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Heterogeneous SoC
• System on Chip (SoC) with dedicated HW accelerators

What is Hardware Accelerator?
• Customized circuits to do complex task power efficiently

Problem:
• Power efficient RTL design is time consuming

• RTL has limited re-usability

Solution:
• Raise design abstraction level through High-Level 

synthesis (HLS)

• HLS : “Automatically converts of behavioral, untimed 
descriptions into hardware that implements that behavior”

• Objectives of this work:
Create Low-power HW Accelerators gives as behavioral 
descriptions for HLS
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Introduction
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Towards Low Power Design

On-chip Bus

HwaccNHWacc2
…HWacc1

CPU Memory DVFS

➔Orthogonal approach is Approximate Computing

❑Why Low Power?

• Use of battery run embedded 

systems 

❑Common Solution:
• Use of dynamic voltage and frequency 

scaling (DVFS)

• Use of Power Domain and clock gating

Domain-2

Domain-1

Domain-3



What is approximate computing?
• Trading quality with complexity of a 

design
• It is a data dependent optimization

Where it is applicable?
• Error tolerant applications (e.g., 

Image Processing, DSP) where 
allowing certain percentage of error 
leads to large area/power saving 

Challenge:
• Finding the optimal design that 

leads to maximum power/energy 
saving within the given error 
threshold
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Approximate Computing 
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Approximate Computing: Where to Apply?

ADC Approximation

Bus Approximation 

CPU Approximation

HW Accelerator approximation 

System level approximation
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Approximation Type Proposed Method

ADC Approximation [1],[2]

BUS Approximation [3]-[5]

CPU Approximation [6],[7]

HW Acc. Approximation [8]-[11]

Approximation Type Proposed Method

System Level 
Approximation

[12]-[14]

Single Component Approximation System Level Approximation



❑V2V and V2C Approximations in C and RTL 
designs

❑Approximating FU’s (e.g., adders, multipliers) to 
reduce area/delay [8],[9]
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Hardware Accelerator Approximation
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❑Reduction of the bit-width of a variable (e.g., output) in C and RTL 

design [10]

[8] Gupta et al , “Low-power digital signal processing using approximate adders,” IEEE TCAD, vol. 32, no. 1, pp. 124–137, 2013.

[9] Liu et al, “A low-power, high-performance approximate multiplier with configurable partial error recovery,” in 2014 Design, Automation Test in Europe Conference Exhibition (DATE), 2014.

[10] Xu et al Exposing Approximate Computing Optimizations at Different Levels: From Behavioral to Gate-Level, IEEE Transactions on Very Large-Scale Integration (TVLSI) Systems, 2017
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Single Component Approximation Challenges
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➔ Propose an artificial neural network (ANN) based hardware 

accelerator approximation method given a behavioral description for 
HLS

• One of the  powerful approximations are V2V 

and V2C which lead to maximum energy 

saving 

• V2V and V2C have conditions that happens 

rarely in regular circuit

• Other methods (FU approximation reduction) 

cannot unlock full potential of approximation 



10

Why ANNs ?

// 2-stage 
// Interpolation
// filter
---------------------
---------------------
// Filter 1
x1=filt1*coef1+

filt2*coef2;
-------------------
-------------------
// Filter 2
x2=filt3*coef3+

filt4*coef4;
-------------------
-------------------
// output
odata=x1+x2*factor;

-------------------
-------------------
-------------------

(a)

// Approximated 2-stage 
// Interpolation filter
// using standard techniques
---------------------
---------------------
// Filter 1
x1=approx_mul(filt1,coef1)+ 

filt2*coef2;
-------------------
-------------------
// Filter 2
x2=filt3*coef3+

lut(filt4);  
-------------------
-------------------
// output
odata=x1+x2*factor;

-------------------
-------------------
-------------------

(b)

// Approximated 2-stage 
// Interpolation filter
// using proposed ANN
---------------------
---------------------
// Filter 1
x1=ann(filt1,coef1)+

filt2*coef2;
-------------------
-------------------
// Filter 2
x2=filt3*coef3+

ann(filt3, coef4);

// output
odata=x1+x2*factor;

-------------------
-------------------
-------------------

hidden layer

Input layer

output layer

x1

filt1       coef1

Input layer

output layer

x2

filt3       coef3

hidden layer

(c) (d)

x1                x2

filt1       coef1      filt3        coef3

Simplified Combined ANN

(e)

Main benefit: The ability to approximate multiple portions of the design, 

merge it and re-optimize the ANN to maximize savings
Note: ANN is trained and weights and biased fixed → Multipliers synthesized as shifts+additions
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Proposed Architecture 

Heterogeneous System on Chip (SoC)
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• Partition hardware accelerator into exact version + approximated 

• Accelerator specified as an untimed behavioral description for HLS

• Approximated through trained ANN

Error 
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Effect of approximations on SoC 
area given a maximum error 
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Overview of Proposed Flow
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substitute until Emax

Step1 Step2 Step3 

x x

+

filt1   coef1 filt2   coef2

x1 x2

x

x x

+
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x1 x2

x
C1

Enew > 
Emax?

z

Phase I : Data Generation

Code 
refactoring

Taps 
insertion

Compile 
& execute

Step1 Step2 Step3 

x1.rpt
x2.rpt

x.rpt

• Flow composed of two phases:
Phase 1: Training data generation
Phase 2: ANN substitution
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Phase 1: Data Generation

