Fundamentally Understanding and Solving RowHammer

Onur Mutlu

Ataberk Olgun

A. Giray Yaglikci

<u>omutlu@gmail.com</u>

https://people.inf.ethz.ch/omutlu

17 January 2023

ASP-DAC

ETH zürich

How Reliable/Secure/Safe is This Bridge?

Collapse of the "Galloping Gertie"

How Secure Are These People?

Security is about preventing unforeseen consequences

Source: https://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg

SAFARI

How Safe & Secure Are Our Platforms?

Security is about preventing unforeseen consequences

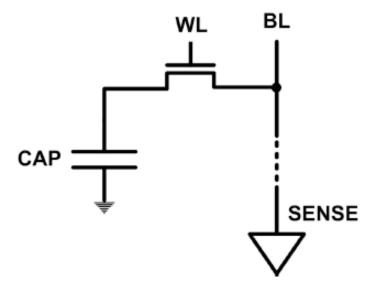
SAFARI Source: https://taxistartup.com/wp-content/uploads/2015/03/UK-Self-Driving-Cars.jpg

What Is RowHammer?

- One can predictably induce bit flips in commodity DRAM chips
 >80% of the tested DRAM chips are vulnerable
- First example of how a simple hardware failure mechanism can create a widespread system security vulnerability

An "Early" Position Paper [IMW'13]

 Onur Mutlu,
 <u>"Memory Scaling: A Systems Architecture Perspective"</u> *Proceedings of the <u>5th International Memory</u> <u>Workshop</u> (IMW), Monterey, CA, May 2013. <u>Slides</u> (pptx) (pdf) EETimes Reprint*

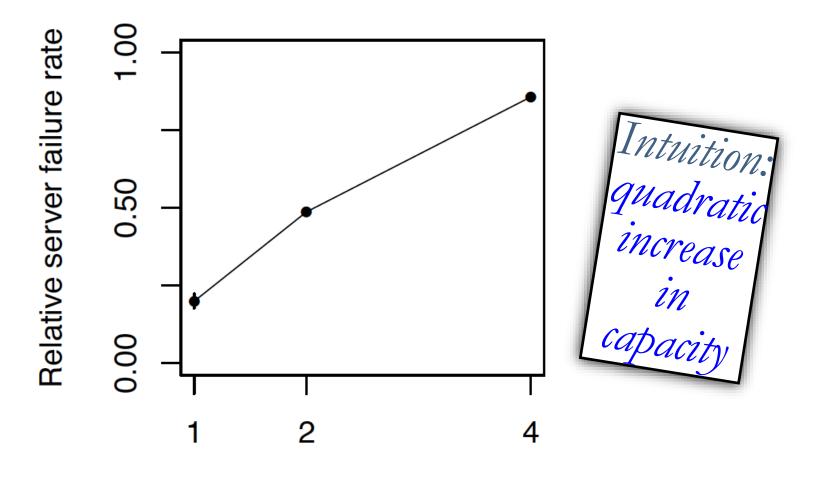

Memory Scaling: A Systems Architecture Perspective

Onur Mutlu Carnegie Mellon University onur@cmu.edu http://users.ece.cmu.edu/~omutlu/

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

The DRAM Scaling Problem

- DRAM stores charge in a capacitor (charge-based memory)
 - Capacitor must be large enough for reliable sensing
 - Access transistor should be large enough for low leakage and high retention time
 - Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]



DRAM capacity, cost, and energy/power hard to scale

SAFARI

As Memory Scales, It Becomes Unreliable

- Data from all of Facebook's servers worldwide
- Meza+, "Revisiting Memory Errors in Large-Scale Production Data Centers," DSN'15.

Chip density (Gb)

Large-Scale Failure Analysis of DRAM Chips

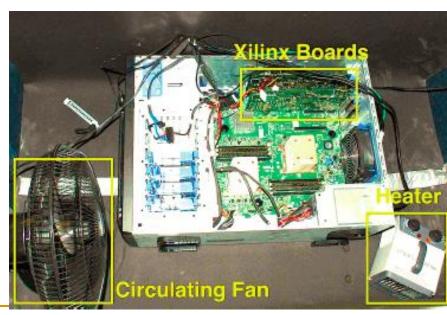
- Analysis and modeling of memory errors found in all of Facebook's server fleet
- Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, "Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field" Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015. [Slides (pptx) (pdf)] [DRAM Error Model]

Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field

Justin Meza Qiang Wu* Sanjeev Kumar* Onur Mutlu

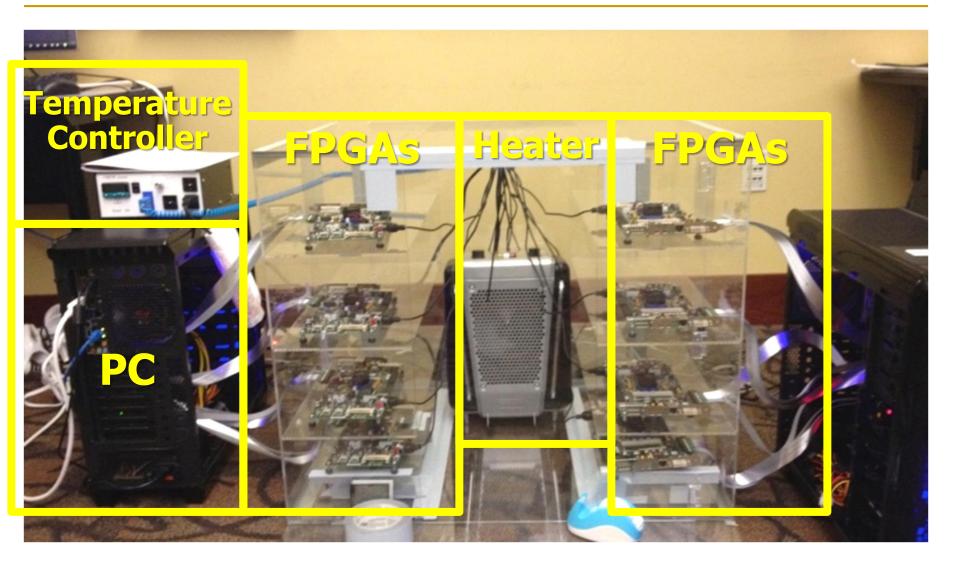
Carnegie Mellon University * Facebook, Inc.

Infrastructures to Understand Such Issues



<u>Flipping Bits in Memory Without Accessing</u> <u>Them: An Experimental Study of DRAM</u> <u>Disturbance Errors</u> (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case (Lee et al., HPCA 2015)

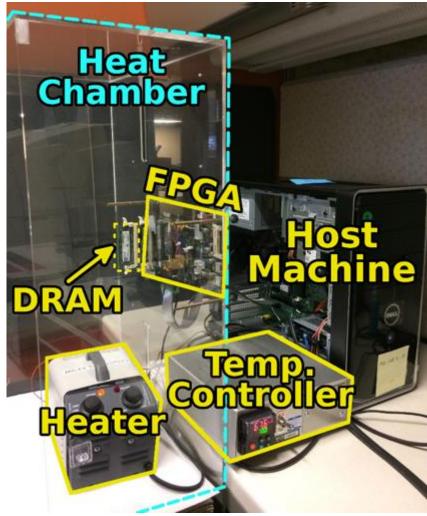

AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems (Qureshi et al., DSN 2015) An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study (Khan et al., SIGMETRICS 2014)

SAFARI

Infrastructures to Understand Such Issues

SAFARI


Kim+, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," ISCA 2014.

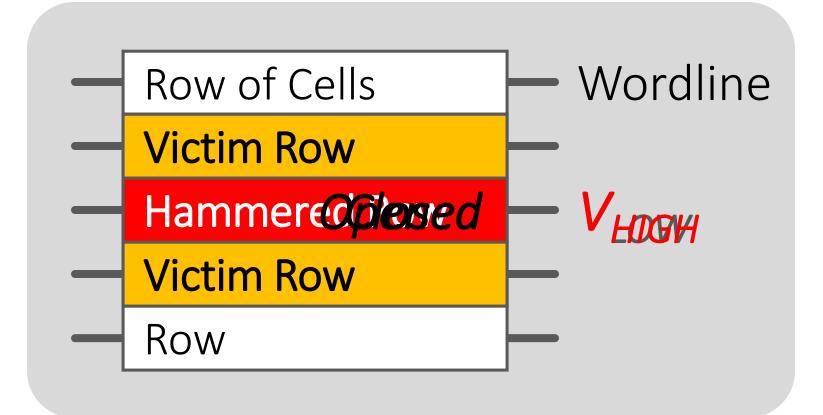
SoftMC: Open Source DRAM Infrastructure

 Hasan Hassan et al., "<u>SoftMC: A</u> <u>Flexible and Practical Open-</u> <u>Source Infrastructure for</u> <u>Enabling Experimental DRAM</u> <u>Studies</u>," HPCA 2017.

- Flexible
- Easy to Use (C++ API)
- Open-source

github.com/CMU-SAFARI/SoftMC

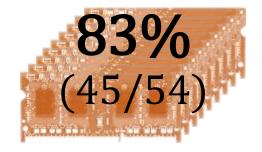
A Curious Phenomenon

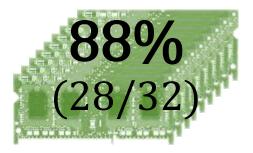

A Curious Discovery [Kim et al., ISCA 2014]

One can predictably induce errors in most DRAM memory chips

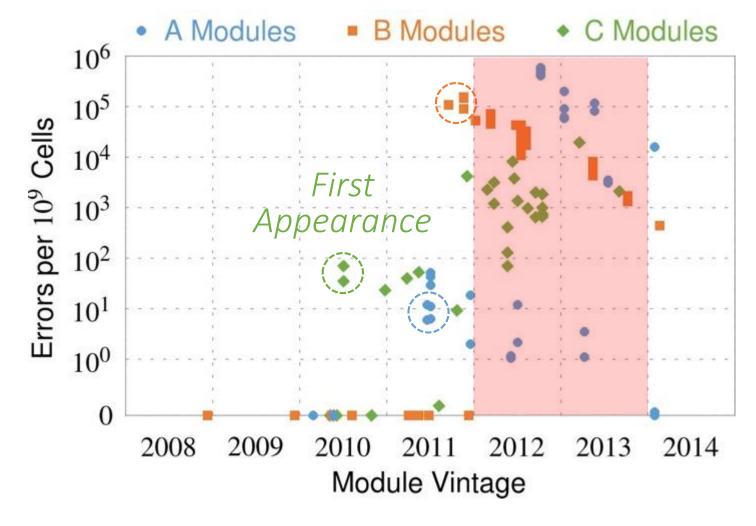
A simple hardware failure mechanism can create a widespread system security vulnerability

Modern DRAM is Prone to Disturbance Errors


Repeatedly reading a row enough times (before memory gets refreshed) induces disturbance errors in adjacent rows in most real DRAM chips you can buy today


<u>Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM</u> <u>Disturbance Errors</u>, (Kim et al., ISCA 2014)

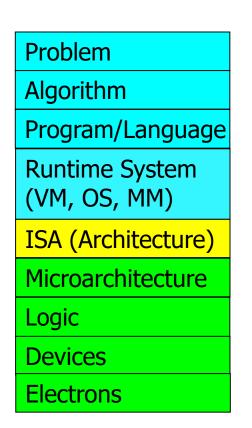
Most DRAM Modules Are Vulnerable

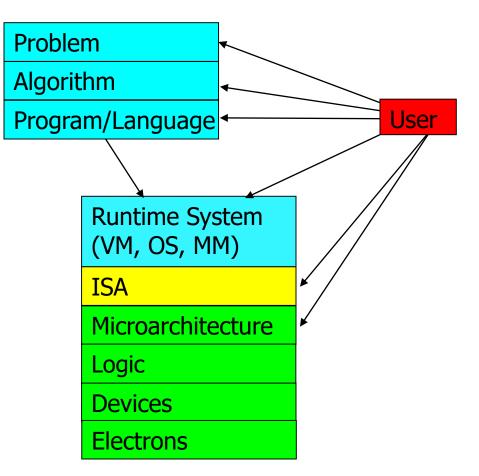


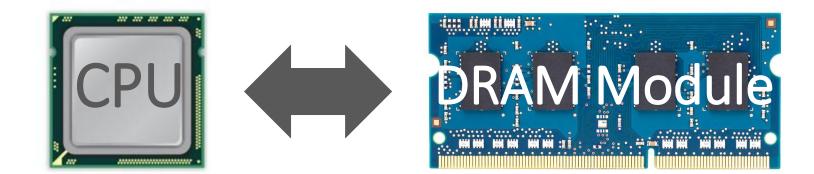
Up to	Up to	Up to
1.0×10 ⁷	2.7×10 ⁶	3.3×10 ⁵
errors	errors	errors

<u>Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM</u> <u>Disturbance Errors</u>, (Kim et al., ISCA 2014)

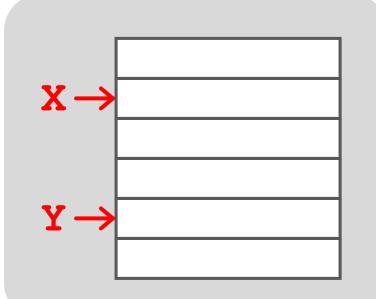
Recent DRAM Is More Vulnerable

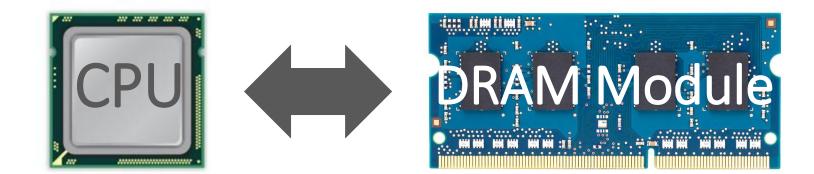

All modules from 2012–2013 are vulnerable

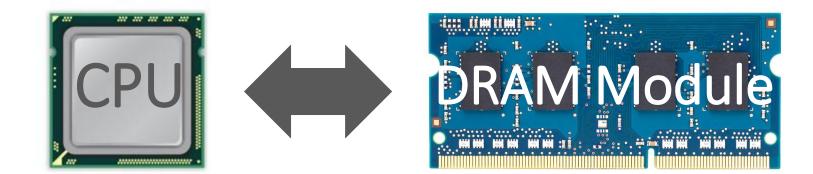

Why Is This Happening?

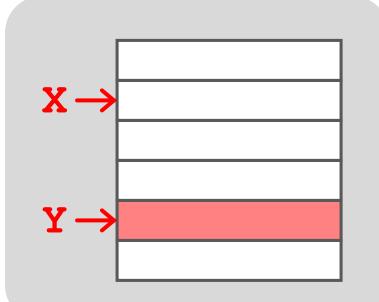

- DRAM cells are too close to each other!
 - They are not electrically isolated from each other
- Access to one cell affects the value in nearby cells
 - due to electrical interference between
 - the cells
 - wires used for accessing the cells
 - Also called cell-to-cell coupling/interference
- Example: When we activate (apply high voltage) to a row, an adjacent row gets slightly activated as well
 - Vulnerable cells in that slightly-activated row lose a little bit of charge
 - If RowHammer happens enough times, charge in such cells gets drained

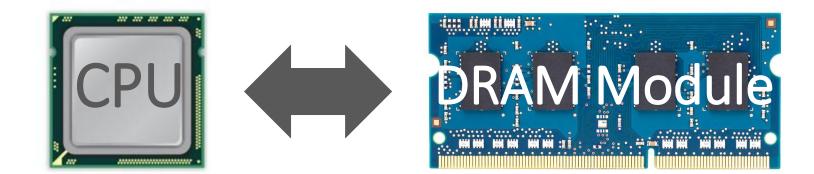
Higher-Level Implications

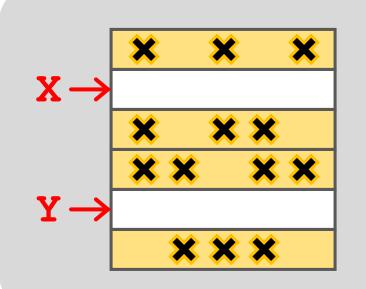

This simple circuit level failure mechanism has enormous implications on upper layers of the transformation hierarchy




loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (Y) mfence jmp loop




loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (X) mfence jmp loop



loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (X) mfence jmp loop

loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (X) mfence jmp loop

Observed Errors in Real Systems

CPU Architecture	Errors	Access-Rate
Intel Haswell (2013)	22.9K	12.3M/sec
Intel Ivy Bridge (2012)	20.7K	11.7M/sec
Intel Sandy Bridge (2011)	16.1K	11.6M/sec
AMD Piledriver (2012)	59	6.1M/sec

A real reliability & security issue

Kim+, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," ISCA 2014.

