
Approximating Hardware Accelerators
through Partial Extractions onto shared

Artificial Neural Networks
Prattay Chowdhury, Jorge Castro Godínez, and Benjamin Carrion Schaefer

Prattay.chowdhury@utallas.edu, jocastro@itcr.ac.cr, schaferb@utdallas.edu

28th Asia and South Pacific Design Automation Conference

ASP-DAC 2023

Department of Electrical and Computer Engineering

January 18th, 2023, Tokyo

• Introduction
• Target HW platform: Heterogeneous SoC (CPU+HW Accelerators)

• Heterogenous SoC low power design

• Approximate computing overview

• Contribution
• Proposed flow

• Experimental results

• Conclusion

2

Outline

Heterogeneous SoC
• System on Chip (SoC) with dedicated HW accelerators

What is Hardware Accelerator?
• Customized circuits to do complex task power efficiently

Problem:
• Power efficient RTL design is time consuming

• RTL has limited re-usability

Solution:
• Raise design abstraction level through High-Level

synthesis (HLS)

• HLS : “Automatically converts of behavioral, untimed
descriptions into hardware that implements that behavior”

• Objectives of this work:
Create Low-power HW Accelerators gives as behavioral
descriptions for HLS

3

Introduction
Heterogeneous System on Chip (SoC)

…

On-chip Bus

HwaccNHWacc2
…HWacc1

CPU Memory

Logic

Synthesis

Map, Place

& Route

RTL (Verilog/VHDL)

T
ra

d
it
io

n
a
l
F

lo
w

High-Level

Synthesis

ANSI-C/C++

N
e
w

 F
lo

w

Hardware

Accelerator

ASIC design overview with HLS

4

Towards Low Power Design

On-chip Bus

HwaccNHWacc2
…HWacc1

CPU Memory DVFS

➔Orthogonal approach is Approximate Computing

❑Why Low Power?

• Use of battery run embedded

systems

❑Common Solution:
• Use of dynamic voltage and frequency

scaling (DVFS)

• Use of Power Domain and clock gating

Domain-2

Domain-1

Domain-3

What is approximate computing?
• Trading quality with complexity of a

design
• It is a data dependent optimization

Where it is applicable?
• Error tolerant applications (e.g.,

Image Processing, DSP) where
allowing certain percentage of error
leads to large area/power saving

Challenge:
• Finding the optimal design that

leads to maximum power/energy
saving within the given error
threshold

5

Approximate Computing

Exact

Sobel Edge

Detector

Sobel

Approx-1

Sobel

Approx-2

Approximation

(V2V, V2C, bit-width

reduction etc.)

Training

Data

Input

Exact

Sobel
Sobel

Approx-1

Sobel

Approx-2

Exact Output
(PSNR = ∞)

20 db PSNR 10 db PSNR
Error

[PSNR]

PSNR=10.2dB

Area
[µm2]

20 10

974
885
546

MemoryCPU1

HWacc1

UAR

T

SPI

ADC

Interfaces

: :

HWacc2 HWaccN
: :

On-chip Bus

6

Approximate Computing: Where to Apply?

ADC Approximation

Bus Approximation

CPU Approximation

HW Accelerator approximation

System level approximation

7

Approximate Computing Literature Review

[1] Yang et al, "A 1 GS/s 6 Bit 6.7 mW Successive Approximation ADC Using Asynchronous Processing," in IEEE Journal of Solid-State Circuits, vol. 45, no. 8, pp. 1469-1478, Aug. 2010,
[2] B. Murmann, "The successive approximation register ADC: a versatile building block for ultra-low- power to ultra-high-speed applications," in IEEE Communications Magazine, 2016
[3] Goiri et al “Approxhadoop: Bringing approximations to mapreduce frameworks”, ACM SIGARCH Computer Architecture News, 2015
[4] Samadi et al, “Sage: Self-tuning approximation for graphics engines”, IEEE/ACM International Symposium on Microarchitecture, 2013
[5] Betzel et al “Approximate Communication: Techniques for Reducing Communication Bottlenecks in Large-Scale Parallel Systems”, ACM Computing Surveys, Vol. 51, No. 1, 2018
[6] Sreekumar et al ”Bespoke Behavioral Processors”, IEEE International Conference on Compute Design (ICCD), 2020
[7] Xu et al, “Approximating Behavioral HW Accelerators through Selective Partial Extractions onto Synthesizable Predictive Models”, IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pp.1.-8, 2019
[8] Gupta et al , “Low-power digital signal processing using approximate adders,” IEEE TCAD, vol. 32, no. 1, pp. 124–137, 2013.
[9] Liu et al, “A low-power, high-performance approximate multiplier with configurable partial error recovery,” in 2014 Design, Automation Test in Europe Conference Exhibition (DATE), 2014.
[10] Xu et al Exposing Approximate Computing Optimizations at Different Levels: From Behavioral to Gate-Level, IEEE Transactions on Very Large-Scale Integration (TVLSI) Systems, 2017
[11] Scarabottolo et al “Circuit carving: A methodology for the design of approximate hardware,” in DATE, March 2018
[12] Shafique et al, “Cross-layer approximate computing: From logic to architectures,” in DAC, pp. 1–6, 2016.
[13] Raha et al, “Towards full-system energy-accuracy tradeoffs: A case study of an approximate smart camera system,” in DAC, 2017
[14] Agrawal et al , “Approximate computing: Challenges and opportunities,” in 2016 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–8, 2016.

