ReMeCo: Reliable memristor-based in-memory neuromorphic computation

Ali BanaGozar* Eindhoven University of Technology, The Netherlands a.banagozar@tue.nl

> Mehdi Kamal USC, CA, USA mehdi.kamal@usc.edu

Seyed Hossein Hashemi Shadmehri* University of Tehran, Iran seyed.hashemi.ho@ut.ac.ir

Ali Afzali-Kusha University of Tehran, Iran afzali@ut.ac.ir Sander Stuijk Eindhoven University of Technology, The Netherlands s.stuijk@tue.nl

Henk Corporaal Eindhoven University of Technology h.corporaal@tue.nl

Outline

- Introduction
- DSE (Contribution I)
- Related work
- ReMeCo (Contribution II)
- Results (Contribution III)
- Conclusion

Introduction

Motivation

Problem statement

Boom of ANN*

- Ubiquitous (e.g., NLP, CV, etc.)
- More complex

*ANN: Artificial Neural Network

Boom of ANN

- Ubiquitous (e.g., NLP, CV, etc.)
- More complex

Inefficient execution on conventional PEs^{*}

• Memory Wall

*PE: Processing Element

Boom of ANN

- Ubiquitous (e.g., NLP, CV, etc.)
- More complex

Inefficient execution on conventional PEs

• Memory Wall

Computation In Memory

- SRAM/DRAM modification
- 3D stacked memories
- Memristors

Memristor Crossbars

BL: Bit Line WL: Word Line SL: Source Line

$Out = In \times Weight$

$Out = In \times Weight$

 $In \rightarrow V$ (vector of voltages)

$Out = In \times Weight$

 $In \rightarrow V$ (vector of voltages) $Weight \rightarrow G$ (matrix of conductances)

$Out = In \times Weight$

 $In \rightarrow V \text{ (vector of voltages)}$ $Weight \rightarrow G \text{ (matrix of conductances)}$ $Out \rightarrow I \text{ (vector of currents)}$

 $I = V \times G$

Bit-Slicing

Non-idealities

Stuck-at-fault

- Freezes in a state
- Inaccurate weight mapping

Non-idealities

Stuck-at-fault

- Freezes in a state
- Inaccurate weight mapping

IR-drop

- Wire resistance
- Output current deviation

Non-idealities

Stuck-at-fault

- Freezes in a state
- Inaccurate weight mapping

IR-drop

- Wire resistance
- Output current deviation

D2D variation

• Uncertain weight mapping

ReMeCo addresses these non-idealities using *smart hardware redundancy*

• Key idea: apply redundancy to where it contributes most

- Key idea: apply redundancy to where it contributes most
- Hence, limit hardware redundancy

- Key idea: apply redundancy to where it contributes most
- Hence, limit hardware redundancy
- By identifying sensitive neurons and sensitive layers in an ANN

- Key idea: apply redundancy to where it contributes most
- Hence, limit hardware redundancy
- By identifying sensitive neurons and sensitive layers in an ANN
- NOTE: Device independent

ReMeCo: Reliable memristor-based in-memory neuromorphic computation, BanaGozar et. al.

Design space exploration of the effects and importance of different non-idealities

Contribution I

Stuck-at-fault

ReMeCo: Reliable memristor-based in-memory neuromorphic computation, BanaGozar et. al.

IR-drop

• Wire resistance

D2D variation

V_p: Set Threshold voltage A_p: Set Modulation Factor

D2D variation

Related Work

Reliable Memristor-based Neuromorphic Design Using Variation- and Defect-Aware Training

Di Gao¹, Grace Li Zhang², Xunzhao Yin^{*1}, Bing Li², Ulf Schlichtmann², Cheng Zhuo^{*1} ¹College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China ²Department of Electronic Design Automation, Technical University of Munich, Munich, Germany *Corresponding Email: xzyin1@zju.edu.cn, czhuo@zju.edu.cn

First outhor (Voor)	Non idealities	Model-aware	Post-fabrication	Demonsing	Hardware	Sensitivity	Time to
rirst author (lear)	Non-Ideanties	training	training	Kemapping	redundancy	analysis	market
Gaol (2021) [8]	SAF, PV*	X	X	X		Х	High
Jin (2020) [10]	SAF		x	<u> </u>	-	x	High
Xu (2021) [19]	SAF, PV	X	X	X	-	Х	High
Liu (2017) [13]	SAF	X	X	X	Х	Х	High
Joksas (2020) [11]	SAF, PV, IR-drop	-	-	-	Х	-	Low
ReMeCo	SAF, PV, IR-drop	-	-	-	Х	Х	Low

Reliable Memristor-based Neuromorphic Design Using Var Di Gao¹, Grace L ¹College of Informa ²Department of Eler