One Can Take Over an Otherwise-Secure System

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable and secure computing system — an access to one memory address should not have unintended side effects on data stored in other addresses. However, as DRAM process technology

Project Zero

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014)

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

Monday, March 9, 2015

Exploiting the DRAM rowhammer bug to gain kernel privileges

RowHammer Security Attack Example

- "Rowhammer" is a problem with some recent DRAM devices in which repeatedly accessing a row of memory can cause bit flips in adjacent rows (Kim et al., ISCA 2014).
 - Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014)
- We tested a selection of laptops and found that a subset of them exhibited the problem.
- We built two working privilege escalation exploits that use this effect.
 - Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)
- One exploit uses rowhammer-induced bit flips to gain kernel privileges on x86-64 Linux when run as an unprivileged userland process.
- When run on a machine vulnerable to the rowhammer problem, the process was able to induce bit flips in page table entries (PTEs).
- It was able to use this to gain write access to its own page table, and hence gain read-write access to all of physical memory.

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)

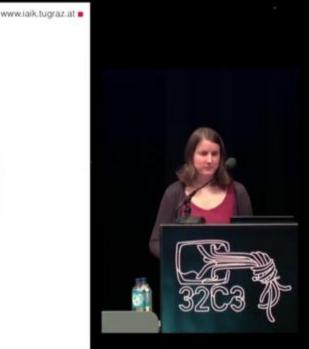
Security Implications

DRAM RowHammer Vulnerability

Security Implications

It's like breaking into an apartment by repeatedly slamming a neighbor's door until the vibrations open the door you were after

More Security Implications (I)


"We can gain unrestricted access to systems of website visitors."

Not there yet, but ...

ROOT privileges for web apps!

Daniel Gruss (@lavados), Clémentine Maurice (@BloodyTangerine), December 28, 2015 — 32c3, Hamburg, Germany

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA'16)

More Security Implications (II)

"Can gain control of a smart phone deterministically"

Hammer And Root

androids Millions of Androids

Drammer: Deterministic Rowhammer Attacks on Mobile Platforms, CCS'16 32

Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

More Security Implications (III)

Using an integrated GPU in a mobile system to remotely escalate privilege via the WebGL interface. IEEE S&P 2018

ars TECHNICA

BIZ & IT TECH SCIENCE POLICY CARS GAMING & CULTURE

"GRAND PWNING UNIT" ---

Drive-by Rowhammer attack uses GPU to compromise an Android phone

JavaScript based GLitch pwns browsers by flipping bits inside memory chips.

DAN GOODIN - 5/3/2018, 12:00 PM

Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU

Pietro Frigo Vrije Universiteit Amsterdam p.frigo@vu.nl Cristiano Giuffrida Vrije Universiteit Amsterdam giuffrida@cs.vu.nl Herbert Bos Vrije Universiteit Amsterdam herbertb@cs.vu.nl Kaveh Razavi Vrije Universiteit Amsterdam kaveh@cs.vu.nl

More Security Implications (IV)

Rowhammer over RDMA (I) USENIX ATC 2018

ars TECHNICA

BIZ & IT TECH SCIENCE POLICY CARS GAMING & CULTURE

THROWHAMMER —

Packets over a LAN are all it takes to trigger serious Rowhammer bit flips

The bar for exploiting potentially serious DDR weakness keeps getting lower.

DAN GOODIN - 5/10/2018, 5:26 PM

Throwhammer: Rowhammer Attacks over the Network and Defenses

Andrei Tatar VU Amsterdam Radhesh Krishnan VU Amsterdam

> Herbert Bos VU Amsterdam

Elias Athanasopoulos University of Cyprus

> Kaveh Razavi VU Amsterdam

Cristiano Giuffrida VU Amsterdam

More Security Implications (V)

Rowhammer over RDMA (II)

Nethammer—Exploiting DRAM Rowhammer Bug Through Network Requests

Nethammer: Inducing Rowhammer Faults through Network Requests

Moritz Lipp Graz University of Technology

Daniel Gruss Graz University of Technology Misiker Tadesse Aga University of Michigan

Clémentine Maurice Univ Rennes, CNRS, IRISA

Lukas Lamster Graz University of Technology Michael Schwarz Graz University of Technology

Lukas Raab Graz University of Technology

More Security Implications (VI)

IEEE S&P 2020

RAMBleed: Reading Bits in Memory Without Accessing Them

Andrew Kwong University of Michigan ankwong@umich.edu Daniel Genkin University of Michigan genkin@umich.edu Daniel Gruss Graz University of Technology daniel.gruss@iaik.tugraz.at Yuval Yarom University of Adelaide and Data61 yval@cs.adelaide.edu.au

More Security Implications (VII)

USENIX Security 2019

Terminal Brain Damage: Exposing the Graceless Degradation in Deep Neural Networks Under Hardware Fault Attacks

Sanghyun Hong, Pietro Frigo[†], Yiğitcan Kaya, Cristiano Giuffrida[†], Tudor Dumitraş

University of Maryland, College Park [†]Vrije Universiteit Amsterdam

A Single Bit-flip Can Cause Terminal Brain Damage to DNNs One specific bit-flip in a DNN's representation leads to accuracy drop over 90%

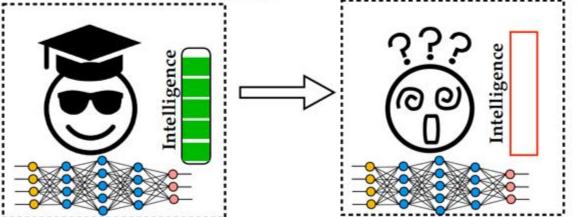
Our research found that a specific bit-flip in a DNN's bitwise representation can cause the accuracy loss up to 90%, and the DNN has 40-50% parameters, on average, that can lead to the accuracy drop over 10% when individually subjected to such single bitwise corruptions...

Read More

More Security Implications (VIII)

USENIX Security 2020

DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips


Fan Yao Adnan Siraj Rakin University of Central Florida fan.yao@ucf.edu asrakin@asu.edu

Deliang Fan Arizona State University dfan@asu.edu

Degrade the **inference accuracy** to the level of **Random Guess**

Example: ResNet-20 for CIFAR-10, 10 output classes

Before attack, Accuracy: 90.2% After attack, Accuracy: ~10% (1/10)

More Security Implications (IX)

Rowhammer on MLC NAND Flash (based on [Cai+, HPCA 2017])

Security

Rowhammer RAM attack adapted to hit flash storage

Project Zero's two-year-old dog learns a new trick

By Richard Chirgwin 17 Aug 2017 at 04:27

17 🖵 SHARE 🔻

From random block corruption to privilege escalation: A filesystem attack vector for rowhammer-like attacks

Anil Kurmus Nikolas Ioannou Matthias Neugschwandtner Nikolaos Papandreou Thomas Parnell IBM Research – Zurich

More Security Implications?

A RowHammer Survey Across the Stack

Onur Mutlu and Jeremie Kim,
 "RowHammer: A Retrospective"
 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) Special Issue on Top Picks in Hardware and Embedded Security, 2019.
 [Preliminary arXiv version]
 [Slides from COSADE 2019 (pptx)]
 [Slides from VLSI-SOC 2020 (pptx) (pdf)]
 [Talk Video (1 hr 15 minutes, with Q&A)]

RowHammer: A Retrospective

Onur Mutlu^{§‡} Jeremie S. Kim^{‡§} [§]ETH Zürich [‡]Carnegie Mellon University

A RowHammer Survey: Recent Update

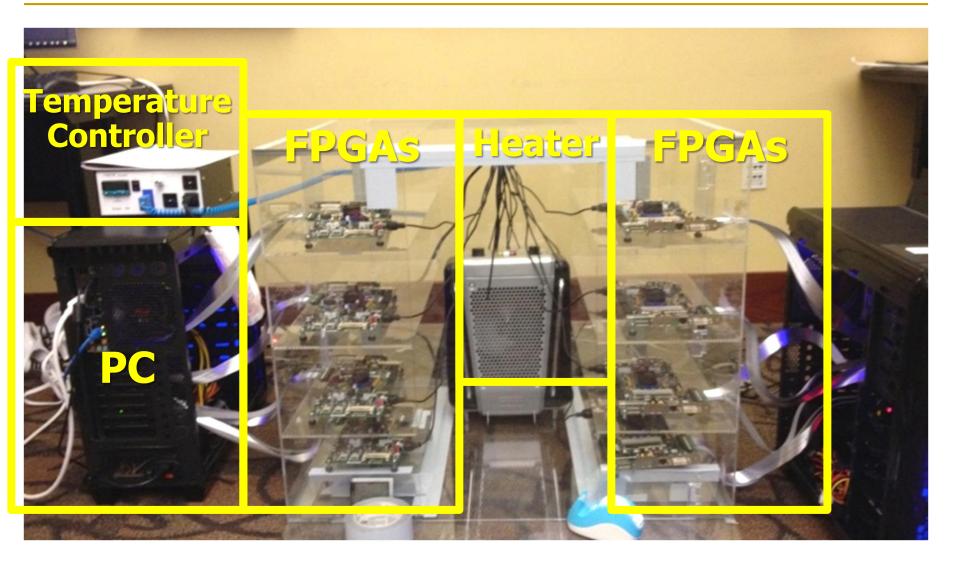
Appears at ASP-DAC 2023 (Invited Paper)

Fundamentally Understanding and Solving RowHammer

Onur Mutlu onur.mutlu@safari.ethz.ch ETH Zürich Zürich, Switzerland Ataberk Olgun ataberk.olgun@safari.ethz.ch ETH Zürich Zürich, Switzerland A. Giray Yağlıkcı giray.yaglikci@safari.ethz.ch ETH Zürich Zürich, Switzerland

https://arxiv.org/pdf/2211.07613.pdf

Understanding RowHammer


First RowHammer Analysis

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
 "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"
 Proceedings of the <u>41st International Symposium on Computer Architecture</u> (ISCA), Minneapolis, MN, June 2014.
 [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data] [Lecture Video (1 hr 49 mins), 25 September 2020]
 One of the 7 papers of 2012-2017 selected as Top Picks in Hardware and Embedded Security for IEEE TCAD (link).

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Yoongu Kim¹ Ross Daly^{*} Jeremie Kim¹ Chris Fallin^{*} Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹ ¹Carnegie Mellon University ²Intel Labs

RowHammer Infrastructure (2012-2014)

SAFARI

Kim+, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," ISCA 2014.

Manufacturer	Madul-	Date*	Timing	g†	Organiz	ation		Chip		Vict	ims-per-Mo	dule	RI _{th} (ms)
vianujaciurer	moaute	(yy-ww)	Freq (MT/s)	t _{RC} (ns)	Size (GB)	Chips	Size (Gb)‡	Pins	DieVersion [§]	Average	Minimum	Maximum	Min
	A ₁	10-08	1066	50.625	0.5	4	1	×16	В	0	0	0	-
	A ₂	10-20	1066	50.625	1	8	1	$\times 8$	F	0	0	0	-
	A ₃₋₅	10-20	1066	50.625	0.5	4	1	×16	В	0	0	0	-
	A ₆₋₇	11-24	1066	49.125	1	4	2	×16	\mathcal{D}	7.8×10^{1}	5.2×10^{1}	1.0×10^{2}	21.3
	A ₈₋₁₂	11-26	1066	49.125	1	4	2	×16	\mathcal{D}	2.4×10^{2}		4.4×10^{2}	16.4
	A ₁₃₋₁₄	11-50	1066	49.125	1	4	2	×16	\mathcal{D}	8.8×10^{1}	1.7×10^{1}	1.6×10^{2}	26.2
A	A ₁₅₋₁₆	12-22	1600	50.625	1	4	2	×16	\mathcal{D}	9.5	9	1.0×10^{1}	34.4
Total of	A ₁₇₋₁₈	12-26	1600	49.125	2	8	2	$\times 8$	\mathcal{M}	1.2×10^{2}	3.7×10^{1}	2.0×10^{2}	21.3
43 Modules	A ₁₉₋₃₀	12-40	1600	48.125	2	8	2	×8	ĸ		7.0×10^{6}	1.0×10^{7}	8.2
45 Modules	A ₃₁₋₃₄	13-02	1600	48.125	2	8	2	×8	-	1.8×10^{6}		3.5×10^{6}	11.5
	A ₃₅₋₃₆	13-14	1600	48.125	2	8	2	×8	-	4.0×10^{1}		6.1×10^{1}	21.3
	A ₃₇₋₃₈	13-20	1600	48.125	2	8	2	×8	ĸ	1.7×10^{6}	1.4×10^{6}	2.0×10^{6}	9.8
	A ₃₉₋₄₀	13-28	1600	48.125	2	8	2	×8	κ		5.4×10^{4}	6.0×10^{4}	16.4
	A ₄₁	14-04	1600	49.125	2	8	2	×8	-	2.7×10^{5}	2.7×10^{5}	2.7×10^{5}	18.0
	A ₄₂₋₄₃	14-04	1600	48.125	2	8	2	×8	ĸ	0.5	0	1	62.3
	B	08-49	1066	50.625	1	8	1	$\times 8$	\mathcal{D}	0	0	0	-
	B ₂	09-49	1066	50.625	1	8	1	×8	ε	0	0	0	-
	B ₃	10-19	1066	50.625	1	8	1	×8	F	0	0	0	-
	B ₄	10-31	1333	49.125	2	8	2	×8	С	0	0	0	-
	B ₅	11-13 11-16	1333	49.125	2	8	2	×8 ×8	C F	0	0	0	-
	B ₆ B ₇	11-16	1066 1066	50.625 50.625	1	8	1	×8 ×8	F	0	0	0	-
	B ₈	11-19	1333	49.125	2	8	2	×8	C	0	0	0	_
В	B ₉	11-25	1333	49.125	2	8	2	×8	\mathcal{D}	1.9 × 10 ⁶	1.9 × 10 ⁶	1.9 × 10 ⁶	11.5
0	B ₁₀₋₁₂	11-46	1333	49.125	2	8	2	×8	D		1.5×10^{6}		11.5
Total of	B ₁₃	11-49	1333	49.125	2	8	2	×8	č	0	0	0	-
54 Modules	B ₁₄	12-01	1866	47.125	2	8	2	×8	\mathcal{D}	9.1×10^{5}		9.1×10^{5}	9.8
	B15-31	12-10	1866	47.125	2	8	2	$\times 8$	\mathcal{D}	9.8×10^{5}	7.8×10^{5}	1.2×10^{6}	11.5
	B ₃₂	12-25	1600	48.125	2	8	2	$\times 8$	ε	7.4×10^{5}	7.4×10^{5}	7.4×10^{5}	11.5
	B ₃₃₋₄₂	12-28	1600	48.125	2	8	2	$\times 8$	ε	5.2×10^{5}	1.9×10^{5}	7.3×10^{5}	11.5
	B ₄₃₋₄₇	12-31	1600	48.125	2	8	2	$\times 8$	ε	4.0×10^{5}	2.9×10^{5}	5.5×10^{5}	13.1
	B ₄₈₋₅₁	13-19	1600	48.125	2	8	2	$\times 8$	ε		7.4×10^{4}	1.4×10^{5}	14.7
	B52-53	13-40	1333	49.125	2	8	2	$\times 8$	\mathcal{D}		2.3×10^{4}	2.9×10^{4}	21.3
	B ₅₄	14-07	1333	49.125	2	8	2	×8	\mathcal{D}	7.5×10^{3}	7.5×10^{3}	7.5×10^{3}	26.2
	C	10-18	1333	49.125	2	8	2	$\times 8$	\mathcal{A}	0	0	0	-
	C ₂	10-20	1066	50.625	2	8	2	$\times 8$	\mathcal{A}	0	0	0	-
	C ₃	10-22	1066	50.625	2	8	2	$\times 8$	\mathcal{A}	0	0	0	-
	C ₄₋₅	10-26	1333	49.125	2	8	2	×8	B	8.9×10^{2}	6.0×10^{2}	1.2×10^{3}	29.5
	U ₆	10-43	1333	49.125	1	8	1	×8	τ	0	0	0	-
	C7	10-51	1333	49.125	2	8	2	×8	B	4.0×10^{2}	4.0×10^{2}	4.0×10^{2}	29.5
	C ₈	11-12	1333	46.25	2	8	2	×8	B	6.9×10^2	6.9×10^2	6.9×10^2	21.3
	C,	11-19	1333	46.25	2	8	2	×8	B B	9.2×10^{2}		9.2×10^{2}	27.9
	C ₁₀	11-31	1333	49.125	2	8	2	×8		3	$3 \\ 1.6 \times 10^2$	3	39.3 39.3
С	CII	11-42 11-48	1333 1600	49.125 48.125	2	8	2 2	×8 ×8	B C	1.6×10^2	1.6×10^{-1} 7.1×10^{4}	1.6×10^2	39.3 19.7
	C ₁₂	11-48	1333	48.125	2	8	2	×8	C	3.9×10^4		7.1×10^{-1} 3.9×10^{4}	21.3
Total of	C ₁₃	12-08	1333	49.125	2	8	2	×8	c		2.1×10^4		21.3
32 Modules	C ₁₄₋₁₅	12-12	1600	48.125	2	8	2	×8	c	3.5×10^3	1.2×10^{3}	7.0×10^3	27.9
	C ₁₆₋₁₈ C ₁₉	12-20	1600	48.125	2	8	2	×8	ε	1.4×10^5	1.2×10^{5} 1.4×10^{5}	1.4×10^{5}	18.0
	C ₂₀	12-25	1600	48.125	2	8	2	×8	c	6.5×10^4	6.5×10^4	6.5×10^4	21.3
	C ₂₀ C ₂₁	12-24	1600	48.125	2	8	2	×8	c		2.3×10^4		24.6
	C ₂₂	12-32	1600	48.125	2	8	2	×8	c		1.7×10^{4}	1.7×10^{4}	22.9
	C ₂₃₋₂₄	12-37	1600	48.125	2	8	2	×8	C		1.1×10^{4}		18.0
	C25-30	12-41	1600	48.125	2	8	2	×8	C	2.0×10^{4}	1.1×10^4	3.2×10^{4}	19.7
	2.3-30		1600	48.125	2	8	2	×8	С		3.3×10^{5}	3.3×10^{5}	14.7
	C ₃₁	13-11	1000	40.125								0.0 4 10	

