DE1 SoC

0

20
0

40
0

60
0

80
0

0

0.2

0.4

Faulty output

P
ro

ba
bi

lit
y

Faulty
output
range

[0-
450]

[450-
500[

]500-
600]

[503927-
504058]

Distinct
faulty
outputs

39 14 11 4

Faulty
output
distribution

150 463 23 364

Table: Faulty outputs distribution during Listing 1
execution on the Terasic DE1-SoC

Mathieu Gross (TUM) 12 / 26



Faulty Output Distribution on the Exponentiation Code

• 1000 faulty outputs were collected for the Pynq-Z1 and Terasic-DE1 SoC
• Faulty outputs classified according to the greater power of 11 divisor

Value/
max(11N )
divisor

0 3 11 112 113 114 115 116 others

Distinct
faulty
outputs

1 1 6 12 11 11 1 1 12

Faulty
output
distribution

141 17 29 279 314 179 1 1 39

Table: Faulty output distribution during Listing 2
execution on the Pynq-Z1

Value/
max(11N )
divisor

0 3 11 112 113 114 115 116 others

Distinct
faulty
outputs

1 0 4 1 6 7 0 0 9

Faulty
output
distribution

1 0 241 3 276 281 0 0 198

Table: Faulty output distribution during Listing 2
execution on the Terasic DE1-SoC

Mathieu Gross (TUM) 13 / 26



Deduced Fault Model

• Instructions skips and multiple execution of an instruction: Fault in the program counter
register or processor’s pipeline ?

• Faults observed on the ADD and MUL instructions
• Instruction skips has been exploited for privilege escalation [10] on an ARM-Cortex A9

Mathieu Gross (TUM) 14 / 26



Faulting Data Transfer from DDR Memory to the processor’s cache

• Fault observed in consecutive
words within a cache line (4 or 8
faulty words)

• Multiple types of faults observed
within a word: random, single
byte, multi-bytes

• Fault primitive used for
implementing a fault attack on an
AES T-Tables implementation

1 #define ARRAY_SIZE 1024
2 #define FILL_PATTERN 0xFFFFFFFF
3 ...
4 uint32_t array_attacked[ARRAY_SIZE];
5

6 fill_array(array_attacked,FILL_PATTERN);
7 flush_caches();
8 // Attacker starts injecting faults from here
9 verify_fill_pattern(array_attacked,FILL_PATTERN);

10 ...

Listing 3: Faulting data transfer from memory to the cache
hierarchy

Mathieu Gross (TUM) 15 / 26



The AES Block Cipher

• Symetric block cipher that
operates on 16 Bytes block

• Possible key size: 128, 192, 256
bits

• A 32-bit implementation using 4
Transformation-Tables of 1 kB is
used in this work (mbedTLS
library)

ROUND 0

ROUND 1

ROUND 2

ROUND 3

ROUND 4

ROUND 5

ROUND 6

ROUND 7

ROUND 8

ROUND 9

ROUND 10

Plaintext

Ciphertext

RK0

RK1

RK2

RK3

RK4

RK5

RK6

RK7

RK8

RK9

RK10

SUBBYTES

SHIFTROWS

MIXCOLUMNS

ADDROUNDKEY

Data Block

Data Block

Round Key

Mathieu Gross (TUM) 16 / 26



Differential Fault Attack (DFA) on AES

• Based on the attack from Piret et
al. [7]

• Goal: Inject a single fault between
MC8 and SB9 that lead to a 4
bytes state difference

• Fault observed during the transfer
from a T-Tables memory block (no
fault observed if all the T-Tables
are already cached)

k7
ARK7

SB8 SR8 MC8

k8
ARK8

SB9 SR9 MC9

k9
ARK9

SB10 SR10

k10
ARK10

C

Mathieu Gross (TUM) 17 / 26



Results of the DFA

• Experiments evaluated in a
bare-metal scenario

• Fault injection results evaluated
with 100 plaintexts, 15
configurations (each configuration
is used for 10 measurements)
and 10 different keys

• No T-Tables in the cache before
an AES encryption

Number of total
faults

Number of exploitable
faults Ratio

Worst 595 40 6.72%
Average 620 61 9.88%

Best 607 74 12.19%

Mathieu Gross (TUM) 18 / 26



Discussion and Countermeasures
Fault attacks with Linux running is challenging because of the crashes:

• Which power-hammering configuration is optimal for avoiding crashes and injecting
sufficient faults for a DFA ?