Song JinSongwei PeiYu WangNorth China Electric Power UniversityBeijing University of Posts and TelecommunicationsNorth China Electric Power UniversityBaoding, P. R. ChinaBeijing, P. R. ChinaBaoding, P. R. Chinajinsong@ncepu.edu.cnpeisongwei@bupt.edu.cnwangyu@ncepu.edu.cn

First author (Vear)	Non-idealities	Model-aware	Post-fabrication	Romanning	Hardware	Sensitivity	Time to
riist autior (lear)	Non-Ideanties	training	training	Remapping	redundancy	analysis	market
Gaol (2021) [8]	SAF, PV*	X	X	X	-	X	High
Jin (2020) [10]	SAF	-	X	X	-	X	High
Xu (2021) [19]	SAF, PV	\overline{x}	x	<u> </u>		<u> </u>	High
Liu (2017) [13]	SAF	X	X	X	Х	Х	High
Joksas (2020) [11]	SAF, PV, IR-drop	-	-	-	Х	-	Low
ReMeCo	SAF, PV, IR-drop	-	-	-	Х	Х	Low

ReMeCo: Reliable memristor-based in-memory neuromorphic computation,

Reliable Memristor-based Neuromorphic Design

Reliability-Driven Neuromorphic Computing Systems Design et

Qi Xu¹, Junpeng Wang¹, Hao Geng², Song Chen¹, Xiaoqing Wen³

¹School of Microelectronics, University of Science and Technology of China

²Department of Computer Science and Engineering, The Chinese University of Hong Kong

³Department of Computer Science and Networks, Kyushu Institute of Technology

{xuqi@,wjp97@mail,songch@}ustc.edu.cn, hgeng@cse.cuhk.edu.hk, wen@cse.kyutech.ac.jp

First outhor (Veer)	Non idealities	Model-aware	Post-fabrication	Domonning	Hardware	Sensitivity	Time to
First author (lear)	Non-idealities	training	training	Remapping	redundancy	analysis	market
Gaol (2021) [8]	SAF, PV*	Х	Х	Х	-	Х	High
Jin (2020) [10]	SAF		X	X	-	X	High
Xu (2021) [19]	SAF, PV	X	X	X	-	X	High
Liu (2017) [13]	SAF	x	x	x	X	x	High
Joksas (2020) [11]	SAF, PV, IR-drop	-	-	-	Х	-	Low
ReMeCo	SAF, PV, IR-drop	-	-	-	Х	Х	Low

rsity

Rescuing Memristor-based Neuromorphic Design with Re T									
Reliabili	Chenchen Liu, [†] Miao Hu, [†] John Paul Strachan and [§] Hai (Helen) Li Department of Electrical and Computer Engineering, University of Pittsburgh [†] Hewlett Packard Laboratories, [§] Department of Electrical and Computer Engineering, Duke University CHL192@pitt.edu, [†] {miao.hu, john-paul.strachan}@hpe.com, [§] hai.li@duke.edu								
² Department of Computer Science and Engineering, The Chinese University of Hong Kong ³ Department of Computer Science and Networks, Kyushu Institute of Technology {xuqi@,wjp97@mail,songch@}ustc.edu.cn, hgeng@cse.cuhk.edu.hk, wen@cse.kyutech.ac.jp									
First author (Year)	Non-idealities	Model-aware	Post-fabrication	Remapping	Hardware	Sensitivity	Time to		
		training	training		redundancy	analysis	market		
Gaol (2021) [8]	SAF, PV*	X	X	X	-	X	High		
Jin (2020) [10]	SAF – X X – X High								
Xu (2021) [19]	SAF, PV X X High								
Liu (2017) [13]	SAF	SAF X X X High							
Joksas (2020) [11]	SAF, PV, IR-drop	-	-	-		-	Low		
ReMeCo	SAF, PV, IR-drop	-	-	-	X	X	Low		

ReMeCo: Reliable memristor-based in-memory neuromorphic computation,

	nature							ith
R	Committee machines—a universal method to deal with non-idealities in memristor-based neural networks							
	D. Joksas I™, P. Freitas ² , Z. Chai ² , W. H. Ng I, M. Buckwell ¹ , C. Li ³ , W. D. Zhang ² , Q. Xia ³ , A. J. Kenyon ¹ & A. Mehonic ^{1™}							
Firs	st author (Year)	Non-idealities	Model-aware training	Post-fabrication training	Remapping	Hardware redundancy	Sensitivity analysis	Time to market
Gao	ol (2021) [8]	SAE PV*	X	X	Х	-	X	High