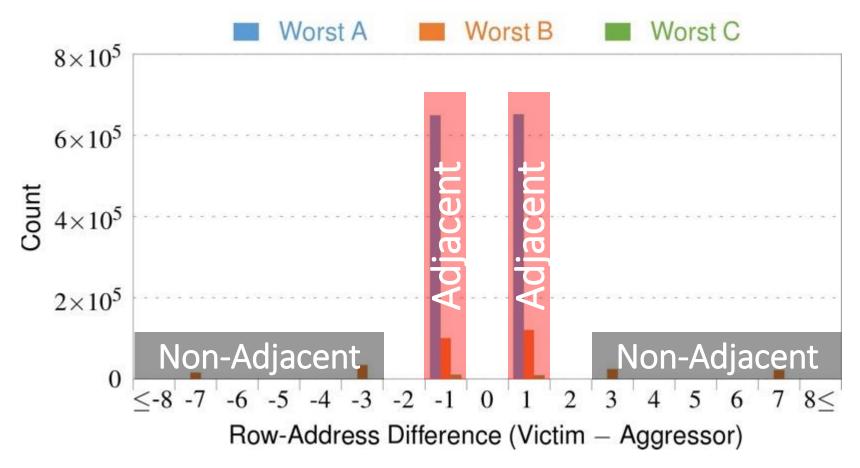
* We report the manufacture date marked on the chip packages, which is more accurate than other dates that can be gleaned from a module. † We report timing constraints stored in the module's on-board ROM [33], which is read by the system BIOS to calibrate the memory controller. ‡ The maximum DRAM chip size supported by our testing platform is 2Gb.

§ We report DRAM die versions marked on the chip packages, which typically progress in the following manner: $\mathcal{M} \to \mathcal{A} \to \mathcal{B} \to \mathcal{C} \to \cdots$.

Table 3. Sample population of 129 DDR3 DRAM modules, categorized by manufacturer and sorted by manufacture date

Tested DRAM Modules from 2008-2014

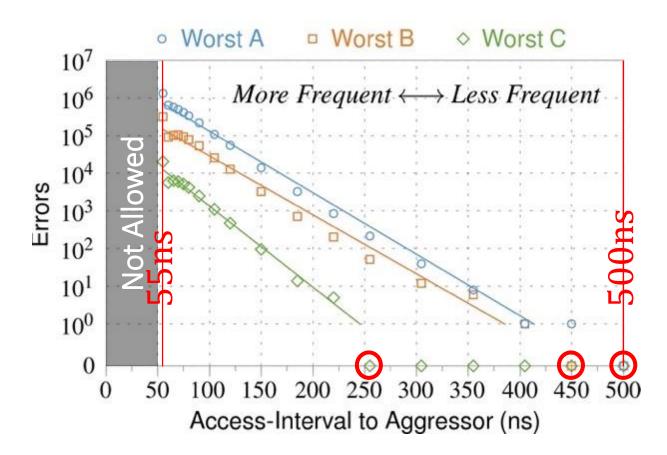
(129 total)


SAFARI

RowHammer Characterization Results

- 1. Most Modules Are at Risk
- 2. Errors vs. Vintage
- 3. Error = Charge Loss
- 4. Adjacency: Aggressor & Victim
- 5. Sensitivity Studies
- 6. Other Results in Paper
- 7. Solution Space

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, (Kim et al., ISCA 2014) 47


4. Adjacency: Aggressor & Victim

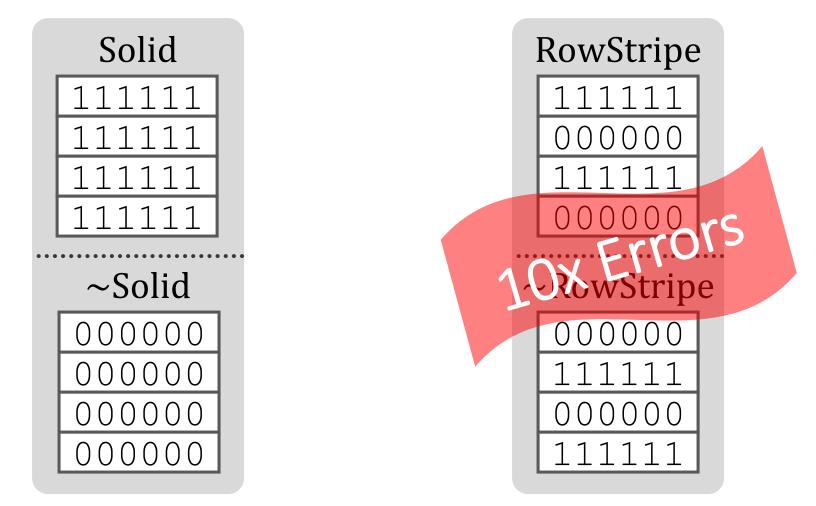
Note: For three modules with the most errors (only first bank)

Most aggressors & victims are adjacent

1 Access Interval (Aggressor)

Note: For three modules with the most errors (only first bank)

Less frequent accesses → Fewer errors


2 Refresh Interval

Note: Using three modules with the most errors (only first bank)

More frequent refreshes \rightarrow Fewer errors

Errors affected by data stored in other cells

6. Other Key Observations [ISCA'14]

- Victim Cells ≠ Retention-Weak Cells
 - Almost no overlap between them
- Errors are repeatable
 - Across ten iterations of testing, >70% of victim cells had errors in every iteration
- As many as 4 errors per cache-line

 Simple ECC (e.g., SECDED) cannot prevent all errors
- Cells affected by two aggressors on either side
 Double sided hammering

Major RowHammer Characteristics (2014)

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
 "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"
 Proceedings of the <u>41st International Symposium on Computer Architecture</u> (ISCA), Minneapolis, MN, June 2014.
 [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data] [Lecture Video (1 hr 49 mins), 25 September 2020]
 One of the 7 papers of 2012-2017 selected as Top Picks in Hardware and Embedded Security for IEEE TCAD (link).

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Yoongu Kim¹ Ross Daly^{*} Jeremie Kim¹ Chris Fallin^{*} Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹ ¹Carnegie Mellon University ²Intel Labs

RowHammer is Getting Much Worse (2020)

 Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu, "Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques" Proceedings of the <u>47th International Symposium on Computer</u> <u>Architecture</u> (ISCA), Valencia, Spain, June 2020.
 [Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Talk Video (20 minutes)]
 [Lightning Talk Video (3 minutes)]

Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques

Jeremie S. Kim^{§†} Minesh Patel[§] A. Giray Yağlıkçı[§] Hasan Hassan[§] Roknoddin Azizi[§] Lois Orosa[§] Onur Mutlu^{§†} [§]ETH Zürich [†]Carnegie Mellon University

New RowHammer Dimensions (2021)

 Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo, Ataberk Olgun, Jisung Park, Hasan Hassan, Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
 "A Deeper Look into RowHammer's Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses" Proceedings of the <u>54th International Symposium on Microarchitecture</u> (MICRO), Virtual, October 2021.
 [Slides (pptx) (pdf)]
 [Short Talk Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Lightning Talk Video (1.5 minutes)]
 [arXiv version]

A Deeper Look into RowHammer's Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses

Lois Orosa*
ETH ZürichA. Giray Yağlıkçı*
ETH ZürichHaocong Luo
ETH ZürichAtaberk Olgun
ETH Zürich, TOBB ETÜJisung Park
ETH ZürichHasan HassanMinesh PatelJeremie S. KimOnur Mutlu

ETH Zürich

ETH Zürich

ETH Zürich

ETH Zürich

RowHammer vs. Wordline Voltage (2022)

A. Giray Yağlıkçı, Haocong Luo, Geraldo F. de Oliviera, Ataberk Olgun, Minesh Patel, Jisung Park, Hasan Hassan, Jeremie S. Kim, Lois Orosa, and Onur Mutlu, "Understanding RowHammer Under Reduced Wordline Voltage: An Experimental Study Using Real DRAM Devices"
 Proceedings of the 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Baltimore, MD, USA, June 2022.
 [Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Talk Video (34 minutes, including Q&A)]
 [Lightning Talk Video (2 minutes)]

Understanding RowHammer Under Reduced Wordline Voltage: An Experimental Study Using Real DRAM Devices

A. Giray Yağlıkçı¹ Haocong Luo¹ Geraldo F. de Oliviera¹ Ataberk Olgun¹ Minesh Patel¹ Jisung Park¹ Hasan Hassan¹ Jeremie S. Kim¹ Lois Orosa^{1,2} Onur Mutlu¹ ¹ETH Zürich ²Galicia Supercomputing Center (CESGA)

RowHammer Solutions

Two Types of RowHammer Solutions

Immediate

- □ To protect the vulnerable DRAM chips in the field
- Limited possibilities

- Longer-term
 - To protect future DRAM chips
 - Wider range of protection mechanisms

- Our ISCA 2014 paper proposes both types of solutions
 - Seven solutions in total
 - PARA proposed as best solution \rightarrow already employed in the field

• Make better DRAM chips

• Refresh frequently **Power, Performance**

• Sophisticated ECC

Cost, Power

Cost

• Access counters Cost, Power, Complexity

Apple's Security Patch for RowHammer

https://support.apple.com/en-gb/HT204934

Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5

Impact: A malicious application may induce memory corruption to escalate privileges

Description: A disturbance error, also known as Rowhammer, exists with some DDR3 RAM that could have led to memory corruption. This issue was mitigated by increasing memory refresh rates.

CVE-ID

CVE-2015-3693 : Mark Seaborn and Thomas Dullien of Google, working from original research by Yoongu Kim et al (2014)

HP, Lenovo, and many other vendors released similar patches

Our Solution to RowHammer

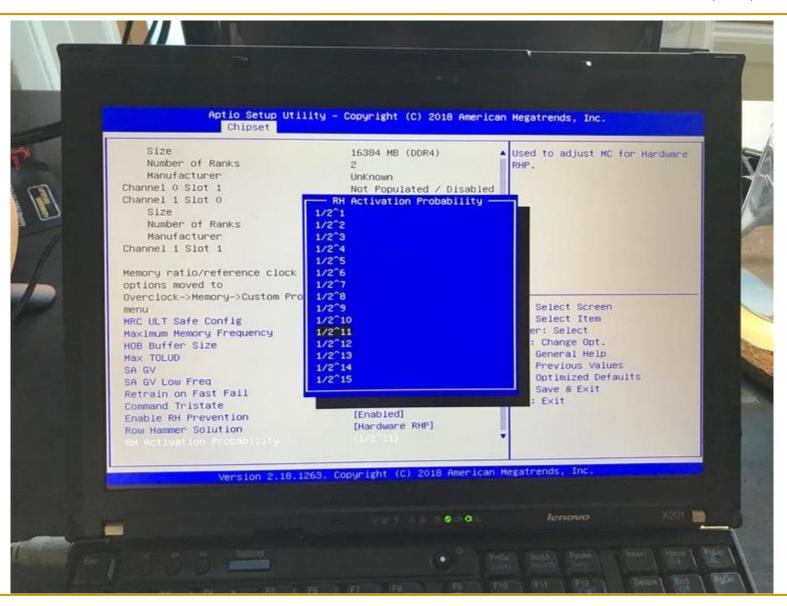
- PARA: <u>Probabilistic Adjacent Row Activation</u>
- Key Idea
 - After closing a row, we activate (i.e., refresh) one of its neighbors with a low probability: p = 0.005
- Reliability Guarantee
 - When p=0.005, errors in one year: 9.4×10^{-14}
 - By adjusting the value of p, we can vary the strength of protection against errors

Advantages of PARA

- PARA refreshes rows infrequently
 - Low power
 - Low performance-overhead
 - Average slowdown: 0.20% (for 29 benchmarks)
 - Maximum slowdown: 0.75%
- PARA is stateless
 - Low cost
 - Low complexity
- PARA is an effective and low-overhead solution to prevent disturbance errors

Requirements for PARA

- If implemented in DRAM chip (done today)
 - Enough slack in timing and refresh parameters
 - Plenty of slack today:
 - Lee et al., "Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common Case," HPCA 2015.
 - Chang et al., "Understanding Latency Variation in Modern DRAM Chips," SIGMETRICS 2016.
 - Lee et al., "Design-Induced Latency Variation in Modern DRAM Chips," SIGMETRICS 2017.
 - Chang et al., "Understanding Reduced-Voltage Operation in Modern DRAM Devices," SIGMETRICS 2017.
 - Ghose et al., "What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed Experimental Study," SIGMETRICS 2018.
 - Kim et al., "Solar-DRAM: Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines," ICCD 2018.
- If implemented in memory controller
 - Need coordination between controller and DRAM
 - Memory controller should know which rows are physically adjacent


Probabilistic Activation in Real Life (I)