• Parameterspace explored with an automated board reset framework under a crash, but no
"optimal configuration" found so far

• Future work could explore the use of reinforcement learning algorithms for parameter space
exploration [6]

Possible countermeasures:
• Bitstream scanning for malicious circuit signatures [3]
• Detection of voltage drop with voltage sensors [8]: decrease the CPU clock and program a

safe FPGA configuration if an attack scenario is detected

Mathieu Gross (TUM) 19 / 26



Conclusion

• Fault attacks from FPGA to CPU are possible
• The fault injection is precise enough for implementing a DFA on an AES T-Tables

implementation and skip instructions
• Future work should investigate faults attacks further on a Linux setup and evaluate the

effectiveness of countermeasures

Mathieu Gross (TUM) 20 / 26



Thank you for your attention!
Questions ?

Mathieu Gross (TUM) 21 / 26



References I

[1] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw,
Y. Seurin, and C. Vikkelsoe.
Present: An ultra-lightweight block cipher.
In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and Embedded
Systems - CHES 2007, pages 450–466, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[2] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutlu.
Flipping bits in memory without accessing them: An experimental study of dram disturbance
errors.
SIGARCH Comput. Archit. News, 42(3):361–372, jun 2014.

Mathieu Gross (TUM) 22 / 26



References II
[3] Tuan La, Khoa Pham, Joseph Powell, and Dirk Koch.

Denial-of-service on fpga-based cloud infrastructures — attack and defense.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021(3):441–464,
Jul. 2021.

[4] Dina Gamaleldin Ahmed Shawky Mahmoud, Samah Hussein, Vincent Lenders, and Mirjana
Stojilovic.
Fpga-to-cpu undervolting attacks.
page 6, 2022.
This research is supported by armasuisse Science and Technology.

Mathieu Gross (TUM) 23 / 26



References III
[5] Kaspar Matas, Tuan Minh La, Khoa Dang Pham, and Dirk Koch.

Power-hammering through glitch amplification – attacks and mitigation.
In 2020 IEEE 28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 65–69, 2020.

[6] Mehrdad Moradi, Bentley James Oakes, Mustafa Saraoglu, Andrey Morozov, Klaus
Janschek, and Joachim Denil.
Exploring fault parameter space using reinforcement learning-based fault injection.
In 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W), pages 102–109, 2020.

Mathieu Gross (TUM) 24 / 26



References IV
[7] Gilles Piret and Jean-Jacques Quisquater.

A differential fault attack technique against SPN structures, with application to the AES and
khazad.
In Lecture Notes in Computer Science, pages 77–88. Springer Berlin Heidelberg, 2003.

[8] George Provelengios, Daniel Holcomb, and Russell Tessier.
Mitigating voltage attacks in multi-tenant fpgas.
ACM Transactions on Reconfigurable Technology and Systems (TRETS), 14(2):1–24, 2021.

[9] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo.
CLKSCREW: Exposing the perils of Security-Oblivious energy management.
In 26th USENIX Security Symposium (USENIX Security 17), pages 1057–1074, Vancouver,
BC, August 2017. USENIX Association.

Mathieu Gross (TUM) 25 / 26



References V
[10] Niek Timmers and Cristofaro Mune.

Escalating privileges in linux using voltage fault injection.
In 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 1–8,
2017.

Mathieu Gross (TUM) 26 / 26


	Introduction
	Outline
	Remote Fault Injection on Software
	Threat Model
	Fault Injection Methodology
	Fault Model and Experimental Results
	Conclusion

