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Self Introduction

• B.Eng. Degree from Tsinghua University, Beijing, 

China, in 2018

• Ph.D. candidate at Tsinghua University, Beijing,

China

• My research interests are in neural network algorithms 

& energy-efficient architecture design for 3D point cloud
• Outdoor 3D Object Detection Algorithms

• Energy-efficient Architecture Design for Point Cloud
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Wide Utilization of 3D Object Detection 
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• Rapid development of 

Lidar/Radar pushes the wide 

utilization of point cloud

Autonomous 

Driving

Smart 

City

• In many point cloud based 

applications, 3D object 

detection is playing critical role

Yole Development, 2017



Network Based 3D Object Detection 
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• CNN is the main operator for 3D object detection

• Two mainstreams: point and voxel based

Point-based

Voxel-based
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 Limited to small-size 

scenarios

 Information loss by 

sampling

☺ Suitable for large-scale 

scenarios

☺ Maintain most information



Challenges of Real-time Requirement

2023/1/18 28th Asia and South Pacific Design Automation Conference 6/35

https://jetsonhacks.com/

• To meet the real-time requirement, 

energy-hungry hardware is required.   
• However, there is still gap for 

real-time processing
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• To meet the real-time requirement, 

energy-hungry hardware is required.   
• However, there is still gap for 

real-time processing
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Lidar frequency: 
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PointRCNN
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FPS (Jetson Orin)

KITTI Precision

Call for efficient compression for 3D object detection networks!!!
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Neural Network Quantization
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Emer et al., ISCA Tutorial (2019) 

• Low-bit quantization saves the power consumption

• Types:

• Methods:

• Post-Training Quantization

• Quantization-aware Training

Asymmetric Symmetric



Post-Training Quantization (PTQ)
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• PTQ directly quantizes the model without finetuning

Gholami et al., 2021

☺ No training

 Low model precision

• Weight Correction

• Range Clipping

• Channel-wise 

Quantization

• Adaptive rounding

……



Quantization-aware Training (QAT)
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• QAT simulates the effects of quantization during training   

Fake quantization 

Layer

Training Inference

Benoit et al., CVPR, 2018

☺ High model accuracy

 Long training time
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Point Cloud Quantization
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• Binary Point Cloud Network   

Qin et al., ICLR, 2021

 Limited to small network/dataset  Static quantization



Point Cloud Pruning
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• Binary Point Cloud Network   

Yang et al., Neurips, 2022

2x voxel size

Input Compression Layer/Channel Compression

 Static pruning



Dynamic Point Cloud Compression
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• Useful semantic information in point cloud is imbalanced!

Background:

92.7%

7.3%

Foreground

KITTI Dataset

Foreground points:

☺ Small but useful

Background points:     Large but useless

It provides opportunity for dynamic point cloud compression !!!
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Motivation
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• Semantic-guided dynamic quantization 
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• Baseline: Static 

global quantization

• Stage I: Static block-

wise quantization

• Stage II: Dynamic 
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A KITTI Case Study
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• Use GroundTruth to indicate 

semantic

• The proposed method shows 

advantages on low bitwidth



Overall Framework
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  Block-wise 
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(Preprocessing)
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3D Backbone
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   Semantic-guided Quantization-Aware Training Framework
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①: Indicate semantic for 

each point with a small 

prediction branch

②: Partition point cloud into 

multiple separate blocks

③: Bit-masking transfers 

the semantic indicator of 

each block into bitwidth

④: Evaluate the quantized 

model on both software & 

hardware ends



Block Partition
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• Block partition narrows dynamic range 

and benefits quantization
– RGB image: 8 bit

– LiDAR point cloud: 11 bit for 𝑥, 𝑦

Block 
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• Block partition results in repeat 

memory access for boundary points
– Theoretical estimation: 𝑆 + 2 3/𝑆3 where 

𝑆 is block size



Bit-masking Based Adaptive Quantization
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Bit Masking

