Semantic Guided Fine-grained Point Cloud
Quantization Framework for 3D Object Detection

Xiaoyu Feng, Chen Tang, Zongkai Zhang, Wenyu Sun, Yongpan Liu
Tsinghua University, Beijing, China

2023/1/18 28th Asia and South Pacific Design Automation Conference 1/35



Self Introduction

* B.Eng. Degree from Tsinghua University, Beljing,
China, in 2018

* Ph.D. candidate at Tsinghua University, Beljing,
China

* My research interests are in neural network algorithms

& energy-efficient architecture design for 3D point cloud
« Outdoor 3D Object Detection Algorithms
« Energy-efficient Architecture Design for Point Cloud

2023/1/18 28th Asia and South Pacific Design Automation Conference 2/35



Outline

* Introduction to 3D Object Detection

« Background
* Neural Network Quantization
« Compression for Point Cloud Networks

 Methods

* Experiment results
« Software Evaluation
« Hardware Evaluation

 Conclusion

2023/1/18 28th Asia and South Pacific Design Automation Conference 3/35



Wide Utllization of 3D Object Detection

» Rapid development of * In many point cloud. based
Lidar/Radar pushes the wide applications, 3D object
utilization of point cloud detection Is playing critical role

Evolution of the LiDAR technology market value in automotive - ($M)
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Network Based 3D Object Detection

 CNN Is the main operator for 3D object detection
« Two mainstreams: point and voxel based

Point-based . |
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Challenges of Real-time Requirement

- To meet the real-time requirement, « However, there is still gap for
energy-hungry hardware is required. real-time processing

Typical Power Consumption (Watts)

Smart Phon . B KITTI Precision Lidar frequency:
. @ one FPS (Jetson Orin) )~ 10 frame/s
Nintendo Switch B :
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Tablet :
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Challenges of Real-time Requirement
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]
Call for efficient compression for 3D object detection networks!!!
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Neural Network Quantization

- Low-bit quantization saves the power consumption

Operation: Energy | Relative Energy Cost ° Types '
(pJ) _
8b Add 0.03 min(xy) 0 max(x; -max(|x) 0 max(|xy)
16b Add 0.05 \ S ‘a‘ : /
32b Add 0.1 :l I:’ “l I' I,’
16b FP Add 0.4 0 255 -128 0 127
32b FP Add 0.9 : :
8b Mult 02 Asymmetric Symmetric
32b Mult 3.1
16b FP Mult 1.1
o .
32b FP Mult 3.7 Methods:
32b SRAM Read (8KB) 5 . .. . i
25 DRAM Read > Post-Training Quantization

110 102 10 10¢ « Quantization-aware Training
Emer et al., ISCA Tutorial (2019)
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Post-Training Quantization (PTQ)

« PTQ directly quantizes the model without finetuning

Weight Correction

Pre-trained model ] [ Calibration data

h A r

. Range Clipping o
Calibration _ © No training
i Channel-wise

Quantization Quantization ® Low model precision

Quantized model

Adaptive rounding

Gholami et al.,, 2021
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Quantization-aware Training (QAT)

* QAT simulates the effects of quantization during training

output RelLUB uints output

Fake quantization

© High model accuracy

uint32

@ Long training time

input

Training Inference

Benoit et al., CVPR 2018
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Point Cloud Quantization

 Binary Point Cloud Network
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z transform . . transform > ol BiMLPs
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® Limited to small network/dataset @ Static quantization

QOinetal, ICLR, 2021
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Point Cloud Pruning

 Binary Point Cloud Network

Layer k Layer k+1 Layer k+2

‘_.. —>
width =1.0 ,l,
Voxel
— >
2x voxel size width =0.75 width =0.5
Input Compression Layer/Channel Compression

@® Static pruning

Yang et al., Neurips, 2022
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Dynamic Point Cloud Compression

« Useful semantic information in point cloud is imbalanced!

KITTI Dataset

RS ~Oorcground points:
% B © Small but useful

7.3%
Background points: ® Large but useless

Foreground

It provides opportunity for dynamic point cloud compression !!!
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Motivation

« Semantic-guided dynamic guantization

m m Semantic
Network
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A KITTI Case Study
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Bl Semantic-guided

PTQ

 Use GroundTruth to indicate

semantic

* The proposed method shows

advantages on low bitwidth
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Overall Framework

@O Semantic-guided Quantization-Aware Training Framework (D: Indicate semantic for
Input Point Cloud ol Semantic Predictor & Indicator - Lo each point with a small
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Block Partition

» Block partition narrows dynamic range °* Block partition results in repeat

and benefits quantization memory access for boundary points
— RGB image: 8 bit — Theoretical estimation: (S + 2)3/53 where
— LIDAR point cloud: 11 bit for x, y S is block size
...... et
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Bit-masking Based Adaptive Quantization

For each block B;, the semantic
branch predict a 0-1 indicator I;

0.9 0.6 [0.45

Block-wise _ _
Bit Mask  Then I; is transferred into a 0/1

bit mask m;

0.1 (0.71{0.05 >

Semantic | 351 0glp.gg| Semantic
Predictor Indicator

_
/|

* The floating-point X is first 8-bit

/ /
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Pre-Quant ¢ | ! : : q
>: e e Bit Masking :— ooe
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3D Sparse | | / 8-bit || 7 Mulit-bit 3D Sparse : ' ' TR
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X, by bit-masking
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Bit-masking Based Adaptive Quantization
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Bit-masking Based Adaptive Quantization Operation
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* A 4-bit example of bit-
masking:

— The 8-bit pre-quantized

Xfl’re is transferred into a O-
1 bit vector v

— v is multiplied with bit mask

m and drop the LSBs

— The higher semantic

Indicator is, the more LSBs
are kept
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Dataset Benchmark

KITTI NuScenes

 Mainly car and pedestrian A 10-class 3D object
class detection dataset

« Train on the 3712 training * Train on 28k training frames
samples and validate on and validate on 6k validation
3769 validation samples. frames

« 3D Average Precision for * NuScenes Detection Score
evaluation (NDS) as main evaluation

metric
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Quantization on KITT]

Methods Weight Activation | Car (%) Ped (%)

Baseline FP32 FP32 78.67 54.65
Layer-wise 2 bit 2 bit 75.35 38.92
Block-wise 2 bit 2 bit 77.68 47.04
This work 2 bit 2.28 bit 78.01 48.63
Layer-wise 2 bit 1 bit 62.41 16.58
Block-wise 2 bit 1 bit 66.08 21.35
This work 2 bit 1.25 bit 71.25 41.41
Layer-wise 1 bit 1 bit 62.35 16.67
Block-wise 1 bit 1 bit 64.31 19.82
This work 1 bit 1.25 bit 70.91 38.71
2023/1/18

« Compared with layer-wise (global)
guantization, block-wise quantization
shows 2.33%/1.96% higher car AP
under 2/1 bit.

« Adopting semantic-guided dynamic
guantization improves 2.96%/7.56%
car AP under 2/1 bit.

« The pedestrian class shows higher
accuracy loss for less point resolution.
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Quantization on NuScenes

Methods | Weight Activation NDST mAPT | mATE| mASE| mAOE| mAVE| mAAE]

Baseline FP32 FP32 0.6519 0.5724 0.3045 0.2579 0.3773 0.2212 0.1826
Layer-wise 4 bit 4 bit 0.5509  0.4367 0.3426 0.2651 0.4906 0.3822 0.1941
Block-wise 4 bit 4 bit 0.6346  0.5432 0.3044 0.2598 0.3864 0.2365 0.1832
This work 4 bit 4.25 bit (Avg.) | 0.6393 0.5518 | 0.2994 0.2582 0.3849 0.2345 0.1889
Layer-wise 3 bit 3 bit 0.5160 0.4014 0.3474 0.2671 0.5901 0.4382 0.2044
Block-wise 3 bit 3 bit 0.5355  0.4295 0.3542 0.2624 0.5761 0.4025 0.1967
This work 3 bit 3.51 bit (Avg.) | 0.6300 0.5329 | 0.3084 0.2582 0.3781 0.2311 0.1891
Layer-wise 2 bit 2 bit 0.4786  0.3600 0.3702 0.2675 0.6657 0.5009 0.2101
Block-wise 2 bit 2 bit 0.5223 0.4141 0.3579 0.2647 0.6046 0.4231 0.1972
This work 2 bit 2.51 bit (Avg.) | 0.6038 0.4926 | 0.3246 0.2614 0.4057 0.2464 0.1866

* Achieves 8.84%/11.4%/12.52% NDS improvement on 4/3/2 bit

2023/1/18
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Scan of Block Size

?

25+ . 15
2 ol » Larger block size brings less memory
S 14 access of the boundary points while
i; 8 higher accuracy loss
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* In the left case, 16x16x8-size block
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Semantic Prediction Visualization

« Compared with the Ground-Truth, we can predict most foreground
points with a small semantic branch

(a) Groundtruth (b) Our Prediction
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e Mu

Simulation Setting

ti-bit reconfigurable accelerator
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Simulation Setting

Bitwidth Breakdown

0 bit 2 bit I 4 bit I 8 bit
- N 3.0f
| e
S 20 | » 3.11x (2 bit) and
5 1.86x (4 bit) energy
W 15 . .
- efficiency compared
g 10f with static 8 bit
0.5
. . . . . . 0.0 — L éic
Adapive Adapive e o e o
Bitwidth Breakdown Peak Energy Efficiency
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Conclusion

« The imbalanced distribution of semantic-rich foreground points and semantic-
less background points in LIDAR point cloud provides opportunity for dynamic
guantization

« We design a new semantic-guided dynamic quantization for 3D object detection
— Block-wise partition to handle the large dynamic range in 3D point cloud
— Bit-masking based quantization to adaptively assign different bitwidth to
different blocks

* On NuScenes dataset, we achieve 8.84%/11.4%/12.52% precision improvement
on 4/3/2 bit compared with the global quantization baseline
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Limitations and Future Work

* In this work, we mainly focus on gquantizing the 3D backbone

Quantization Strategy AP (8-bit quantization)

« 3D backbone occupies the main

Only 3D backbone 78.46 :
operation
Only 2D neck 78.60  The FLOPs of head is extremely

Only classification head 76.83 low while its quantization

Only regression head 43.39 sensitivity is very high!
3D backbone + 2D neck * How to effectively quantize the

+ classification head + 36.53 detection head is the future work

regression head

Quantization sensitivity of different layers on KITTI
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Outline

Thank you for listening!
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