Channel 0 Slot 0 Size	Populated & Enabled 16384 MB (DDR4)	Type of method used to preven Row Hammer
Number of Ranks	2 UnKnown	
Manufacturer Channel 0 Slot 1	Not Populated / Disabled	
Channel 1 Slot 0	· Populated & Enabled	
Size	16384 MB (DDR4)	
Number of Ranks Manufacturer	2 UnKnown	
Channel 1 Slot 1	Not Populated / Disabled	
	Row Hammer Solution	
Memory ratio/reference clock options moved to	2x Refresh	
Overclock->Memory->Custom Prof		++: Select Screen
menu	[Disabled]	ti: Select Item Enter: Select
MRC ULT Safe Config Maximum Memory Frequency	[Auto]	+/-: Change Opt.
HOB Buffer Size	[Auto]	F1: General Help F2: Previous Values
Max TOLUD	[Dynamic] [Enabled]	F3: Optimized Defaults
SA GV SA GV Low Freq	[MRC default]	F4: Save & Exit
Retrain on Fast Fail	[Enabled]	ESC: Exit
Command Tristate	[Enabled] [Enabled]	
Enable RH Prevention Row Hammer Solution	[Handware RhP]	÷

SAFARI

https://twitter.com/isislovecruft/status/1021939922754723841

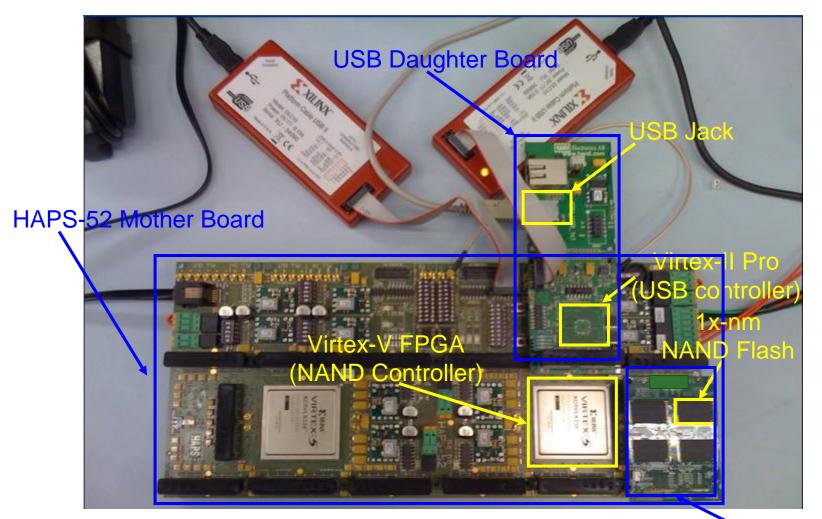
Probabilistic Activation in Real Life (II)

SAFARI

https://twitter.com/isislovecruft/status/1021939922754723841

Seven RowHammer Solutions Proposed

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
 "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"
 Proceedings of the <u>41st International Symposium on Computer Architecture</u> (ISCA), Minneapolis, MN, June 2014.
 [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data] [Lecture Video (1 hr 49 mins), 25 September 2020]
 One of the 7 papers of 2012-2017 selected as Top Picks in Hardware and Embedded Security for IEEE TCAD (link).


Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Yoongu Kim¹ Ross Daly^{*} Jeremie Kim¹ Chris Fallin^{*} Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹ ¹Carnegie Mellon University ²Intel Labs

Main Memory Needs **Intelligent Controllers** for Security, Safety, Reliability, Scaling

Aside: Intelligent Controller for NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE 2017, HPCA 2018, SIGMETRICS 2018]

NAND Daughter Board

Cai+, "Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives," Proc. IEEE 2017.

Intelligent Flash Controllers [PIEEE'17]

Proceedings of the IEEE, Sept. 2017

Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD's reliability and lifetime.

By YU CAI, SAUGATA GHOSE, ERICH F. HARATSCH, YIXIN LUO, AND ONUR MUTLU

https://arxiv.org/pdf/1706.08642

Detailed Lectures on RowHammer

- Computer Architecture, Fall 2021, Lecture 5
 - RowHammer (ETH Zürich, Fall 2021)
 - https://www.youtube.com/watch?v=7wVKnPj3NVw&list=P L5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=5
- Computer Architecture, Fall 2021, Lecture 6
 - RowHammer and Secure & Reliable Memory (ETH Zürich, Fall 2021)
 - https://www.youtube.com/watch?v=HNd4skQrt6I&list=PL 5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=6

https://www.youtube.com/onurmutlulectures

First RowHammer Analysis

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
 "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"
 Proceedings of the <u>41st International Symposium on Computer Architecture</u> (ISCA), Minneapolis, MN, June 2014.
 [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data] [Lecture Video (1 hr 49 mins), 25 September 2020]
 One of the 7 papers of 2012-2017 selected as Top Picks in Hardware and Embedded Security for IEEE TCAD (link).

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Yoongu Kim¹ Ross Daly^{*} Jeremie Kim¹ Chris Fallin^{*} Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹ ¹Carnegie Mellon University ²Intel Labs

Retrospective on RowHammer & Future

Onur Mutlu, "The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser" Invited Paper in Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Lausanne, Switzerland, March 2017. [Slides (pptx) (pdf)]

The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu ETH Zürich onur.mutlu@inf.ethz.ch https://people.inf.ethz.ch/omutlu

SAFARI https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf 72

A More Recent RowHammer Retrospective

Onur Mutlu and Jeremie Kim,
 "RowHammer: A Retrospective"
 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) Special Issue on Top Picks in Hardware and Embedded Security, 2019.
 [Preliminary arXiv version]
 [Slides from COSADE 2019 (pptx)]
 [Slides from VLSI-SOC 2020 (pptx) (pdf)]
 [Talk Video (1 hr 15 minutes, with Q&A)]

RowHammer: A Retrospective

Onur Mutlu^{§‡} Jeremie S. Kim^{‡§} [§]ETH Zürich [‡]Carnegie Mellon University

RowHammer in 2020-2022

Revisiting RowHammer

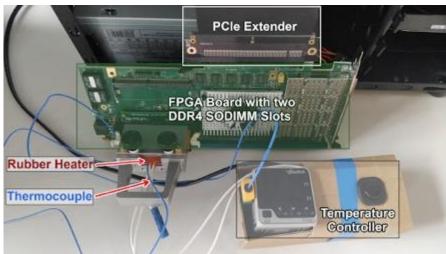
RowHammer is Getting Much Worse

 Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu, "Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques" Proceedings of the <u>47th International Symposium on Computer</u> <u>Architecture</u> (ISCA), Valencia, Spain, June 2020.
 [Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Talk Video (20 minutes)]
 [Lightning Talk Video (3 minutes)]

Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques

Jeremie S. Kim^{§†} Minesh Patel[§] A. Giray Yağlıkçı[§] Hasan Hassan[§] Roknoddin Azizi[§] Lois Orosa[§] Onur Mutlu^{§†} [§]ETH Zürich [†]Carnegie Mellon University

Key Takeaways from 1580 Chips


- Newer DRAM chips are much more vulnerable to RowHammer (more bit flips, happening earlier)
- There are new chips whose weakest cells fail after only 4800 hammers
- Chips of newer DRAM technology nodes can exhibit RowHammer bit flips 1) in more rows and 2) farther away from the victim row.
- Existing mitigation mechanisms are NOT effective at future technology nodes

DRAM Testing Infrastructures

Three separate testing infrastructures

- 1. DDR3: FPGA-based SoftMC [Hassan+, HPCA'17] (Xilinx ML605)
- 2. DDR4: FPGA-based SoftMC [Hassan+, HPCA'17] (Xilinx Virtex UltraScale 95)
- 3. LPDDR4: In-house testing hardware for LPDDR4 chips

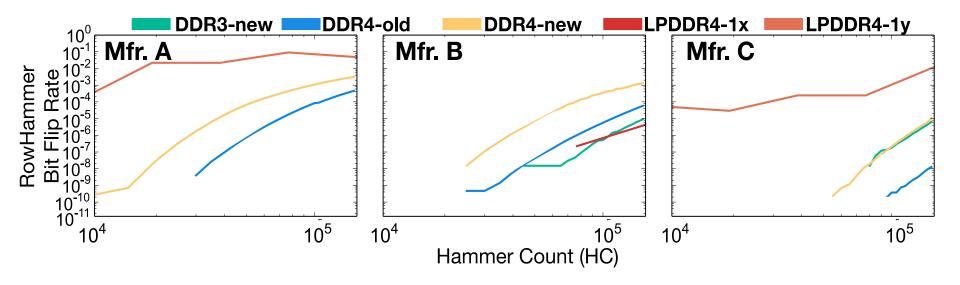
All provide fine-grained control over DRAM commands, timing parameters and temperature

SAFARI

DDR4 DRAM testing infrastructure

1580 DRAM Chips Tested

DRAM	Number of Chips (Modules) Teste						
type-node	Mfr. A	Mfr. B	Mfr. C	Total			
DDR3-old	56 (10)	88 (11)	28 (7)	172 (28)			
DDR3-new	80 (10)	52 (9)	104 (13)	236 (32)			
DDR4-old	112 (16)	24 (3)	128 (18)	264 (37)			
DDR4-new	264 (43)	16 (2)	108 (28)	388 (73)			
LPDDR4-1x	12 (3)	180 (45)	N/A	192 (48)			
LPDDR4-1y	184 (46)	N/A	144 (36)	328 (82)			

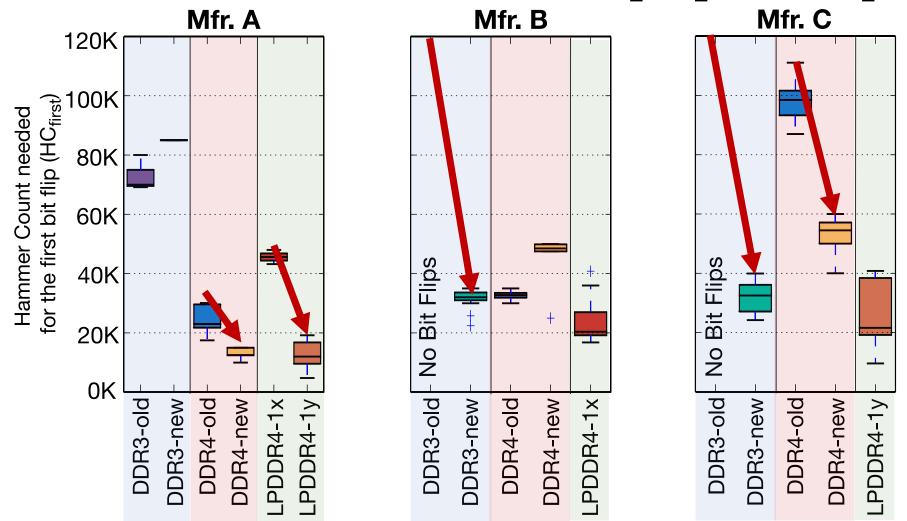

1580 total DRAM chips tested from **300** DRAM modules

- **Three** major DRAM manufacturers {A, B, C}
- Three DRAM types or standards {DDR3, DDR4, LPDDR4}
 - LPDDR4 chips we test implement on-die ECC
- **Two** technology nodes per DRAM type {old/new, 1x/1y}
 - Categorized based on manufacturing date, datasheet publication date, purchase date, and characterization results

Type-node: configuration describing a chip's type and technology node generation: **DDR3-old/new, DDR4-old/new, LPDDR4-1x/1y**

SAFARI

3. Hammer Count (HC) Effects

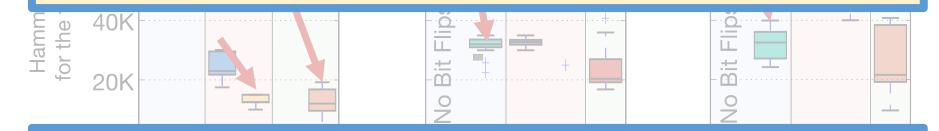


RowHammer bit flip rates **increase** when going **from old to new** DDR4 technology node generations

RowHammer bit flip rates (i.e., RowHammer vulnerability) increase with technology node generation

SAFARI

5. First RowHammer Bit Flips per Chip



Newer chips from each DRAM manufacturer are more vulnerable to RowHammer

5. First RowHammer Bit Flips per Chip

In a DRAM type, HC_{first} reduces significantly from old to new chips, i.e., DDR3: 69.2k to 22.4k, DDR4: 17.5k to 10k, LPDDR4: 16.8k to 4.8k

There are chips whose weakest cells fail after only 4800 hammers

Newer chips from a given DRAM manufacturer **more** vulnerable to RowHammer

RowHammer is Getting Much Worse

 Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu, "Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques" Proceedings of the <u>47th International Symposium on Computer</u> <u>Architecture</u> (ISCA), Valencia, Spain, June 2020.
 [Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Talk Video (20 minutes)]
 [Lightning Talk Video (3 minutes)]

Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques

Jeremie S. Kim^{§†} Minesh Patel[§] A. Giray Yağlıkçı[§] Hasan Hassan[§] Roknoddin Azizi[§] Lois Orosa[§] Onur Mutlu^{§†} [§]ETH Zürich [†]Carnegie Mellon University

Detailed Lecture on Revisiting RowHammer

- Computer Architecture, Fall 2020, Lecture 5b
 - RowHammer in 2020: Revisiting RowHammer (ETH Zürich, Fall 2020)
 - <u>https://www.youtube.com/watch?v=gR7XR-</u> <u>Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10</u>

https://www.youtube.com/onurmutlulectures

Industry-Adopted Solutions Do Not Work

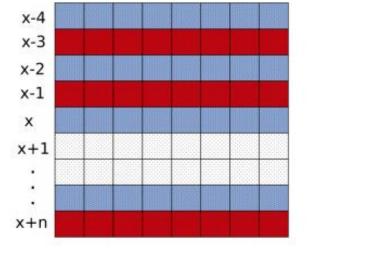
 Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
 "TRRespass: Exploiting the Many Sides of Target Row Refresh" Proceedings of the <u>41st IEEE Symposium on Security and Privacy</u> (S&P), San Francisco, CA, USA, May 2020.
 [Slides (pptx) (pdf)]
 [Lecture Slides (pptx) (pdf)]
 [Talk Video (17 minutes)]
 [Lecture Video (59 minutes)]
 [Source Code]
 [Web Article]
 Best paper award.

Pwnie Award 2020 for Most Innovative Research. Pwnie Awards 2020

TRRespass: Exploiting the Many Sides of Target Row Refresh

Pietro Frigo^{*†} Emanuele Vannacci^{*†} Hasan Hassan[§] Victor van der Veen[¶] Onur Mutlu[§] Cristiano Giuffrida^{*} Herbert Bos^{*} Kaveh Razavi^{*}

*Vrije Universiteit Amsterdam


[§]ETH Zürich

¶Qualcomm Technologies Inc.

TRRespass

- First work to show that TRR-protected DRAM chips are vulnerable to RowHammer in the field
 - Mitigations advertised as secure are not secure
- Introduces the Many-sided RowHammer attack
 - Idea: Hammer many rows to bypass TRR mitigations (e.g., by overflowing proprietary TRR tables that detect aggressor rows)
- (Partially) reverse-engineers the TRR and pTRR mitigation mechanisms implemented in DRAM chips and memory controllers
- Provides an automatic tool that can effectively create manysided RowHammer attacks in DDR4 and LPDDR4(X) chips

Example Many-Sided Hammering Patterns

(a) Assisted double-sided

(b) 4-sided

Fig. 12: Hammering patterns discovered by *TRRespass*. Aggressor rows are in red (\blacksquare) and victim rows are in blue (\square).