Semantic

Indicator

3D Sparse 

Convolution

Semantic

Predictor 1 1 0 0

1 0 0 0

1 1 1 1

0.1 0.71 0.05

0.9 0.6 0.45

0.38 0.08 0.69

Block-wise

Bit Mask

Pre-Quant

8-bit

Activation

Mulit-bit

Activation
3D Sparse 

Convolution

• For each block 𝐵𝑖, the semantic 

branch predict a 0-1 indicator 𝐼𝑖

• Then 𝐼𝑖 is transferred into a 0/1 

bit mask 𝑚𝑖

• The floating-point 𝑋𝑓 is first 8-bit 

pre-quantized into 𝑋𝑞
𝑝𝑟𝑒

• Then 𝑋𝑞
𝑝𝑟𝑒

is adaptively 

quantized into different bitwidth
𝑋𝑞 by bit-masking 



Bit-masking Based Adaptive Quantization

2023/1/18 28th Asia and South Pacific Design Automation Conference 22/35

Bit-masking Based Adaptive Quantization Operation
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• A 4-bit example of bit-

masking:

– The 8-bit pre-quantized 

𝑋𝑞
𝑝𝑟𝑒

is transferred into a 0-

1 bit vector 𝑣

– 𝑣 is multiplied with bit mask 

𝑚 and drop the LSBs

– The higher semantic 

indicator is, the more LSBs 

are kept
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Dataset Benchmark
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KITTI

• Mainly car and pedestrian 

class

• Train on the 3712 training 

samples and validate on 

3769 validation samples.

• 3D Average Precision for 

evaluation

NuScenes

• A 10-class 3D object 

detection dataset

• Train on 28k training frames 

and validate on 6k validation 

frames

• NuScenes Detection Score 

(NDS) as main evaluation 

metric



Quantization on KITTI
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• Compared with layer-wise (global) 

quantization, block-wise quantization 

shows 2.33%/1.96% higher car AP 

under 2/1 bit.

• Adopting semantic-guided dynamic 

quantization improves 2.96%/7.56% 

car AP under 2/1 bit.

• The pedestrian class shows higher 

accuracy loss for less point resolution.



Quantization on NuScenes
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• Achieves 8.84%/11.4%/12.52% NDS improvement on 4/3/2 bit



Scan of Block Size
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• Larger block size brings less memory 

access of the boundary points while 

higher accuracy loss

• Smaller block size brings more extra 

memory access but lower accuracy 

loss

• In the left case, 16x16x8-size block 

is chosen



Semantic Prediction Visualization
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(a) Groundtruth (b) Our Prediction

• Compared with the Ground-Truth, we can predict most foreground 

points with a small semantic branch
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Simulation Setting
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Multi-bit PE Unit

(RTL)

Design compiler

synthesizing

SRAM 

model

Power/Latency/Area of 

Mult-bit PE Array

System 

evaluator

Quantization

information

INT2INT2 INT2 INT2

INT8 (Weight)

PSUM

PSUM

PSUM

MUX and Concat
C2

MODE 8bit 4bit 2bit

C2C1C0 3'b000 3'b010 3'b111

C1
C0

<<2 PSUM PSUM <<2 PSUM

<<2 PSUM

Parameter Value

Voltage 0.81V

Frequency 200MHz

Weight SRAM 8x8KB

Input SRAM 16KB

Output SRAM 16KB

Technology TSMC 28nm

• Multi-bit reconfigurable accelerator



Simulation Setting
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• 3.11x (2 bit) and 

1.86x (4 bit) energy 

efficiency compared 

with static 8 bit
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Conclusion
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• The imbalanced distribution of semantic-rich foreground points and semantic-

less background points in LiDAR point cloud provides opportunity for dynamic 

quantization

• We design a new semantic-guided dynamic quantization for 3D object detection

– Block-wise partition to handle the large dynamic range in 3D point cloud

– Bit-masking based quantization to adaptively assign different bitwidth to 

different blocks

• On NuScenes dataset, we achieve 8.84%/11.4%/12.52% precision improvement 

on 4/3/2 bit compared with the global quantization baseline



Limitations and Future Work
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• In this work, we mainly focus on quantizing the 3D backbone

Quantization Strategy AP (8-bit quantization)

Only 3D backbone 78.46

Only 2D neck 78.60

Only classification head 76.83

Only regression head 43.39

3D backbone + 2D neck 

+ classification head + 

regression head

36.53

Quantization sensitivity of different layers on KITTI 

• 3D backbone occupies the main 

operation

• The FLOPs of head is extremely 

low while its quantization 

sensitivity is very high! 

• How to effectively quantize the 

detection head is the future work
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Thank you for listening!
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