Approximation Type Proposed Method

ADC Approximation [1],[2]

BUS Approximation [3]-[5]

CPU Approximation [6],[7]

HW Acc. Approximation [8]-[11]

Approximation Type Proposed Method

System Level
Approximation

[12]-[14]

Single Component Approximation System Level Approximation

❑V2V and V2C Approximations in C and RTL
designs

❑Approximating FU’s (e.g., adders, multipliers) to
reduce area/delay [8],[9]

8

Hardware Accelerator Approximation

Memory

HWacc1

UART
SPI

ADC

Interfaces

: :

HWacc2 HWaccN
: :

On-chip Bus

CPU

❑Reduction of the bit-width of a variable (e.g., output) in C and RTL

design [10]

[8] Gupta et al , “Low-power digital signal processing using approximate adders,” IEEE TCAD, vol. 32, no. 1, pp. 124–137, 2013.

[9] Liu et al, “A low-power, high-performance approximate multiplier with configurable partial error recovery,” in 2014 Design, Automation Test in Europe Conference Exhibition (DATE), 2014.

[10] Xu et al Exposing Approximate Computing Optimizations at Different Levels: From Behavioral to Gate-Level, IEEE Transactions on Very Large-Scale Integration (TVLSI) Systems, 2017

9

Single Component Approximation Challenges

Memory

HWacc1

UART
SPI

ADC

Interfaces

: :

HWacc2 HWaccN
: :

On-chip Bus

CPU

➔ Propose an artificial neural network (ANN) based hardware

accelerator approximation method given a behavioral description for
HLS

• One of the powerful approximations are V2V

and V2C which lead to maximum energy

saving

• V2V and V2C have conditions that happens

rarely in regular circuit

• Other methods (FU approximation reduction)

cannot unlock full potential of approximation

10

Why ANNs ?

// 2-stage
// Interpolation
// filter

// Filter 1
x1=filt1*coef1+

filt2*coef2;

// Filter 2
x2=filt3*coef3+

filt4*coef4;

// output
odata=x1+x2*factor;

(a)

// Approximated 2-stage
// Interpolation filter
// using standard techniques

// Filter 1
x1=approx_mul(filt1,coef1)+

filt2*coef2;

// Filter 2
x2=filt3*coef3+

lut(filt4);

// output
odata=x1+x2*factor;

(b)

// Approximated 2-stage
// Interpolation filter
// using proposed ANN

// Filter 1
x1=ann(filt1,coef1)+

filt2*coef2;

// Filter 2
x2=filt3*coef3+

ann(filt3, coef4);

// output
odata=x1+x2*factor;

hidden layer

Input layer

output layer

x1

filt1 coef1

Input layer

output layer

x2

filt3 coef3

hidden layer

(c) (d)

x1 x2

filt1 coef1 filt3 coef3

Simplified Combined ANN

(e)

Main benefit: The ability to approximate multiple portions of the design,

merge it and re-optimize the ANN to maximize savings
Note: ANN is trained and weights and biased fixed → Multipliers synthesized as shifts+additions

11

Proposed Architecture

Heterogeneous System on Chip (SoC)

CPU1

UART
SPI

ADC

Interfaces

: :

HWacc3

(no approx)

On-chip Bus

Memory

Heterogeneous System on Chip (SoC)

CPU1

UART
SPI

ADC

Interfaces

: :