TRRespass Vulnerable DRAM Modules

Module	Date	Freq.	Size	Organization			1410	Found	D D	(Corruption	15	Double
	(yy-ww)	(MHz)	(GB)	Ranks	Banks	Pins	MAC	Patterns	Best Pattern	Total	$1 \rightarrow 0$	$0 \rightarrow 1$	Refresh
$A_{0,1,2,3}$	16-37	2132	4	1	16	$\times 8$	UL			_	_	_	
A	16-51	2132	4	1	16	$\times 8$	UL	4	9-sided	7956	4008	3948	
A_5	18-51	2400	4	1	8	×16	UL		_	_	-	_	_
$A_{6,7}$	18-15	2666	4	1	8	×16	UL	- <u></u>	<u></u>		10-10		
A_8	17-09	2400	8	1	16	$\times 8$	UL	33	19-sided	20808	10289	10519	_
\mathcal{A}_9	17-31	2400	8	1	16	$\times 8$	UL	33	19-sided	24854	12580	12274	-
A_{10}	19-02	2400	16	2	16	$\times 8$	UL	488	10-sided	11342	1809	11533	~
A_{11}	19-02	2400	16	2	16	$\times 8$	UL	523	10-sided	12830	1682	11148	~
$A_{12,13}$	18-50	2666	8	1	16	$\times 8$	UL	_	_	-	_	_	_
A_{14}	19-08 [†]	3200	16	2	16	$\times 8$	UL	120	14-sided	32723	16490	16233	_
A_{15}^{\ddagger}	17-08	2132	4	1	16	$\times 8$	UL	2	9-sided	22397	12351	10046	
\mathcal{B}_0	18-11	2666	16	2	16	×8	UL	2	3-sided	17	10	7	100
\mathcal{B}_1	18-11	2666	16	2	16	$\times 8$	UL	2	3-sided	22	16	6	
B_2	18-49	3000	16	2	16	$\times 8$	UL	2	3-sided	5	2	3	
B_3	19-08†	3000	8	1	16	$\times 8$	UL	-	-		-	-	-
$B_{4,5}$	19-08†	2666	8	2	16	$\times 8$	UL		_		-	_	-
B _{6.7}	19-08†	2400	4	1	16	$\times 8$	UL		-	_	-	-	-
B_8°	19-08†	2400	8	1	16	$\times 8$	UL	_	-	-		_	-
B_9°	19-08†	2400	8	1	16	$\times 8$	UL	2	3-sided	12	_	12	1
$B_{10,11}$	16-13†	2132	8	2	16	$\times 8$	UL		_		-	-	_
$C_{0,1}$	18-46	2666	16	2	16	$\times 8$	UL	-	-	-	(-)	-	-
$C_{2,3}$	19-08†	2800	4	1	16	$\times 8$	UL		-	-	-	-	-
$C_{4,5}$	19-08 [†]	3000	8	1	16	$\times 8$	UL					-	
$C_{6,7}$	19-08†	3000	16	2	16	$\times 8$	UL			-		-	-
C_8	19-08†	3200	16	2	16	$\times 8$	UL		-	-	—	-	-
C_9	18-47	2666	16	2	16	$\times 8$	UL			-	_	-	-
$C_{10,11}$	19-04	2933	8	1	16	$\times 8$	UL			-	-	-	-
C_{12}^{\ddagger}	15-01 [†]	2132	4	1	16	$\times 8$	UT	25	10-sided	190037	63904	126133	~
C_{13}^{\ddagger}	18-49	2132	4	1	16	$\times 8$	UT	3	9-sided	694	239	455	-

TABLE II: TRRespass results. We report the number of patterns found and bit flips detected for the 42 DRAM modules in our set.

The module does not report manufacturing date. Therefore, we report purchase date as an approximation.

UL = Unlimited UT = Untested

Analyzed using the FPGA-based SoftMC.

The system runs with double refresh frequency in standard conditions. We configured the refresh interval to be 64 ms in the BIOS settings.

TRRespass Vulnerable Mobile Phones

TABLE III: LPDDR4(X) results. Mobile phones tested against *TRRespass* on ARMv8 sorted by production date. We found bit flip inducing RowHammer patterns on 5 out of 13mobile phones.

Mobile Phone	Year	SoC	Memory (GB)	Found Patterns
Google Pixel	2016	MSM8996	4†	~
Google Pixel 2	2017	MSM8998	4	<u> </u>
Samsung G960F/DS	2018	Exynos 9810	4	
Huawei P20 DS	2018	Kirin 970	4	
Sony XZ3	2018	SDM845	4	<u>18</u> 6
HTC U12+	2018	SDM845	6	
LG G7 ThinQ	2018	SDM845	4†	\checkmark
Google Pixel 3	2018	SDM845	4	\checkmark
Google Pixel 4	2019	SM8150	6	
OnePlus 7	2019	SM8150	8	~
Samsung G970F/DS	2019	Exynos 9820	6	\checkmark
Huawei P30 DS	2019	Kirin 980	6	
Xiaomi Redmi Note 8 Pro	2019	Helio G90T	6	

SAFARI

LPDDR4 (not LPDDR4X)

TRRespass Based RowHammer Attack

TABLE IV: Time to exploit. Time to find the first exploitable template on two sample modules from each DRAM vendor.

Module	τ (<i>ms</i>)	<i>PTE</i> [81]	RSA-2048 [79]	sudo [27]
\mathcal{A}_{14}	188.7	4.9s	6m 27s	_
\mathcal{A}_4	180.8	38.8s	39m 28s	_
\mathcal{B}_1	360.7	—	_	_
\mathcal{B}_2	331.2			—
\mathcal{C}_{12}	300.0	2.3s	74.6s	54m16s
\mathcal{C}_{13}	180.9	3h 15m		_

 τ : Time to template a single row: time to fill the victim and aggressor rows + hammer time + time to scan the row.

SAFARI

TRRespass Key Results

- 13 out of 42 tested DDR4 DRAM modules are vulnerable
 - □ From all 3 major manufacturers
 - □ 3-, 9-, 10-, 14-, 19-sided hammer attacks needed
- 5 out of 13 mobile phones tested vulnerable
 - From 4 major manufacturers
 - With LPDDR4(X) DRAM chips
- These results are scratching the surface
 - TRRespass tool is not exhaustive
 - There is a lot of room for uncovering more vulnerable chips and phones

TRRespass Key Takeaways

RowHammer is still an open problem

Security by obscurity is likely not a good solution

Detailed Lecture on TRRespass

- Computer Architecture, Fall 2020, Lecture 5a
 - RowHammer in 2020: TRRespass (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5 Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9

https://www.youtube.com/onurmutlulectures

Industry-Adopted Solutions Do Not Work

 Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
 "TRRespass: Exploiting the Many Sides of Target Row Refresh" Proceedings of the <u>41st IEEE Symposium on Security and Privacy</u> (S&P), San Francisco, CA, USA, May 2020.
 [Slides (pptx) (pdf)]
 [Lecture Slides (pptx) (pdf)]
 [Talk Video (17 minutes)]
 [Lecture Video (59 minutes)]
 [Source Code]
 [Web Article]
 Best paper award.

Pwnie Award 2020 for Most Innovative Research. Pwnie Awards 2020

TRRespass: Exploiting the Many Sides of Target Row Refresh

Pietro Frigo^{*†} Emanuele Vannacci^{*†} Hasan Hassan[§] Victor van der Veen[¶] Onur Mutlu[§] Cristiano Giuffrida^{*} Herbert Bos^{*} Kaveh Razavi^{*}

*Vrije Universiteit Amsterdam

[§]ETH Zürich

¶Qualcomm Technologies Inc.

How to Guarantee That a Chip is RowHammer-Free?

Hard to Guarantee RowHammer-Free Chips

 Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, Alec Wolman, and Onur Mutlu,
 "Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers"
 Proceedings of the <u>41st IEEE Symposium on Security and</u> Privacy (S&P), San Francisco, CA, USA, May 2020.
 [Slides (pptx) (pdf)]
 [Talk Video (17 minutes)]

Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers

Lucian Cojocar, Jeremie Kim^{§†}, Minesh Patel[§], Lillian Tsai[‡], Stefan Saroiu, Alec Wolman, and Onur Mutlu^{§†} Microsoft Research, [§]ETH Zürich, [†]CMU, [‡]MIT Uncovering TRR Almost Completely

Industry-Adopted Solutions Are Very Poor

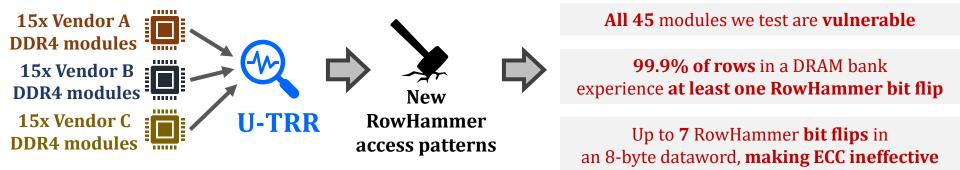
Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Victor van der Veen, Kaveh Razavi, and Onur Mutlu,
 "Uncovering In-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implications"
 Proceedings of the 54th International Symposium on Microarchitecture (MICRO),
 Virtual, October 2021.
 [Slides (pptx) (pdf)]
 [Short Talk Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Lightning Talk Video (100 seconds)]
 [arXiv version]

Uncovering In-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implications

Hasan Hassan †	Yahya Can Tuğrul ^{†‡}	Jeremie S. Kin	n^{\dagger} Victor van der Veen ^{σ}
	Kaveh Razavi †	Onur Mutlu	†
†ETH Zürich	[‡] TOBB University of Economics	& Technology	$^{\sigma}Qualcomm$ Technologies Inc.

U-TRR Summary & Key Results

Target Row Refresh (TRR):


a set of obscure, undocumented, and proprietary RowHammer mitigation techniques

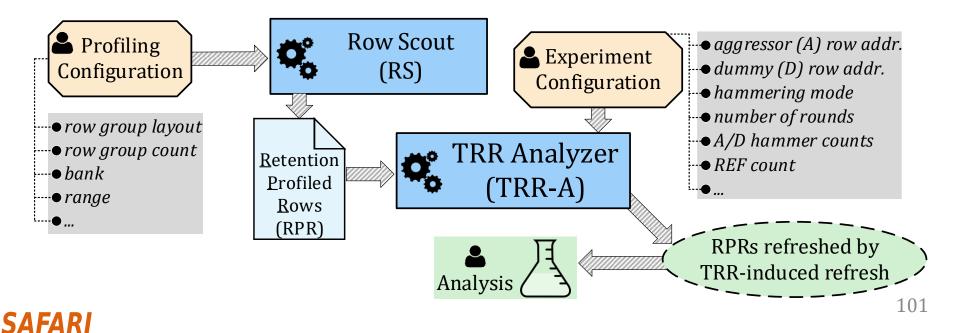
We cannot easily study the security properties of TRR

Is TRR fully secure? How can we validate its security guarantees?

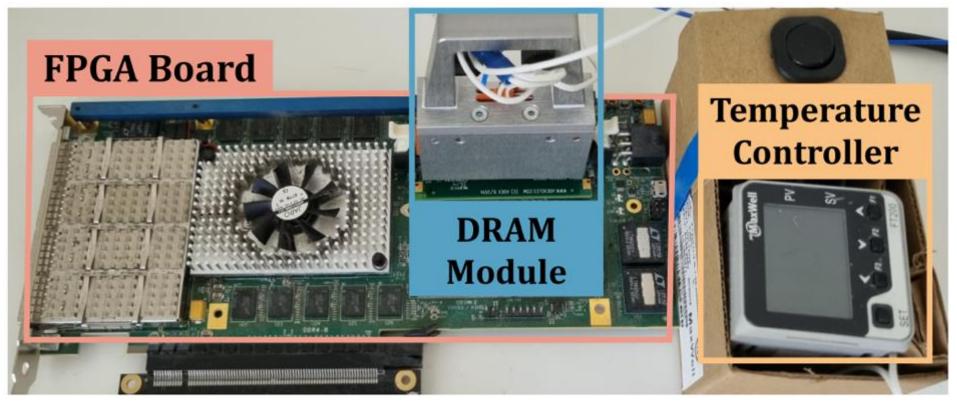
U-TRR

A new methodology that leverages *data retention failures* to uncover the inner workings of TRR and study its security

TRR does not provide security against RowHammer

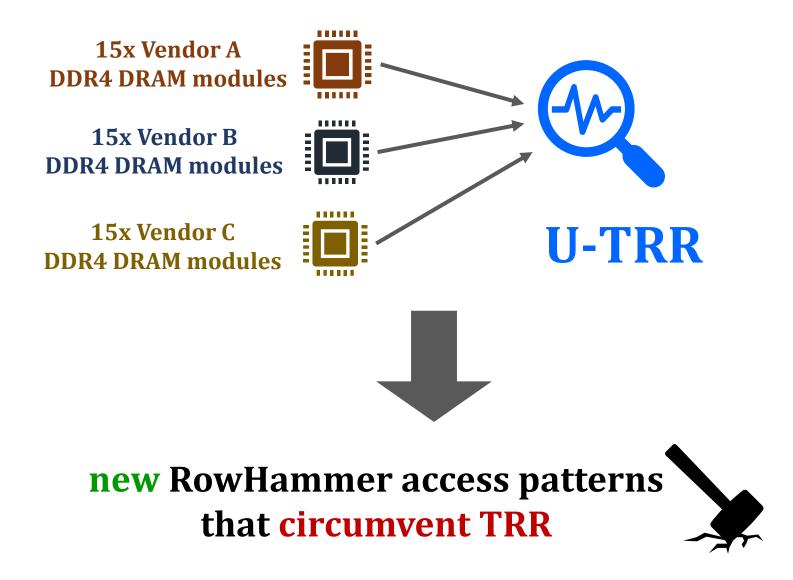

U-TRR can facilitate the development of **new RowHammer attacks** and **more secure RowHammer protection** mechanisms

SAFARI


Overview of U-TRR

U-TRR: A new methodology to *uncover* the inner workings of TRR

Key idea: Use data retention failures as a side channel to detect when a row is refreshed by TRR