First outhor (Voor)	Non-idealities	niouor anaro		Domonning		o on one of the set	11110.00
riist autilor (lear)	inon-idealities	training	training	Remapping	redundancy	analysis	market
Gaol (2021) [8]	SAF, PV*	Х	Х	Х	-	Х	High
Jin (2020) [10]	SAF	-	Х	Х	-	Х	High
Xu (2021) [19]	SAF, PV	Х	Х	Х	-	Х	High
Liu (2017) [13]	SAF	X	<u>X</u>	X	<u> </u>	<u> </u>	High
Joksas (2020) [11]	SAF, PV, IR-drop	-	-	-	Х	-	Low
ReMeCo	SAF, PV, IR-drop		-	-	x	x	Low

ReMeCo: a novel redundancy-based framework to improve the reliability of memristor-based ANN PEs by addressing the non-idealities

Contribution II

Sensitivity characterization

O. Sensitivity analysis

- 0. Sensitivity analysis
 - Using the *back-propagation* ANN training algorithm
 - Feed forward path
 - Error calculation
 - Backward propagation of error to neurons

0. Sensitivity analysis

• Using the back-propagation ANN training algorithm

- Feed forward path
- Error calculation
- Backward propagation of error

Calculate the average error contribution of individual neurons

 $Sens_{neuron} = AVR_{j=0}^{N} \left(\frac{\partial E}{\partial \omega_{i,j}} \right)$

0. Sensitivity analysis

• Using the back-propagation ANN training algorithm

- Feed forward path
- Error calculation
- Backward propagation of error

Calculate the average error contribution of individual neurons

 $Sens_{neuron} = AVR_{j=0}^{N} \left(\frac{\partial E}{\partial \omega_{i,j}} \right)$

sensitivity of an ANN layer = average of the sensitivity of all its output neurons

Sensitivity characterization

0. Sensitivity analysis

• Absolute neuron sensitivity histogram for LeNet.

- 0. Sensitivity analysis
- 1. Start from the Committee Machine
 - Implements 1 ANN several times (2 times)
 - Reports the average final output

- 0. Sensitivity analysis
- 1. Start from the Committee Machine
- 2. Layer averaging

- 0. Sensitivity analysis
- 1. Start from the Committee Machine
- 2. Layer averaging
- 3. Sensitive neuron redundancy

- 0. Sensitivity analysis
- 1. Start from the Committee Machine
- 2. Layer averaging
- 3. Sensitive neuron redundancy
- 4. Most Significant Bit Redundancy

- 0. Sensitivity analysis
- 1. Start from the Committee Machine
- 2. Layer averaging
- 3. Sensitive neuron redundancy
- 4. Most Significant Bit Redundancy
- 5. Sensitive layer redundancy

Evaluations using LeNet and AlexNet (trained/tested with the MNIST and CIFAR-10 data-sets) show up to 98.5% accuracy recovery!

Contribution III

Benchmarks

- LeNet and AlexNet used for assessing ReMeCo
- Trained/tested with MNIST and CIFAR-10 datasets
- 8-bit quantization
- Achieved software accuracy 98.8% and 80.1%

ANN	Data-set	Layers		Parameters	FLOP	
AININ	Data-set	Conv.	Dense	1 al allietel 5	FLOF 5	
LeNet	MNIST	2	3	866 K	28 M	
AlexNet	CIFAR-10	5	3	62 M	1.5 B	

Comparison

- We compare ReMeCo with Committee Machine (CM)
- Compare the recovered accuracy vs induced overhead
- The lowest overhead for CM is considered (100% redundancy)

Implementation Notes

- 4-bit memrisotrs are use (2 columns bit-slicing)
- Implement benchmarks on several different corssbar models
 - The source-line and bit-line resistance $\in N(\mu = 2, \sigma^2 = 0.5)$
 - In each circuit model, 1% of devices are randomly considered to be stuck
 - 16.2% of all stuck devices being stuck-at-off and 83.8% being stuck-at-on

Results LeNet	

Results AlexNet	

Results

ANN	Metric	Base (non-ideal)	Committee Machine	Layer Averaging	Sensitive neuron	MSB (80%)	Sensitive layer
LeNet	Accur.	94.4	96.9	97.2	97.2	97.4	96.4
	Area	7.23e-3	13.63e-3	13.64e-3	12.35e-3	9.79e-3	7.53e-3
	Energy	897.1	1791.2	1791.6	1612.7	1254.9	1211.1
AlexNet	Accur.	78.11	78.5	78.7	78.8	78.9	78.9
	Area	1.41	2.78	2.78	2.51	1.96	1.45
	Energy	1.84	3.68	3.68	3.31	2.58	2.54

ReMeCo: Reliable memristor-based in-memory neuromorphic computation,

Conclusion and Future Work

- We performed DSE to quantify the effects of different non-idealities
- We presented ReMeCo framework that addresses non-idealities.
- We achieved up to 98.5% accuracy recovery!
- We reduce HW overhead by +20x compared to CM!
- Future work, we perform tests on even deeper networks.