HWacc2

(exact)

HWacc3

(no approx)

On-chip Bus

Memory

HWacc1

(exact)

(a) Exact, error-free SoC (b) Approximated SoC. Individual HW accelerators

C/C++

High-Level
Synthesis

Logic
Synthesis

Place and
Route

HWremain1

ANN1
HWapprox1

(Approximated)

HWremain2

ANN2
HWapprox2

(Approximated)

• Partition hardware accelerator into exact version + approximated

• Accelerator specified as an untimed behavioral description for HLS

• Approximated through trained ANN

Error
[PSNR/MAPE]Emax

Effect of approximations on SoC
area given a maximum error

threshold Emax

Area
[µm2]

12

Overview of Proposed Flow

Emax

CHWaccs

TV

techlibHLS

fHLS

ANNtemplate

Inputs

Cexact

CANN

Outputs

QoR

Phase II : ANN substitution

Build Abstract
Syntax Tree

(AST)

Build AST clusters
& sort based on
potential area

savings

Foreach cluster
Train ANN &

substitute until Emax

Step1 Step2 Step3

x x

+

filt1 coef1 filt2 coef2

x1 x2

x

x x

+

filt1 coef1 filt2 coef2

x1 x2

x
C1

Enew >
Emax?

z

Phase I : Data Generation

Code
refactoring

Taps
insertion

Compile
& execute

Step1 Step2 Step3

x1.rpt
x2.rpt

x.rpt

• Flow composed of two phases:
Phase 1: Training data generation
Phase 2: ANN substitution

13

Phase 1: Data Generation

Inputs

CHWaccs

Code
refactoring

Taps
insertion

Compile &
execute

Crefact Ctaps
TV

Phase I : Data Generation

x= filt1*coef1+

filt2*coef2;

x1= filt1*coef1;
x2= filt2*coef2;
x=x1+x2;

x1= filt1*coef1;
fprintf(x1,”%d”,x1);

x2= filt2*coef2;
fprintf(x2,”%d”,x2);

x=x1+x2;
fprintf(x,”%d”,x);

x1.rpt
x2.rpt

x3.rpt

x.rpt

a.exe

Outputs

Step1 Step2 Step3

▪ Codes are refactored

(Function inlining, loop

unrolling, variable

renaming, expression

decomposition) to expose

more variables

▪ Taps are inserted in order

to observe the values of

all the internal signals

▪ Modified code is executed

with given test data and

record of all the internal

variables are obtained

14

Phase 2 : ANN Substitution

Crefact Build
Abstract

Syntax Tree
(AST)

Phase II : ANN substitution

Emax

TV
Build AST clusters
& sort based on
potential area

savings

Foreach cluster:
Substitute, train
ANN & evaluate

techlibHLS

fHLS

ANNtemplate

Inputs

Enew >
Emax?

Cexact

QoR

CANN

Outputs

x x

+

filt1 coef1 filt2 coef2

x1 x2

x

C1

x x

+

filt1 coef1 filt2 coef2

x1 x2

x

1. Takes the refactored code, test

vector and other constrains and an

ANN template

2. Builds tree based on the

dependency of variables

3. Builds clusters inside tree and sort

them based on potential area

saving starting with the highest

saving

4. Continuously adds cluster to ANN+

train until Emax is reached

5. Merge ANNs of different HW

accelerators

Outputs:

1. Remaining exact accelerator

2. Trained ANN

3. Quality report file

• Peak Signal to Noise Ratio (PSNR) for image processing

𝑃𝑆𝑁𝑅 = 20 log
255

𝑀𝑆𝐸

𝑀𝑆𝐸 =
1

𝑁
෍

𝑖=1

𝑁

(𝐺𝑂𝑖 − 𝐴𝑂𝑖)
2

𝐺𝑂 = 𝐺𝑜𝑙𝑑𝑒𝑛 𝑂𝑢𝑡𝑝𝑢𝑡, 𝐴𝑂 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡

• Mean absolute percentage error (MAPE) for DSP

𝑀𝐴𝑃𝐸 =
1

𝑁

𝐺𝑂𝑖 − 𝐴𝑂𝑖
𝐺𝑂𝑖

× 100

• Target error is application dependent

• Research works use 10-20% MAPE and 10 to 20db PSNR for
approximation

15

Error Metric for Approximation

Experimental Setup (All experiments)

