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Background — Energy efficient and robust
computing paradigm is demanded

* Applications raise the demand for a more energy efficient and
robust model.

* Traditional DNNs brings high energy consumption and sensitivity.

* VVoltage Scaling is a promising techniqgue to minimize energy
consumption.

* Brain-inspired HyperDimensional Computing (HDC) shows
potential to provide high robustness.



Background — Voltage Scaling e

* VVoltage Scaling is a classic technique to minimize energy consumption.
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[1] Jain, Shailendra, et al., “A 280mV-to-1.2V wide-operating-range |A-32 processor in 32nm CMOS,” in ISSCC, 2012.
[2] Dreslinski, R. G. et al., “Near-threshold computing: Reclaiming Moore's law through energy efficient integrated circuits,” in Proc. IEEE, 2010.
[3] P. Poduval et al., “Hyperdimensional Self-Learning Systems Robust to Technology Noise and Bit-Flip Attacks,” in ICCAD, 2021.



Background — Hyperdimensional Computing

* Brain-inspired Hyperdimensional Computing (HDC) is a promising
alternative computing paradigm in a light-weight and robust approach.

 Advantage:  Related Works & Challenges:
v Fast and efficient [0 Ref [4] focuses on the robustness during extra feature
learning process. extraction phase.

v' Hardware friendly and [ High precision elements lead to higher accuracy but
light-weight. also weaker robustness!>!,

v High robustness. 0 The robustness in Ref [5, 6] is superior than DNNs, but
NOT ENOUGH for aggressive voltage scaling strategy.

[4] P. Poduval et al., “StocHD: Stochastic Hyperdimensional System for Efficient and Robust Learning from Raw Data,” in DAC, 2021.
[5] A. Rahimi et al., “A Robust and Energy-Efficient Classifier Using Brain-Inspired Hyperdimensional Computing,” in ISLPED, 2016.
[6] A. Hernandez-Cane et al., “OnlineHD: Robust, Efficient, and Single-Pass Online Learning Using Hyperdimensional System,” in DATE, 2021.



Objective & Contributions

* Objective: Use robust HDC to handle voltage-scaling induced memory
failure.

* Main Contributions in DependableHD:
* New concept for HDC learning to improve robustness
Proposed margin enhancement and random noise injection techniques.
* High robustness
1.22% accuracy loss under 10% error rate, 11.2x improvement.
* Energy Reduction
Support the systems to scale down V5 from 400mV to 300mV.
50.4% energy consumption reduction.



Preliminary of HDC
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Similarity Measurement & Inference:
* For hypervectors with non-binarized elements, check the Cosine similarity

0; = 6(ﬁ, El) between testing hypervector H and class hypervectors C.



Preliminary of HDC

Conventional Retraining:

Step 1 - For the target label [, check the similarity 0;

Step 2 - Find the highest 6, = Max(0;) where i # [

Step 3 - When 6; — 6,- > 0, the prediction is right. No update for the model.
Step 4 - When 6; — 6, < 0, the prediction is wrong. Update the model as:

if 5; — 5?’ <0
Correct C;+ C; +n(1 —-6)H
Incorrect C, < C, +n(é, — 1)H

* For the correct class [, add H to the class hypervector
> o1
* For the incorrect class r, subtract H from the class hypervector C,
> 0, 1




Proposed — Overview of DependableHD

Compared to the traditional HDC, our DependableHD is a combination of
(®) Margin enhancement and (©) Random noise injection during the

retraining phase.
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Such strategy is capable for most popular HDC algorithms, and no extra
hardware cost during the inference is required.




Proposed — Margin Enhancement 10718

Baseline: Utilize the training Margin Enhancement: Utilize the
samples with incorrect prediction  training samples with incorrect and
to retrain the model. prediction to retrain the model.
if d—0, <0 if
Correct C;+ C; +n(1 —d6)H Correct Cy+ C; +n(1—-§)H
Incorrect C, + C,+n(6, — 1)H C,+ C.+n(, —1)H

»The percentage of prediction is reduced from 27.58% to 13.53%
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Proposed — Margin Enhancement
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Proposed — Random Noise Injection
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© Random Noise Injection: Inject bit-flipping error (error rate = R)
during the retraining



Experiment — Impact of parameters

Margin Enhancement Level M

75 With the increase of M in the range of 0~100
— e Accuracy is slightly improved.
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* Too much risk samples are utilized to retrain
the model, results in slight accuracy draw back.
e Robustness is further improved.
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Experiment — Impact of parameters

Random Noise Injection Level R
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With the increase of R in the range of 0~10%
e Accuracy is slightly improved.

 The random noise prevent the model from
overfitting issues.

When R continues to get large

 Too much noise are injected during retraining,
results in slight accuracy draw back.

e Robustness is further improved.

» There is a trade-off in tuning the random noise
injection level R
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Experimental Results —Performance Comparison

Accuracy comparison under different supply voltage in 65nm SRAM.
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[3] P. Poduval et al., “Hyperdimensional Self-Learning Systems Robust to Technology Noise and Bit-Flip Attacks,” in ICCAD, 2021.



Conclusions

* Proposed margin enhancement and random noise injection
to improve the robustness of HDC model.

* 1.22% accuracy loss under 10% error rate, achieved 11.2x
robustness improvement without any extra hardware cost.

* The sufficient robustness guarantees the application of
aggressive voltage scaling strategy from 400mV to 300mV,
which provides 50.4% energy reduction.



