

#### Semantic Guided Fine-grained Point Cloud Quantization Framework for 3D Object Detection

Xiaoyu Feng, Chen Tang, Zongkai Zhang, Wenyu Sun, Yongpan Liu Tsinghua University, Beijing, China

## Self Introduction

- B.Eng. Degree from Tsinghua University, Beijing, China, in 2018
- Ph.D. candidate at Tsinghua University, Beijing, China



- My research interests are in neural network algorithms
  - & energy-efficient architecture design for 3D point cloud
    - Outdoor 3D Object Detection Algorithms
    - Energy-efficient Architecture Design for Point Cloud

- Introduction to 3D Object Detection
- Background
  - Neural Network Quantization
  - Compression for Point Cloud Networks
- Methods
- Experiment results
  - Software Evaluation
  - Hardware Evaluation
- Conclusion

## Wide Utilization of 3D Object Detection

 Rapid development of Lidar/Radar pushes the wide utilization of point cloud



Yole Development, 2017

 In many point cloud based applications, 3D object detection is playing critical role



Autonomous Driving



Smart City

## Network Based 3D Object Detection

- CNN is the main operator for 3D object detection
  - Two mainstreams: point and voxel based



## Challenges of Real-time Requirement

- To meet the real-time requirement, energy-hungry hardware is required.
- Typical Power Consumption (Watts) Smart Phone Nintendo Switch Jetson Nano RPi 4 Tablet Chromebook MacBook Air MacBook Pro Jetson Orin & Xavier Mac Mini Mac Studio 22.5 45 67.5 90



• However, there is still gap for real-time processing



## Challenges of Real-time Requirement

- To meet the real-time requirement, energy-hungry hardware is required.
- However, there is still gap for real-time processing



Call for efficient compression for 3D object detection networks!!!

- Introduction to 3D Object Detection
- Background
  - Neural Network Quantization
  - Compression for Point Cloud Networks
- Methods
- Experiment results
  - Software Evaluation
  - Hardware Evaluation
- Conclusion

#### **Neural Network Quantization**

• Low-bit quantization saves the power consumption



Emer et al., ISCA Tutorial (2019)

# Post-Training Quantization (PTQ)

• PTQ directly quantizes the model without finetuning



- Weight Correction
- Range Clipping
- Channel-wise
  - Quantization
- Adaptive rounding

. . . . . .

- ③ No training
- ⊗ Low model precision

Gholami et al., 2021



# Quantization-aware Training (QAT)

• QAT simulates the effects of quantization during training



Benoit et al., CVPR, 2018

- Introduction to 3D Object Detection
- Background
  - Neural Network Quantization
  - Compression for Point Cloud Networks
- Methods
- Experiment results
  - Software Evaluation
  - Hardware Evaluation
- Conclusion



#### **Point Cloud Quantization**

• Binary Point Cloud Network



⊗ Limited to small network/dataset

Static quantization

Qin et al., ICLR, 2021

## **Point Cloud Pruning**

• Binary Point Cloud Network



**Input Compression** 



⊗ Static pruning

Yang et al., Neurips, 2022

# **Dynamic Point Cloud Compression**

• Useful semantic information in point cloud is imbalanced!



#### It provides opportunity for dynamic point cloud compression !!!



- Introduction to 3D Object Detection
- Background
  - Neural Network Quantization
  - Compression for Point Cloud Networks
- Methods
- Experiment results
  - Software Evaluation
  - Hardware Evaluation
- Conclusion



## Motivation

Semantic-guided dynamic quantization



• **Baseline:** Static global quantization

• **Stage I:** Static blockwise quantization • **Stage II:** Dynamic block-wise quantization

## A KITTI Case Study





- Use GroundTruth to indicate semantic
- The proposed method shows advantages on low bitwidth

## **Overall Framework**



(1): Indicate semantic for each point with a small prediction branch

(2): Partition point cloud into multiple separate blocks

③: Bit-masking transfers the semantic indicator of each block into bitwidth

(4): Evaluate the quantized model on both software & hardware ends

19/35

## **Block Partition**

- Block partition narrows dynamic range
  and benefits quantization
  - RGB image: 8 bit
  - LiDAR point cloud: 11 bit for x, y







## **Bit-masking Based Adaptive Quantization**



- For each block  $B_i$ , the semantic branch predict a 0-1 indicator  $I_i$
- Then  $I_i$  is transferred into a 0/1 bit mask  $m_i$
- The floating-point  $X_f$  is first 8-bit pre-quantized into  $X_q^{pre}$
- Then  $X_q^{pre}$  is adaptively quantized into different bitwidth  $X_q$  by bit-masking

21/35

## **Bit-masking Based Adaptive Quantization**



- A 4-bit example of bitmasking:
- The 8-bit pre-quantized
  X<sup>pre</sup><sub>q</sub> is transferred into a 0 1 bit vector v
- v is multiplied with bit mask
  m and drop the LSBs
- The higher semantic indicator is, the more LSBs are kept

- Introduction to 3D Object Detection
- Background
  - Neural Network Quantization
  - Compression for Point Cloud Networks
- Methods
- Experiment results
  - Software Evaluation
  - Hardware Evaluation
- Conclusion



## Dataset Benchmark

#### KITTI

- Mainly *car* and *pedestrian* class
- Train on the 3712 training samples and validate on 3769 validation samples.
- 3D Average Precision for evaluation

#### NuScenes

- A 10-class 3D object detection dataset
- Train on 28k training frames and validate on 6k validation frames
- NuScenes Detection Score (NDS) as main evaluation metric