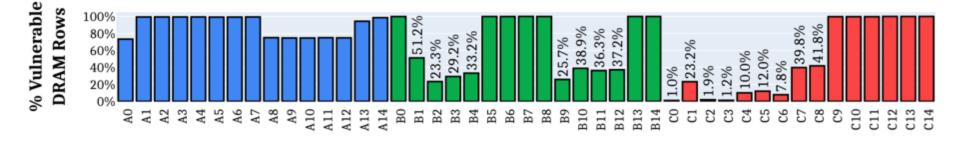


Analyzing TRR-Protected DDR4 Chips

* SoftMC [Hassan+, HPCA'17] enhanced for DDR4

U-TRR Analysis Summary

Key Takeaways

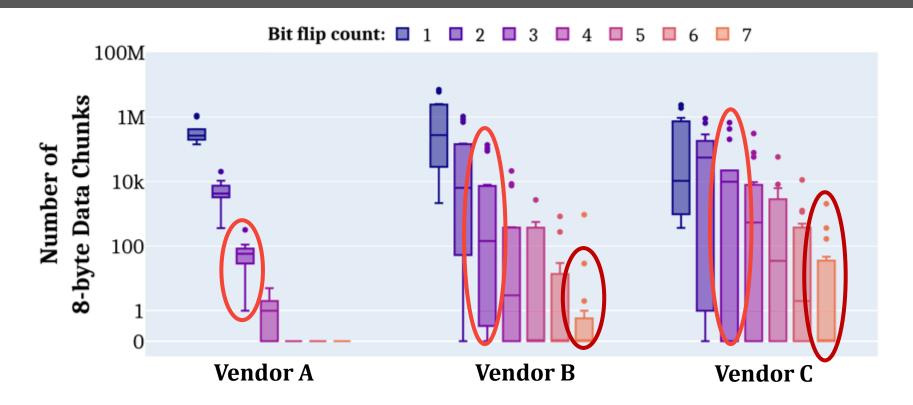

All 45 modules we test are vulnerable

99.9% of rows in a DRAM bank experience **at least one RowHammer bit flip**

ECC is ineffective: up to **7 RowHammer bit flips** in an 8-byte dataword

		Chin	On	ganization	12					Our Kev TR	R Observations	and Results		
Module	Date (yy-ww)	Chip Density (Gbit)	Ranks	Banks	Pins	HC_{first} †	Version	Aggressor Detection	Aggressor Capacity	Per-Bank TRR	TRR-to-REF Ratio	Neighbors Refreshed	% Vulnerable DRAM Rows†	Max. Bit Flips per Row per Hammer†
A0	19-50	8	1	16	8	16K	A_{TRR1}	Counter-based	16	1	1/9	4	73.3%	1.16
A1-5	19-36	8	1	8	16	13K - 15K	A_{TRR1}	Counter-based	16	1	1/9	4	99.2% - 99.4%	2.32 - 4.73
A6-7	19-45	8	1	8	16	13K - 15K	A_{TRR1}	Counter-based	16	1	1/9	4	99.3% - 99.4%	2.12 - 3.86
A8-9	20-07	8	1	16	8	12K - 14K	A_{TRR1}	Counter-based	16	1	1/9	4	74.6% - 75.0%	1.96 - 2.96
A10-12	19-51	8	1	16	8	12K - 13K	A_{TRR1}	Counter-based	16	1	1/9	4	74.6% - 75.0%	1.48 - 2.86
A13-14	20-31	8	1	8	16	11K-14K	A_{TRR2}	Counter-based	16	1	1/9	2	94.3% - 98.6%	1.53 - 2.78
B0	18-22	4	1	16	8	44K	B _{TRR1}	Sampling-based	1	×	1/4	2	99.9%	2.13
B1-4	20-17	4	1	16	8	159K - 192K	B_{TRR1}	Sampling-based	1	×	1/4	2	23.3% - 51.2%	0.06 - 0.11
B5-6	16-48	4	1	16	8	44K-50K	B_{TRR1}	Sampling-based	1	×	1/4	2	99.9%	1.85 - 2.03
B7	19-06	8	2	16	8	20K	B_{TRR1}	Sampling-based	1	×	1/4	2	99.9%	31.14
B8	18-03	4	1	16	8	43K	B_{TRR1}	Sampling-based	1	×	1/4	2	99.9%	2.57
B9-12	19-48	8	1	16	8	42K-65K	B_{TRR2}	Sampling-based	1	×	1/9	2	36.3% - 38.9%	16.83 - 24.26
B13-14	20-08	4	1	16	8	11K-14K	B_{TRR3}	Sampling-based	1	~	1/2	4	99.9%	16.20 - 18.12
C0-3	16-48	4	1	16	x8	137K-194K	C_{TRR1}	Mix	Unknown	1	1/17	2	1.0% - 23.2%	0.05 - 0.15
C4-6	17-12	8	1	16	x8	130K - 150K	C_{TRR1}	Mix	Unknown	1	1/17	2	7.8% - 12.0%	0.06 - 0.08
C7-8	20-31	8	1	8	x16	40K - 44K	C_{TRR1}	Mix	Unknown	1	1/17	2	39.8% - 41.8%	9.66 - 14.56
C9-11	20-31	8	1	8	x16	42K-53K	C_{TRR2}	Mix	Unknown	1	1/9	2	99.7%	9.30 - 32.04
C12-14	20-46	16	1	8	x16	6K-7K	C_{TRR3}	Mix	Unknown	1	1/8	2	99.9%	4.91 - 12.64
														101

Effect on Individual Rows



All 45 modules we tested are vulnerable to our new RowHammer access patterns

Our RowHammer access patterns cause bit flips in more than 99.9% of the rows

Bypassing ECC with New RowHammer Patterns

Modules from all three vendors have many **8-byte data chunks** with **3 and more (up to 7) RowHammer bit flips**

Conventional DRAM ECC cannot protect against our new RowHammer access patterns

SAFARI

Many Observations & Results in the Paper

- More observations on the TRRs of the three vendors
- Detailed description of the crafted access patterns
- Hammers per aggressor row sensitivity analysis
- Observations and results for individual modules

Date Chip	Chip	Or	ganizatio	n					Our Key TR	R Observations	and Results			
Module	Module (Densit	Density 1	Ranks	Banks	Pins	HC _{first} †	Version	Aggressor Detection	Aggressor Capacity	Per-Bank TRR	TRR-to-REF Ratio	Neighbors Refreshed	% Vulnerable DRAM Rows†	Max. Bit Flips per Row per Hammer†
A0	19-50	8	1	16	8	16K	ATRRI	Counter-based	16	1	1/9	4	73.3%	1.16
A1-5	19-36	8	1	8	16	13K-15K	ATRR1	Counter-based	16	1	1/9	4	99.2% - 99.4%	2.32 - 4.73
A6-7	19-45	8	1	8	16	13K-15K	ATRR1	Counter-based	16	1	1/9	4	99.3% - 99.4%	2.12 - 3.86
A8-9	20-07	8	1	16	8	12K-14K	ATRRI	Counter-based	16	1	1/9	4	74.6% - 75.0%	1.96 - 2.96
A10-12	19-51	8	1	16	8	12K-13K	ATRRI	Counter-based	16	1	1/9	4	74.6% - 75.0%	1.48 - 2.86
A13-14	20-31	8	1	8	16	11K-14K	ATRR2	Counter-based	16	1	1/9	2	94.3% - 98.6%	1.53 - 2.78
BO	18-22	4	1	16	8	44K	BTRR1	Sampling-based	1	×	1/4	2	99.9%	2.13
B1-4	20-17	4	1	16	8	159K-192K	B _{TRR1}	Sampling-based	1	×	1/4	2	23.3% - 51.2%	0.06 - 0.11
B5-6	16-48	4	1	16	8	44K-50K	BTRR1	Sampling-based	1	×	1/4	2	99.9%	1.85 - 2.03
B7	19-06	8	2	16	8	20K	B _{TRR1}	Sampling-based	1	×	1/4	2	99.9%	31.14
B8	18-03	4	1	16	8	43K	BTRRI	Sampling-based	1	×	1/4	2	99.9%	2.57
B9-12	19-48	8	1	16	8	42K-65K	BTRR2	Sampling-based	1	×	1/9	2	36.3% - 38.9%	16.83 - 24.26
B13-14	20-08	4	1	16	8	11K-14K	B _{TRR3}	Sampling-based	1	1	1/2	4	99.9%	16.20 - 18.12
C0-3	16-48	4	1	16	x8	137K-194K	CTRR1	Mix	Unknown	1	1/17	2	1.0% - 23.2%	0.05 - 0.15
C4-6	17-12	8	1	16	x8	130K-150K	C _{TRR1}	Mix	Unknown	1	1/17	2	7.8% - 12.0%	0.06 - 0.08
C7-8	20-31	8	1	8	x16	40K-44K	CTRR1	Mix	Unknown	1	1/17	2	39.8% - 41.8%	9.66 - 14.56
C9-11	20-31	8	1	8	x16	42K-53K	CTRR2	Mix	Unknown	1	1/9	2	99.7%	9.30 - 32.04
C12-14	20-46	16	1	8	x16	6K-7K	CTRR3	Mix	Unknown	1	1/8	2	99.9%	4.91 - 12.64

Uncovering TRR Can Help Future Solutions

Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Victor van der Veen, Kaveh Razavi, and Onur Mutlu,
 "Uncovering In-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implications"
 Proceedings of the 54th International Symposium on Microarchitecture (MICRO),
 Virtual, October 2021.
 [Slides (pptx) (pdf)]
 [Short Talk Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Talk Video (25 minutes)]
 [Lightning Talk Video (100 seconds)]
 [arXiv version]

Uncovering In-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implications

Hasan Hassan †	Yahya Can Tuğrul ^{†‡}	Jeremie S. Kim	d^{\dagger} Victor van der Veen ^{σ}
	Kaveh Razavi [†]	Onur Mutlu [†]	
†ETH Zürich	[‡] TOBB University of Economics	& Technology	$^{\sigma}$ Qualcomm Technologies Inc.

New RowHammer Characteristics

RowHammer Has Many Dimensions

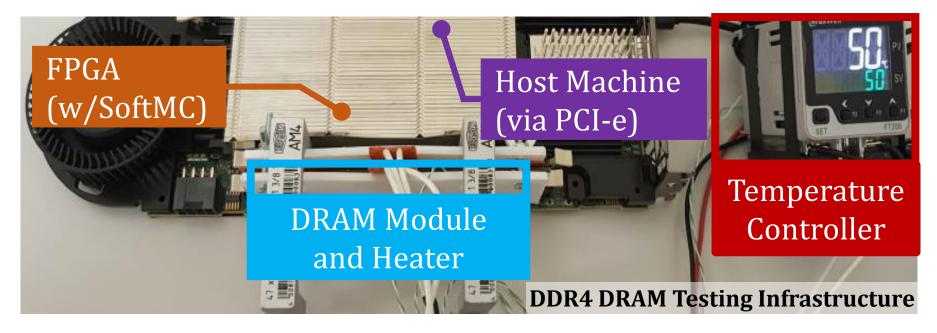
 Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo, Ataberk Olgun, Jisung Park, Hasan Hassan, Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
 "A Deeper Look into RowHammer's Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses" Proceedings of the <u>54th International Symposium on Microarchitecture</u> (MICRO), Virtual, October 2021.
 [Slides (pptx) (pdf)]
 [Short Talk Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Lightning Talk Video (1.5 minutes)]
 [arXiv version]

A Deeper Look into RowHammer's Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses

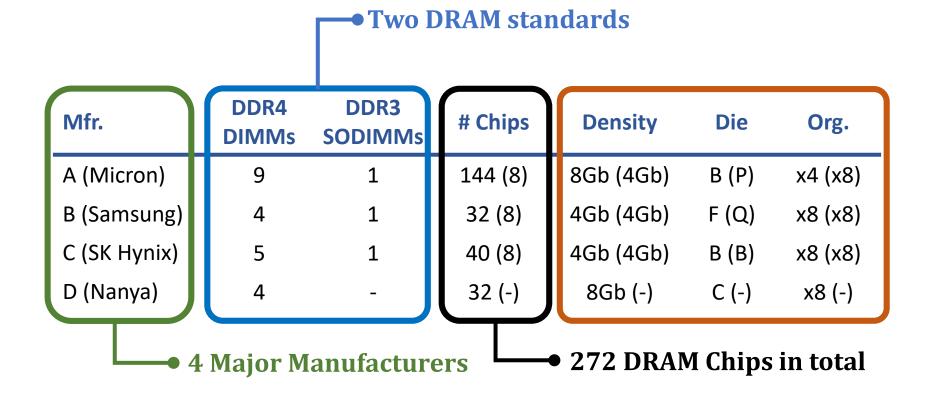
Ataberk Olgun Lois Orosa^{*} A. Giray Yağlıkçı* Haocong Luo Jisung Park ETH Zürich ETH Zürich ETH Zürich ETH Zürich, TOBB ETÜ ETH Zürich Hasan Hassan Minesh Patel Onur Mutlu Jeremie S. Kim ETH Zürich ETH Zürich ETH Zürich ETH Zürich

Our Goal

Provide insights into three fundamental properties



To find **effective and efficient** attacks and defenses


DRAM Testing Infrastructures

Two separate testing infrastructures **1. DDR3:** FPGA-based SoftMC (Xilinx ML605) **2. DDR4:** FPGA-based SoftMC (Xilinx Virtex UltraScale+ XCU200)

Fine-grained control over **DRAM commands**, **timing parameters** and **temperature (±0.1°C)**

DRAM Chips Tested

Summary of The Study & Key Results

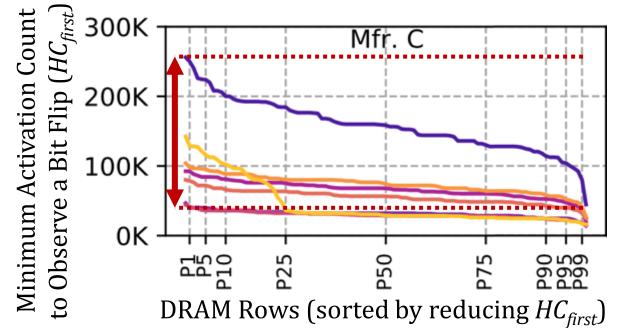
- 272 DRAM chips from four major manufacturers
- 6 major takeaways from 16 novel observations
- A RowHammer bit flip is more likely to occur
 1) in a bounded range of temperature
 2) if the aggressor row is active for longer time
 3) in certain physical regions of the DRAM module under attack
- Our novel observations can inspire and aid future work
 - Craft more effective attacks
 - Design more effective and efficient defenses

Example Attack Improvement 3: Bypassing Defenses with Aggressor Row Active Time

Activating aggressor rows as frequently as possible:

Row A is
activeRow B is
activeRow A is
activeRow B is
activeTime

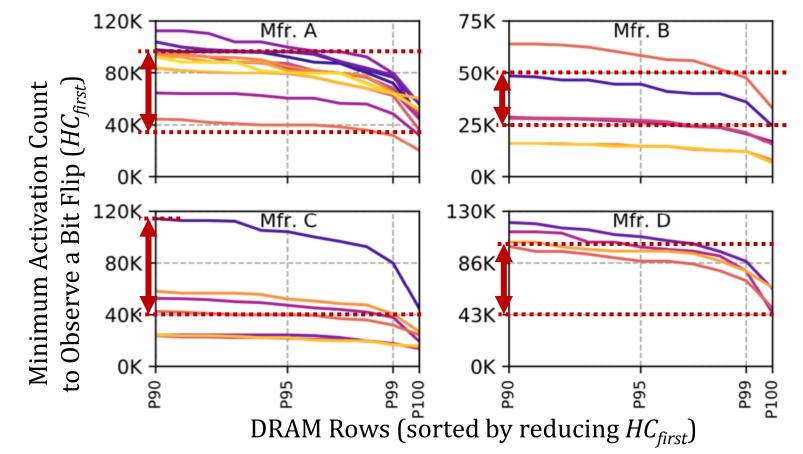
Keeping aggressor rows active for a longer time:



Reduces the minimum activation count to induce a bit flip by 36%

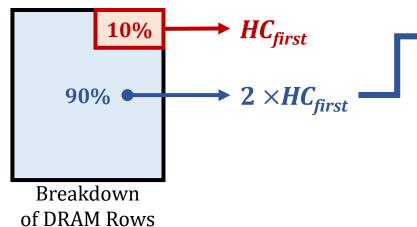
Bypasses defenses that do not account for this reduction

Spatial Variation across Rows


The **minimum activation count** to observe bit flips (*HC_{first}*) across **DRAM rows**:

The RowHammer vulnerability significantly varies across DRAM rows

Spatial Variation across Rows



OBSERVATION 12

A small fraction of DRAM rows are significantly more vulnerable to RowHammer than the vast majority of the rows

Example Defense Improvements

• Example 1: Leveraging variation across DRAM rows

Aggressiveness can be reduced: 33% area reduction for BlockHammer [Yağlıkçı+, HPCA'21] 80% area reduction for Graphene [Park+, MICRO'20]

Example 2: Leveraging variation with temperature

• A DRAM cell experiences **bit flips** within **a bounded temperature range** no bit flips no bit flips

Vulnerable Temperature Range

Temperature

• A row can be **disabled** within the row's **vulnerable temperature range**

Many More Analyses In The Paper

 Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo, Ataberk Olgun, Jisung Park, Hasan Hassan, Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
 "A Deeper Look into RowHammer's Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses" Proceedings of the <u>54th International Symposium on Microarchitecture</u> (MICRO), Virtual, October 2021.
 [Slides (pptx) (pdf)]
 [Short Talk Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Lightning Talk Video (1.5 minutes)]
 [arXiv version]

A Deeper Look into RowHammer's Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses

Lois Orosa*A. Giray Yağlıkçı*Haocong LuoAtaberk OlgunJisung ParkETH ZürichETH ZürichETH ZürichETH Zürich, TOBB ETÜETH ZürichHasan HassanMinesh PatelJeremie S. KimOnur Mutlu