● ML Tool: Python scikit-learn, TensorFlow v2.6

● HLS Tools : NEC CyberWorkBench v.6.1

● Logic Synthesis tool: Synopsys Design Compiler v.0-2018.06-SP1

● Target technology: Nangate Opencell 45nm

● Target synthesis frequency: 100 MHz

● Power Simulator: Synopsys PrimePower v.P-2019.03-SP5

● RTL and GL Simulator: Synopsys VCS 0-2018.06

● Hardware Accelerator: S2CBench Benchmark suite

● Processor: 32-bit MIPS, Bus: AMBA-AHB

● Compare our work vs. state-of-the-art applying a variety of approximation primitives

to the hardware accelerator (i.e., bit width reduction, V2V, V2C)

Evaluation

Tools

17

Experimental Setup – SoC Configuration

System S1 S2 S3 S4 S5 S6

CPU × × × × × ×

Bus (AHB) × × × × × ×

HWacc

adpcm × × ×

fft × ×

interp × × ×

decim × ×

idct × ×

jpeg × ×

System Benchmark Configuration Overview

adpcm

UART

SPI

ADC

Interfaces

: :

interp

AHB Bus

CPU

❑ 3 cases considered and compared against the error free hw accelerators (exact)

• Previous: Apply library of well-known approximations (bw reduction, V2V, V2C, etc.)

• Proposed not shared: ANN method individually for each hw accelerator

• Proposed shared: Share ANN between different hw accelerators

18

Experimental Result – Area/Power Reduction

❑ Two error cases has been considered for experiment

Emax= 10% MAPE/20db PSNR – Smaller error margin

Emax 20% MAPE/10db PSNR) – Relaxed error margin

Observation 1: The higher the error margin the better the results (~22% vs. 31%)

Observation 2: Our approach is on average ~10% better that the state of the art for single accelerator

Observation 3: Further sharing the ANN across accelerators further increases the savings by~8%

0

5

10

15

20

25

30

35

40

Proposed not shared Proposed shared Previous

Area Savings

Emax=10% Emax=20%

0

5

10

15

20

25

30

35

40

Proposed not shared Proposed shared Previous

Power savings

Emax=10% Emax=20%

19

Experimental Result - Runtime

❑Due to training and retraining ANN, our proposed method is

slower than previous based on runtime

❑Our method 1.30x and 1.34x more time than previous work for

single ANNs approximations

0

50

100

150

200

250

300

S1 S2 S3 S4 S5 S6 Geomean

Runtime [min] - Emax=20%/10PSNR

Proposed Previous

0

50

100

150

200

250

S1 S2 S3 S4 S5 S6 Geomean

Runtime [min] - Emax=10%/20
PSNR

Proposed Previous

• Proposed an approximation
method for hardware accelerators
specified as untimed behavioral
descriptions for HLS

• Method splits accelerator into exact
part and ANN

• ANN can map different portions of the
accelerator

• Our proposed method saves more
area and power with respect to
previous state of the art using a
variety of different approximation
primitives

20

Conclusions

Heterogeneous System on Chip (SoC)

CPU1

UART
SPI

ADC

Interfaces

: :

HWacc2

(approx)

HWacc3

(no approx)

On-chip Bus

Memory

HWacc1

(Approx)

Exact Output
(PSNR = ∞)

20 PSNR 10 PSNR

Area
[µm2]

Error
[PSNR]20 10

974
885
546

21

Thank YouThank You

	Slide 1: Approximating Hardware Accelerators through Partial Extractions onto shared Artificial Neural Networks
	Slide 2: Outline
	Slide 3: Introduction
	Slide 4: Towards Low Power Design
	Slide 5: Approximate Computing
	Slide 6: Approximate Computing: Where to Apply?
	Slide 7: Approximate Computing Literature Review
	Slide 8: Hardware Accelerator Approximation
	Slide 9: Single Component Approximation Challenges
	Slide 10: Why ANNs ?
	Slide 11: Proposed Architecture
	Slide 12: Overview of Proposed Flow
	Slide 13: Phase 1: Data Generation
	Slide 14: Phase 2 : ANN Substitution
	Slide 15: Error Metric for Approximation
	Slide 16: Experimental Setup (All experiments)
	Slide 17: Experimental Setup – SoC Configuration
	Slide 18: Experimental Result – Area/Power Reduction
	Slide 19: Experimental Result - Runtime
	Slide 20: Conclusions
	Slide 21