#### Quantization on KITTI

| Methods    | Weight | Activation | Car (%) | <i>Ped</i> (%) |  |
|------------|--------|------------|---------|----------------|--|
| Baseline   | FP32   | FP32       | 78.67   | 54.65          |  |
| Layer-wise | 2 bit  | 2 bit      | 75.35   | 38.92          |  |
| Block-wise | 2 bit  | 2 bit      | 77.68   | 47.04          |  |
| This work  | 2 bit  | 2.28 bit   | 78.01   | 48.63          |  |
| Layer-wise | 2 bit  | 1 bit      | 62.41   | 16.58          |  |
| Block-wise | 2 bit  | 1 bit      | 66.08   | 21.35          |  |
| This work  | 2 bit  | 1.25 bit   | 71.25   | 41.41          |  |
| Layer-wise | 1 bit  | 1 bit      | 62.35   | 16.67          |  |
| Block-wise | 1 bit  | 1 bit      | 64.31   | 19.82          |  |
| This work  | 1 bit  | 1.25 bit   | 70.91   | 38.71          |  |

- Compared with layer-wise (global) quantization, block-wise quantization shows 2.33%/1.96% higher *car* AP under 2/1 bit.
- Adopting semantic-guided dynamic quantization improves 2.96%/7.56%
  *car* AP under 2/1 bit.
- The *pedestrian* class shows higher accuracy loss for less point resolution.

#### **Quantization on NuScenes**

| Methods    | Weight | Activation      | NDS ↑  | mAP ↑  | $\mid$ mATE $\downarrow$ | mASE $\downarrow$ | mAOE ↓ | mAVE $\downarrow$ | $mAAE \downarrow$ |
|------------|--------|-----------------|--------|--------|--------------------------|-------------------|--------|-------------------|-------------------|
| Baseline   | FP32   | FP32            | 0.6519 | 0.5724 | 0.3045                   | 0.2579            | 0.3773 | 0.2212            | 0.1826            |
| Layer-wise | 4 bit  | 4 bit           | 0.5509 | 0.4367 | 0.3426                   | 0.2651            | 0.4906 | 0.3822            | 0.1941            |
| Block-wise | 4 bit  | 4 bit           | 0.6346 | 0.5432 | 0.3044                   | 0.2598            | 0.3864 | 0.2365            | 0.1832            |
| This work  | 4 bit  | 4.25 bit (Avg.) | 0.6393 | 0.5518 | 0.2994                   | 0.2582            | 0.3849 | 0.2345            | 0.1889            |
| Layer-wise | 3 bit  | 3 bit           | 0.5160 | 0.4014 | 0.3474                   | 0.2671            | 0.5901 | 0.4382            | 0.2044            |
| Block-wise | 3 bit  | 3 bit           | 0.5355 | 0.4295 | 0.3542                   | 0.2624            | 0.5761 | 0.4025            | 0.1967            |
| This work  | 3 bit  | 3.51 bit (Avg.) | 0.6300 | 0.5329 | 0.3084                   | 0.2582            | 0.3781 | 0.2311            | 0.1891            |
| Layer-wise | 2 bit  | 2 bit           | 0.4786 | 0.3600 | 0.3702                   | 0.2675            | 0.6657 | 0.5009            | 0.2101            |
| Block-wise | 2 bit  | 2 bit           | 0.5223 | 0.4141 | 0.3579                   | 0.2647            | 0.6046 | 0.4231            | 0.1972            |
| This work  | 2 bit  | 2.51 bit (Avg.) | 0.6038 | 0.4926 | 0.3246                   | 0.2614            | 0.4057 | 0.2464            | 0.1866            |

Achieves 8.84%/11.4%/12.52% NDS improvement on 4/3/2 bit

#### Scan of Block Size



- Larger block size brings less memory access of the boundary points while higher accuracy loss
- Smaller block size brings more extra memory access but lower accuracy loss
- In the left case, 16x16x8-size block is chosen

#### **Semantic Prediction Visualization**

 Compared with the Ground-Truth, we can predict most foreground points with a small semantic branch





- Introduction to 3D Object Detection
- Background
  - Neural Network Quantization
  - Compression for Point Cloud Networks
- Methods
- Experiment results
  - Software Evaluation
  - Hardware Evaluation
- Conclusion



## **Simulation Setting**

• Multi-bit reconfigurable accelerator





## **Simulation Setting**



2023/1/18 28th Asia and South Pacific Design Automation Conference

31/35

- Introduction to 3D Object Detection
- Background
  - Neural Network Quantization
  - Compression for Point Cloud Networks
- Methods
- Experiment results
  - Software Evaluation
  - Hardware Evaluation
- Conclusion



## Conclusion

- The imbalanced distribution of semantic-rich foreground points and semanticless background points in LiDAR point cloud provides opportunity for dynamic quantization
- We design a new semantic-guided dynamic quantization for 3D object detection
  - Block-wise partition to handle the large dynamic range in 3D point cloud
  - Bit-masking based quantization to adaptively assign different bitwidth to different blocks
- On NuScenes dataset, we achieve 8.84%/11.4%/12.52% precision improvement on 4/3/2 bit compared with the global quantization baseline

## Limitations and Future Work

• In this work, we mainly focus on quantizing the 3D backbone

| Quantization Strategy                                               | AP (8-bit quantization) |
|---------------------------------------------------------------------|-------------------------|
| Only 3D backbone                                                    | 78.46                   |
| Only 2D neck                                                        | 78.60                   |
| Only classification head                                            | 76.83                   |
| Only regression head                                                | 43.39                   |
| 3D backbone + 2D neck<br>+ classification head +<br>regression head | 36.53                   |

Quantization sensitivity of different layers on KITTI

- 3D backbone occupies the main operation
- The FLOPs of head is extremely low while its quantization sensitivity is very high!
- How to effectively quantize the detection head is the future work

#### Thank you for listening!