ETH Zürich

Minesh Patel ETH Zürich Jeremie S. Kim ETH Zürich Onur Mutlu ETH Zürich

Many More Analyses In The Paper

MICRO 2021 Conference Presentations

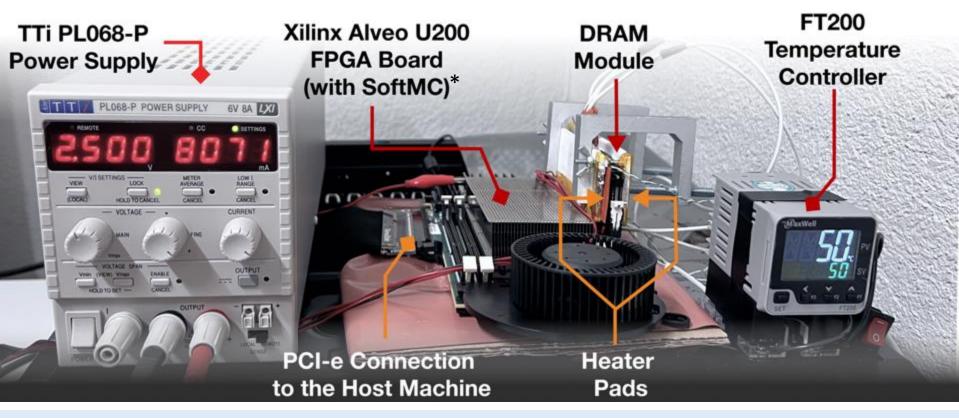
A Deeper Look into RowHammer's Sensitivities: Analysis, Attacks & Defenses - MICRO'21 Long Talk; 21m

A Deeper Look into RowHammer's Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses

Lois Orosa* A. Giray Yağlıkçı* Haocong Luo Ataberk Olgun Jisung Park ETH Zürich ETH Zürich ETH Zürich, TOBB ETÜ ETH Zürich Hasan Hassan Minesh Patel Jeremie S. Kim Onur Mutlu https://youtube.com/watch?v=fkM320A0u6U&si=EnSIkaIECMiOmarE

More RowHammer Analysis

RowHammer vs. Wordline Voltage (2022)


 A. Giray Yağlıkçı, Haocong Luo, Geraldo F. de Oliviera, Ataberk Olgun, Minesh Patel, Jisung Park, Hasan Hassan, Jeremie S. Kim, Lois Orosa, and Onur Mutlu, "Understanding RowHammer Under Reduced Wordline Voltage: An Experimental Study Using Real DRAM Devices" Proceedings of the 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Baltimore, MD, USA, June 2022.
 [Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Talk Video (34 minutes, including Q&A)]
 [Lightning Talk Video (2 minutes)]

Understanding RowHammer Under Reduced Wordline Voltage: An Experimental Study Using Real DRAM Devices

A. Giray Yağlıkçı¹ Haocong Luo¹ Geraldo F. de Oliviera¹ Ataberk Olgun¹ Minesh Patel¹ Jisung Park¹ Hasan Hassan¹ Jeremie S. Kim¹ Lois Orosa^{1,2} Onur Mutlu¹ ¹ETH Zürich ²Galicia Supercomputing Center (CESGA)

Updated DRAM Testing Infrastructure

FPGA-based SoftMC (Xilinx Virtex UltraScale+ XCU200)

Fine-grained control over DRAM commands, timing parameters (±1.5ns), temperature (±0.1°C), and wordline voltage (±1mV)

SAFARI *Hassan et al., "SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental 124 DRAM Studies," in HPCA, 2017. [Available on GitHub: https://github.com/CMU-SAFARI/SoftMC]

Summary

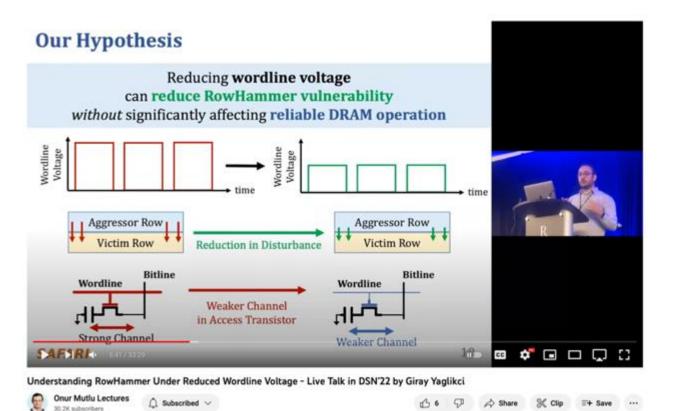
We provide *the first* RowHammer characterization **under reduced wordline voltage**

Experimental results with 272 real DRAM chips show that reducing wordline voltage:

1. Reduces RowHammer vulnerability

- Bit error rate caused by a RowHammer attack reduces by 15.2% (66.9% max)
- A row needs to be activated 7.4% more times (85.8% max) to induce the first bit flip

2. Increases row activation latency


- More than **76%** of the tested DRAM chips **reliably operate** using **nominal** timing parameters
- Remaining **24% reliably operate** with **increased** (up to 24ns) row activation latency

3. Reduces data retention time

- 80% of the tested DRAM chips reliably operate using nominal refresh rate
- Remaining 20% reliably operate by
 - Using single error correcting codes
 - **Doubling the refresh rate** for a small fraction (16.4%) of DRAM rows

Reducing wordline voltage can **reduce RowHammer vulnerability** *without* significantly affecting **reliable DRAM operation**

RowHammer vs. Wordline Voltage (2022)

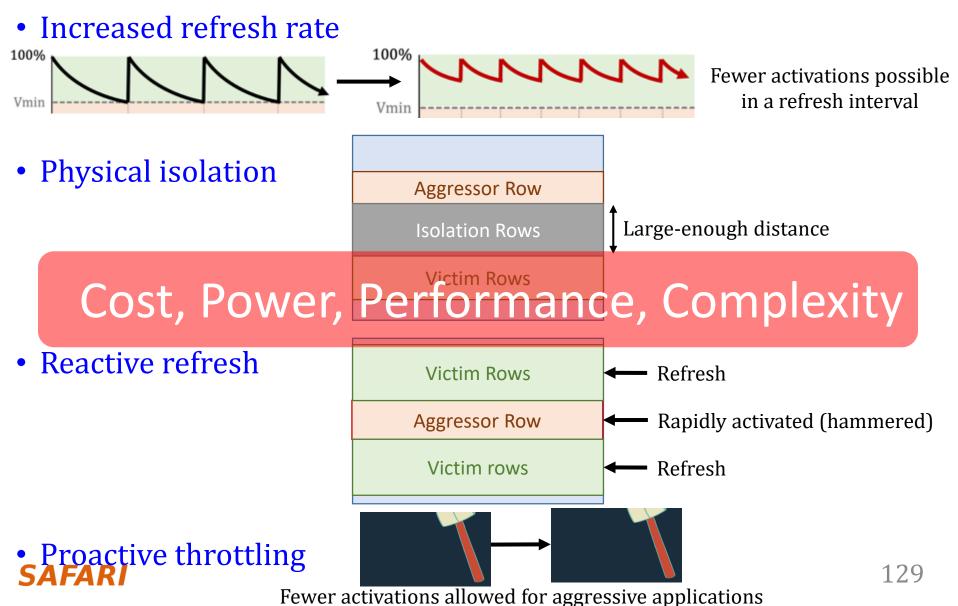
Understanding RowHammer Under Reduced Wordline Voltage: An Experimental Study Using Real DRAM Devices

A. Giray Yağlıkçı¹ Haocong Luo¹ Geraldo F. de Oliviera¹ Ataberk Olgun¹ Minesh Patel¹ Jisung Park¹ Hasan Hassan¹ Jeremie S. Kim¹ Lois Orosa^{1,2} Onur Mutlu¹ ¹ETH Zürich ²Galicia Supercomputing Center (CESGA)

SAFARI <u>https://www.youtube.com/watch?v=CJoBROgFbwc</u>

New RowHammer Solutions

BlockHammer Solution in 2021


A. Giray Yaglikci, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun, Lois Orosa, Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha Shahroodi, Saugata Ghose, and Onur Mutlu, "BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows" Proceedings of the 27th International Symposium on High-Performance Computer <u>Architecture</u> (**HPCA**), Virtual, February-March 2021. [Slides (pptx) (pdf)] Short Talk Slides (pptx) (pdf) [Intel Hardware Security Academic Awards Short Talk Slides (pptx) (pdf)] [Talk Video (22 minutes)] [Short Talk Video (7 minutes)] [Intel Hardware Security Academic Awards Short Talk Video (2 minutes)] [BlockHammer Source Code] Intel Hardware Security Academic Award Finalist (one of 4 finalists out of 34 nominations)

BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows

A. Giray Yağlıkçı¹ Minesh Patel¹ Jeremie S. Kim¹ Roknoddin Azizi¹ Ataberk Olgun¹ Lois Orosa¹ Hasan Hassan¹ Jisung Park¹ Konstantinos Kanellopoulos¹ Taha Shahroodi¹ Saugata Ghose² Onur Mutlu¹ ¹ETH Zürich ²University of Illinois at Urbana–Champaign

RowHammer Solution Approaches

• More robust DRAM chips **and/or** error-correcting codes

Two Key Challenges

Scalability with worsening RowHammer vulnerability

2 Compatibility with commodity DRAM chips

1

Our Goal

To prevent RowHammer efficiently and scalably *without* knowledge of or modifications to DRAM internals

BlockHammer Key Idea

Selectively throttle memory accesses that may cause RowHammer bit-flips

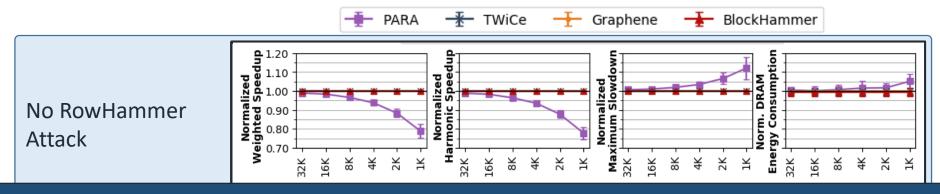
BlockHammer: Practical Throttling-based Mechanism

- A RowHammer attack hammers Row A
 BlockHammer detects a RowHammer attack using area-efficient Bloom filters
- BlockHammer selectively throttles accesses from within the memory controller
- Bit flips **do not** occur

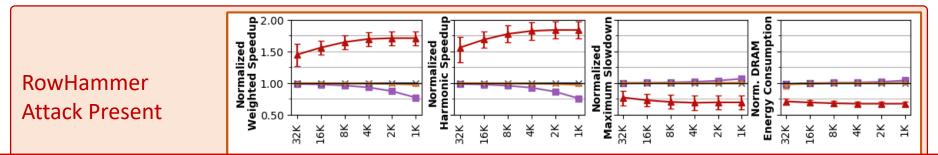
Physical Row Layout

Row A

• BlockHammer can *optionally* **inform the system software** about the attack


BlockHammer is compatible with commodity DRAM chips No need for proprietary info of or modifications to DRAM chips

Evaluation: BlockHammer Scaling with RowHammer Vulnerability


• System throughput (weighted speedup)

SAFARI

- Job turnaround time (harmonic speedup)
- Unfairness (maximum slowdown)
- DRAM energy consumption

BlockHammer's performance and energy overheads remain negligible (<0.6%)

BlockHammer scalably provides **much higher performance** (71% on average) and **lower energy consumption** (32% on average) than state-of-the-art mechanisms

Key Results: BlockHammer

- **Competitive** with state-of-the-art mechanisms **when there is no attack**
- Superior performance and DRAM energy when RowHammer attack present
- Better hardware area scaling with RowHammer vulnerability
- Security Proof
- Addresses Many-Sided Attacks
- Evaluation of **14 mechanisms** across four desirable properties
 - Comprehensive Protection
 - Compatibility with Commodity DRAM Chips
 - Scalability with RowHammer Vulnerability
 - Deterministic Protection

BlockHammer is the only solution that					
satisfies					
all four desirable					
properties					

	M Chips cability Approach	Mechanism	Comprehensiv Protection	Compatible w Commodity DRAM Chips	Scaling with RowHammer Vulnerability	Deterministic Protection	
-	Increased Refresh Rate [2, 73]		1	1	×	1	
	Physical Isolation	CATT [14] GuardION [148] ZebRAM [78]	* * *	× × ×	× × ×	1	
	Reactive Refresh	ANVIL [5] PARA [73] PRoHIT [137] MRLoc [161] CBT [132] TWiCe [84] Graphene [113]	×	****	× × × × × × × × × × ×	✓ × × × × × ×	
	Proactive Throttling	Naive Thrott. [102] Thrott. Supp. [40] BlockHammer		× × ×	× × √		

More in the Paper: BlockHammer

- Using area-efficient Bloom filters for RowHammer detection
- Security Proof
 - Mathematically represent **all possible** access patterns
 - No row can be activated high-enough times to induce bit-flips
- BlockHammer prevents many-sided attacks
 - TRRespass [Frigo+, S&P'20]
 - U-TRR [Hassan+, MICRO'21]
 - BlackSmith [Jattke+, S&P'22]
 - Half-Double [Kogler+, USENIX Security'22]
- System Integration
 - **BlockHammer** can detect **RowHammer attacks** with **high accuracy** and **inform system software**
 - Measures RowHammer likelihood of each thread
- Hardware complexity analysis

Summary: BlockHammer

- BlockHammer is the first work to practically enable throttling-based RowHammer mitigation
- BlockHammer is implemented in the memory controller (*no proprietary information of / no modifications* to DRAM chips)
- BlockHammer is *both* scalable with worsening RowHammer and compatible with commodity DRAM chips
- BlockHammer is **open-source** along with **six state-of-the-art mechanisms**: <u>https://github.com/CMU-SAFARI/BlockHammer</u>

Main Memory Needs **Intelligent Controllers** for Security, Safety, Reliability, Scaling

Row Migration-Based RowHammer Defense

Key Idea: Dynamically remap an aggressor row address to a different physical row before a RowHammer bitflip occurs

- Does not require refreshing victim rows
- Relocates the aggressor row's data

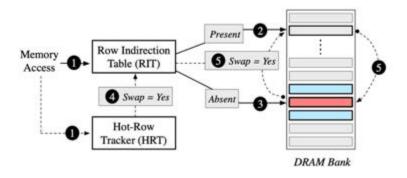


Figure 2: Overview of the Randomized Row Swap (RRS). The Row Indirection Table (RIT) is checked to determine if the access should go to original or remapped location. The Hot-Row Tracker (HRT) identifies rows that must undergo swap.

Saileshwar et al. **"Randomized Row Swap: Mitigating Row Hammer** by Breaking Spatial Correlation between Aggressor and Victim Rows," in ASPLOS 2022.

