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Quantization of Deep Neural Networks
Growth of Interest

Taxonomy
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Quantization
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Finite Weight Space Quantization

n Constraining weights into a definite set can 
maximize the execution efficiency
n Memory is proportional to cardinality of value space;
n Hardware-friendly value set lowers complexity;
n Multiplication has equal instances to addition;
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Operator Logic Gates 
per Unit

Total Operations 
per Image

addition ~40 ~37M

Multiplication ~320 ~38M

8-bit quantization. Operations are profiled by 
assuming image of size 32x32 on ResNet18.
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Quantization Through Approximated Function
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Quantization Through Search

Problem Formulation
n Discrete search space 
{𝑞(")}$;

n Splitting path between each 
connected pair of neurons;

n Selecting weight value is 
effectively selecting 
operations as in NAS.
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Neural Architecture Search Methods
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Differentiable NASRL-NAS: Markov decision process
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Considering the huge search space ({𝑞(")}$), 
differentiable search algorithm is required.



Indifferentiable Node in Networks
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Reparameterization

Gumbel Softmax



Problem Formulation

For each neuron pair <i, j>, we create m paths 
between them and:
n Associating probability variable;
n Define the forward selection mechanism;

n Derive the backward gradient
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Method: RDHS

Reparameterization with deterministic hard-sampling
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General form of sampling function with 
reparameterization trick
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Hard-Sampling vs Soft-Sampling
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Error Rate Floor vs Randomness
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Training VGG-small with binary weights ({-1, 1}).



Method: SGT

Stochastic Gradient Transfer
n Hard-sampling: only one path needs to be involved in the 

computational graph. 

n Heuristic: when the gradient of 𝑞𝑘 is positive, it should 
decrease, other candidates should gain a higher odd, their 
associated parameters should increase; vice versa.
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where



Implementation Optimization for ConvNets
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Neuron-to-neuron splitting requires exponentially increased 
parameters for updating, therefore we assign the associated 
parameters to the convolutional kernels scaled by each of m
masks.  



Results on CNN (CIFAR10, ImageNet)
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Performance of RDHS vs SGT
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SGT
n Faster 
n Less memory
n Higher variance

RDHS
n Slower 
n Higher memory 
n Lower variance



Conclusion

n Proposed to quantize deep neural networks from a “search” 
perspective.

n Identified the necessity of using deterministic hard-sampling 
in differentiable searching algorithm for quantization.

n Implemented and evaluated two methods for ConvNets with 
optimization tricks, achieving best trade-off between 
accuracy and execution efficiency.

n Our code is available at https://github.com/qinglu0330/DNN-
weight-search 
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