Inputs

CHWaccs

Code 
refactoring

Taps 
insertion

Compile & 
execute

Crefact Ctaps
TV

Phase I : Data Generation

---------------------
---------------------
x= filt1*coef1+

filt2*coef2;

-------------------
-------------------

---------------------
---------------------
x1= filt1*coef1;
x2= filt2*coef2;
x=x1+x2;

-------------------
-------------------

---------------------
---------------------
x1= filt1*coef1;
fprintf(x1,”%d”,x1);

x2= filt2*coef2;
fprintf(x2,”%d”,x2);

x=x1+x2;
fprintf(x,”%d”,x);

-------------------
-------------------

x1.rpt
x2.rpt

x3.rpt

x.rpt

a.exe

Outputs

Step1 Step2 Step3 

▪ Codes are refactored 

(Function inlining, loop 

unrolling, variable 

renaming, expression 

decomposition) to expose 

more variables

▪ Taps are inserted in order 

to observe the values of 

all the internal signals 

▪ Modified code is executed 

with given test data and 

record of all the internal 

variables are obtained 
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Phase 2 : ANN Substitution

Crefact Build 
Abstract 

Syntax Tree 
(AST)

Phase II : ANN substitution 

Emax

TV
Build AST clusters 
& sort based on 
potential area 

savings

Foreach cluster:
Substitute, train 
ANN & evaluate 

techlibHLS

fHLS

ANNtemplate

Inputs

Enew > 
Emax?

Cexact

QoR

CANN

Outputs

x x

+

filt1   coef1 filt2   coef2

x1 x2

x

C1

x x

+

filt1      coef1 filt2     coef2

x1 x2

x

1. Takes the refactored code, test 

vector and other constrains and an 

ANN template

2. Builds tree based on the 

dependency of variables

3. Builds clusters inside tree and sort 

them based on potential area 

saving starting with the highest 

saving

4. Continuously adds cluster to ANN+ 

train until Emax is reached

5. Merge ANNs of different HW 

accelerators 

Outputs:

1. Remaining exact accelerator

2. Trained ANN

3. Quality report file



• Peak Signal to Noise Ratio (PSNR) for image processing

𝑃𝑆𝑁𝑅 = 20 log
255

𝑀𝑆𝐸

𝑀𝑆𝐸 =
1

𝑁
෍

𝑖=1

𝑁

(𝐺𝑂𝑖 − 𝐴𝑂𝑖)
2

𝐺𝑂 = 𝐺𝑜𝑙𝑑𝑒𝑛 𝑂𝑢𝑡𝑝𝑢𝑡, 𝐴𝑂 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡

• Mean absolute percentage error (MAPE) for DSP 

𝑀𝐴𝑃𝐸 =
1

𝑁

𝐺𝑂𝑖 − 𝐴𝑂𝑖
𝐺𝑂𝑖

× 100

• Target error is application dependent 

• Research works use 10-20% MAPE and 10 to 20db PSNR for 
approximation
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Error Metric for Approximation



Experimental Setup (All experiments)

● ML Tool: Python scikit-learn, TensorFlow v2.6 

● HLS Tools : NEC CyberWorkBench v.6.1

● Logic Synthesis tool: Synopsys Design Compiler v.0-2018.06-SP1

● Target technology: Nangate Opencell 45nm

● Target synthesis frequency: 100 MHz

● Power Simulator: Synopsys PrimePower v.P-2019.03-SP5

● RTL and GL Simulator: Synopsys VCS 0-2018.06 

● Hardware Accelerator: S2CBench Benchmark suite

● Processor: 32-bit MIPS, Bus: AMBA-AHB

● Compare our work vs. state-of-the-art applying a variety of approximation primitives 

to the hardware accelerator (i.e., bit width reduction, V2V, V2C)

Evaluation

Tools



17

Experimental Setup – SoC Configuration

System S1 S2 S3 S4 S5 S6

CPU × × × × × ×

Bus (AHB) × × × × × ×

HWacc

adpcm × × ×

fft × ×

interp × × ×

decim × ×

idct × ×

jpeg × ×

System Benchmark Configuration Overview

adpcm

UART

SPI

ADC

Interfaces

: : 

interp

AHB Bus

CPU

❑ 3 cases considered and compared against the error free hw accelerators (exact)

• Previous: Apply library of well-known approximations (bw reduction, V2V, V2C, etc.)

• Proposed not shared: ANN method individually for each hw accelerator

• Proposed shared: Share ANN between different hw accelerators
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Experimental Result – Area/Power Reduction

❑ Two error cases has been considered for experiment 

Emax= 10% MAPE/20db PSNR – Smaller error margin

Emax 20% MAPE/10db PSNR) – Relaxed error margin

Observation 1: The higher the error margin the better the results (~22% vs. 31%)

Observation 2: Our approach is on average ~10% better that the state of the art for single accelerator

Observation 3: Further sharing the ANN across accelerators further increases the savings by~8%
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Experimental Result - Runtime

❑Due to training and retraining ANN, our proposed method is 

slower than previous based on runtime

❑Our method 1.30x and 1.34x more time than previous work for 

single ANNs approximations
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• Proposed an approximation 
method for hardware accelerators 
specified as untimed behavioral 
descriptions for HLS

• Method splits accelerator into exact 
part and ANN

• ANN can map different portions of the 
accelerator

• Our proposed method saves more 
area and power with respect to 
previous state of the art using a 
variety of different approximation 
primitives
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Conclusions
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