Row Migration-Based RowHammer Defense

AQUA: Scalable Rowhammer Mitigation by Quarantining


Aggressor Rows at Runtime

Gururaj Saileshwar*

Bolin Wang

Moinuddin Qureshi

Prashant J. Nair

Anish Saxena

Gururaj Saileshwar

Prashant J. Nair

Moinuddin Qureshi

HPCA 2023

The 29th IEEE International Symposium on High-Performance Computer Architecture (HPCA-29)

Scalable and Secure Row-Swap: Efficient and Safe Row Hammer Mitigation in Memory Systems Jeonghyun Woo (University of British Columbia), Gururaj Saileshwar (Georgia Institute of Technology), Prashant J. Nair (University of British Columbia) SHADOW: Preventing Row Hammer in DRAM with Intra-Subarray Row Shuffling Minbok Wi (Seoul National University), Jaehyun Park (Seoul National University), Seoyoung Ko (Seoul National University), Michael Jaemin Kim (Seoul National University), Nam Sung Kim (UIUC), Eojin Lee (Inha University), Jung Ho Ahn (Seoul National University)

More RowHammer in 2020-2022

RowHammer in 2020 (I)

CRO 2020	Submit Work 👻	Program 👻	8			
Session 1A: Se	ecurity & Privacy I		-			
5:00 PM CEST	- 5:15 PM CEST					
Graphene: S Protection	trong yet Lightwei	ght Row Hamme	ər			
Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung Ho Ahn, Jae W. Lee (Seoul National University)						
5:15 PM CEST	- 5:30 PM CEST					
	l Parallelism: Strea		у			
Tree Update	es for Secure Persis	tent Memory				
	j. Shougang Yuan, Huiy n Solihin (University of (9			
5:30 PM CEST	- 5:45 PM CEST					
PThammer:	Cross-User-Kernel	-Boundary				
Rowhammer through Implicit Accesses						
CSIRO, Australi Liu, Surya Nep (Florida State U	versity of New South W ia): Yueqiang Cheng (Ba al (Data61, CSIRO, Aust Jniversity); Yuval Yarom Data61, CSIRO, Australia	aidu Security): Dong tralia): Zhi Wang n (University of	gxi			

RowHammer in 2020 (II)

S & P	😭 Home	Program -	Call For 🔻	Attend 🝷	Workshops 🔻	
	Session #5	: Rowhamm	ner			Room 2
	Session chair: Michael Franz (UC Irvine)					
	RAMBleed: Reading Bits in Memory Without Accessing Them Andrew Kwong (University of Michigan), Daniel Genkin (University of Michigan), Daniel Gruss Data61)					
	Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers Lucian Cojocar (Microsoft Research), Jeremie Kim (ETH Zurich, CMU), Minesh Patel (ETH Zu (Microsoft Research), Onur Mutlu (ETH Zurich, CMU)					
	Leveraging EM Side-Channel Information to Detect Rowhammer Attacks Zhenkai Zhang (Texas Tech University), Zihao Zhan (Vanderbilt University), Daniel Balasubrar Peter Volgyesi (Vanderbilt University), Xenofon Koutsoukos (Vanderbilt University)					
	Pietro Frigo Veen (Qual	o (Vrije Universi comm Technol	ogies, Inc.), Onu	The Netherland [•] Mutlu (ETH Zü	Refresh s), Emanuele Vannac rich), Cristiano Giuffi dam, The Netherland	rida (Vrije Unive

RowHammer in 2020 (III)

RowHammer in 2021 (I)

HotOS XVIII

The 18th Workshop on Hot Topics in Operating Systems

31-May 1 June–3 June 2021, Cyberspace, People's Couches, and Zoom

Stop! Hammer Time: Rethinking Our Approach to Rowhammer Mitigations

RowHammer in 2021 (II)

SMASH: Synchronized Many-sided Rowhammer Attacks from JavaScript

RowHammer in 2021 (III)

Session 10A: Security & Privacy III

Session Chair: Hoda Naghibijouybari (Binghamton)

9:00 PM CEST - 9:15 PM CEST

A Deeper Look into RowHammer's Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses

Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo (ETH Zurich); Ataberk Olgun (TOBB University of Economics and Technology); Jisung Park, Hasan Hassan, Minesh Patel, Jeremie S. Kim, Onur Mutlu (ETH Zurich)

Paper

9:15 PM CEST - 9:30 PM CEST

Uncovering In-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implications

Hasan Hassan (ETH Zurich); Yahya Can Tugrul (TOBB University of Economics and Technology); Jeremie S. Kim (ETH Zurich); Victor van der Veen (Qualcomm); Kaveh Razavi, Onur Mutlu (ETH Zurich)

Paper

RowHammer in 2022 (I)

MAY 22-26, 2022 AT THE HYATT REGENCY, SAN FRANCISCO, CA 43rd IEEE Symposium on Security and Privacy

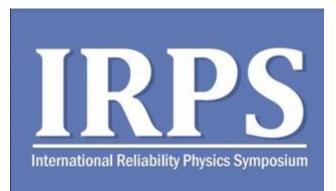
BLACKSMITH: Scalable Rowhammering in the Frequency Domain

SpecHammer: Combining Spectre and Rowhammer for New Speculative Attacks

PROTRR: Principled yet Optimal In-DRAM Target Row Refresh

DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories

RowHammer in 2022 (III)


HPCA 2022

The 28th IEEE International Symposium on High-Performance Computer Architecture (HPCA-28), Seoul, South Korea

SafeGuard: Reducing the Security Risk from Row-Hammer via Low-Cost Integrity Protection

Mithril: Cooperative Row Hammer Protection on Commodity DRAM Leveraging Managed Refresh

RowHammer in 2022 (IV)

IRPS 2022

The Price of Secrecy: How Hiding Internal DRAM Topologies Hurts Rowhammer Defenses

Stefan Saroiu, Alec Wolman, Lucian Cojocar Microsoft

RowHammer in 2022 (V)

31ST USENIX SECURITY SYMPOSIUM AUGUST 10-12, 2022 BOSTON, MA, USA

Half-Double: Hammering From the Next Row Over

Andreas Kogler¹ Jonas Juffinger^{1,2} Salman Qazi³ Yoongu Kim³ Moritz Lipp^{4*} Nicolas Boichat³ Eric Shiu⁵ Mattias Nissler³ Daniel Gruss¹

¹Graz University of Technology ²Lamarr Security Research ³Google ⁴Amazon Web Services ⁵Rivos

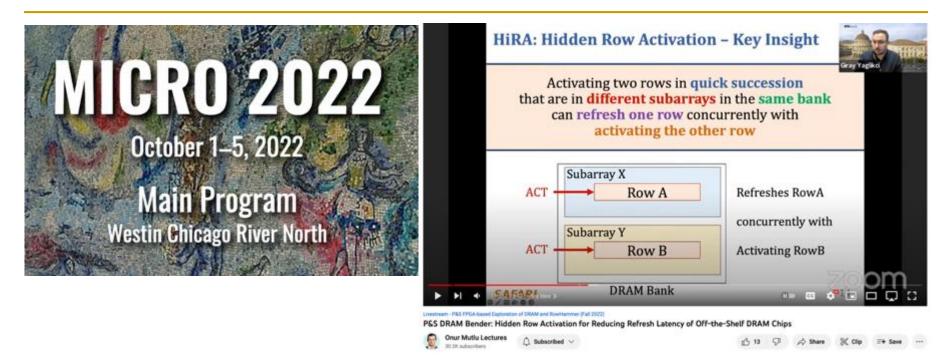
RowHammer in 2022 (VI)

HAMMERSCOPE: Observing DRAM Power Consumption Using Rowhammer

When Frodo Flips: End-to-End Key Recovery on FrodoKEM via Rowhammer

RowHammer in 2022 (VII)

AQUA: Scalable Rowhammer Mitigation by Quarantining Aggressor Rows at Runtime


Anish Saxena, Gururaj Saileshwar (Georgia Institute of Technology); Prashant J. Nair (University of British Columbia); Moinuddin Qureshi (Georgia Institute of Technology)

HiRA: Hidden Row Activation for Reducing Refresh Latency of Off-the-Shelf DRAM Chips

Abdullah Giray Yaglikci (ETH Zürich); Ataberk Olgun (TOBB University of Economics and Technology); Lois Orosa, Minesh Patel, Haocong Luo, Hasan Hassan (ETH Zürich); Oguz Ergin (TOBB University of Economics and Technology); Onur Mutlu (ETH Zürich)

SAFARI

RowHammer in 2022 (VII)

HiRA: Hidden Row Activation

for Reducing Refresh Latency of Off-the-Shelf DRAM Chips

A. Giray Yağlıkçı¹ Ataberk Olgun^{1,2} Minesh Patel¹ Haocong Luo¹ Hasan Hassan¹ Lois Orosa^{1,3} Oğuz Ergin² Onur Mutlu¹

¹ETH Zürich ²TOBB University of Economics and Technology ³Galicia Supercomputing Center (CESGA)

http://www.youtube.com/watch?v=HTo3bVFSTjw

SAFARI

A Case for Transparent Reliability in DRAM Systems

Minesh Patel[†] Taha Shahroodi^{‡†} Aditya Manglik[†] A. Giray Yağlıkçı[†] Ataberk Olgun[†] Haocong Luo[†] Onur Mutlu[†] [†]ETH Zürich [‡]TU Delft

https://arxiv.org/pdf/2204.10378.pdf

A Case for Self-Managing DRAM Chips: Improving Performance, Efficiency, Reliability, and Security via Autonomous in-DRAM Maintenance Operations

Hasan Hassan

Ataberk Olgun

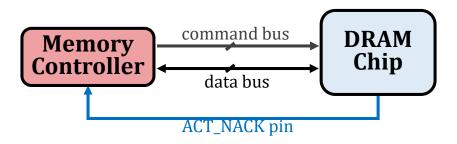
A. Giray Yağlıkçı

Haocong Luo

Onur Mutlu

ETH Zürich

https://arxiv.org/pdf/2207.13358.pdf


Self-Managing DRAM: Overview

Self-Managing DRAM (SMD)

enables autonomous in-DRAM maintenance operations

Key Idea:

Prevent the memory controller from accessing DRAM regions that are *under maintenance* by rejecting row activation (ACT) commands

Leveraging the ability to *reject an ACT*, a maintenance operation can be implemented *completely* within a DRAM chip

SAFARI

SMD-Based Maintenance Mechanisms

DRAM Refresh

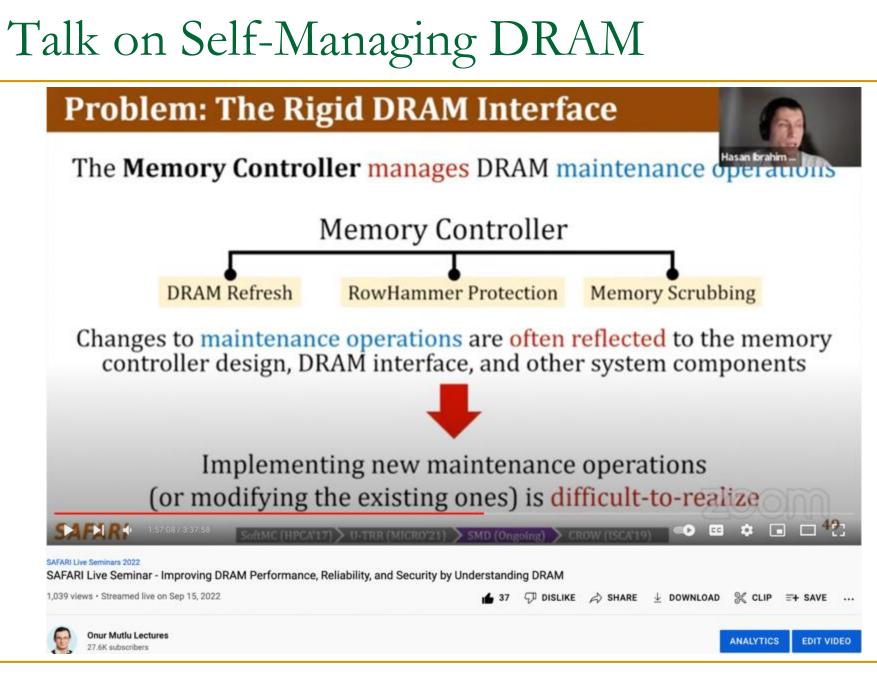
Fixed Rate (SMD-FR)

uniformly refreshes *all* DRAM rows with a *fixed* refresh period

Variable Rate (SMD-VR)

skips refreshing rows that can **retain their data for longer** than the default refresh period

RowHammer Protection


Probabilistic (SMD-PRP) Performs neighbor row refresh with a small probability on every row activation

Deterministic (SMD-DRP)

keeps track of most *frequently activated* rows and performs *neighbor* row refresh when activation count threshold is exceeded

Memory Scrubbing

Periodic Scrubbing (SMD-MS) periodically scans the entire DRAM for errors and corrects them

https://www.youtube.com/watch?v=mGa6-vpExbE

SAFARI

A Case for Self-Managing DRAM Chips: Improving Performance, Efficiency, Reliability, and Security via Autonomous in-DRAM Maintenance Operations

Hasan Hassan

Ataberk Olgun

A. Giray Yağlıkçı

Haocong Luo

Onur Mutlu

ETH Zürich

https://arxiv.org/pdf/2207.13358.pdf

RowHammer in 2023 (I)

MAY 22-26, 2023 AT THE HYATT REGENCY, SAN FRANCISCO, CA 44th IEEE Symposium on Security and Privacy

REGA: Scalable Rowhammer Mitigation with Refresh-Generating Activations

Michele Marazzi^{*}, Flavien Solt^{*}, Patrick Jattke^{*}, Kubo Takashi[†], and Kaveh Razavi^{*} **Computer Security Group, ETH Zürich* [†]Zentel Japan

CSI:Rowhammer – Cryptographic Security and Integrity against Rowhammer

Jonas Juffinger^{*†}, Lukas Lamster[†], Andreas Kogler[†], Maria Eichlseder[†], Moritz Lipp[‡], Daniel Gruss^{*†} *Lamarr Security Research, [†]Graz University of Technology, [‡]Amazon Web Services

RowHammer in 2023 (II)

HPCA 2023

The 29th IEEE International Symposium on High-Performance Computer Architecture (HPCA-29)

Scalable and Secure Row-Swap: Efficient and Safe Row Hammer Mitigation in Memory Systems

Jeonghyun Woo (University of British Columbia), Gururaj Saileshwar (Georgia Institute of Technology), Prashant J. Nair (University of British Columbia)

SHADOW: Preventing Row Hammer in DRAM with Intra-Subarray Row Shuffling Minbok Wi (Seoul National University), Jaehyun Park (Seoul National University), Seoyoung Ko (Seoul National University), Michael Jaemin Kim (Seoul National University), Nam Sung Kim (UIUC), Eojin Lee (Inha University), Jung Ho Ahn (Seoul National University)

SAFARI

More to Come...

Future Memory Reliability/Security Challenges

Future of Main Memory Security

- DRAM is becoming less reliable \rightarrow more vulnerable
- Due to difficulties in DRAM scaling, other problems may also appear (or they may be going unnoticed)
- Some errors may already be slipping into the field
 - Read disturb errors (Rowhammer)
 - Retention errors
 - Read errors, write errors

```
• ...
```

These errors can also pose security vulnerabilities

Future of Main Memory Security

- DRAM
- Flash memory
- Emerging Technologies
 - Phase Change Memory
 - STT-MRAM
 - RRAM, memristors
 - ...

Main Memory Needs **Intelligent Controllers** for Security, Safety, Reliability, Scaling

Intelligent Memory Controllers **Can Avoid Many Failures** & Enable Better Scaling

Architecting Future Memory for Security

Understand: Methods for vulnerability modeling & discovery

- Modeling and prediction based on real (device) data and analysis
- Understanding vulnerabilities
- Developing reliable metrics

Architect: Principled architectures with security as key concern

- Good partitioning of duties across the stack
- Cannot give up performance and efficiency
- Patch-ability in the field

Design & Test: Principled design, automation, (online) testing

- Design for security
- High coverage and good interaction with system reliability methods

Two Major Future RowHammer Directions

Understanding RowHammer

- Many effects still need to be rigorously examined
 - Aging of DRAM Chips
 - Environmental Conditions
 - Memory Access Patterns
 - Memory Controller & System Design Decisions

...

Solving RowHammer

- Flexible and Efficient RowHammer Solutions are necessary
 - In-field patchable / reconfigurable / programmable solutions
- Co-architecting System and Memory is important
 - To avoid performance and denial-of-service problems

A RowHammer Survey: Recent Update

Appears at ASP-DAC 2023 (Invited Paper)

Fundamentally Understanding and Solving RowHammer

Onur Mutlu onur.mutlu@safari.ethz.ch ETH Zürich Zürich, Switzerland

Ataberk Olgun ataberk.olgun@safari.ethz.ch ETH Zürich Zürich, Switzerland A. Giray Yağlıkcı giray.yaglikci@safari.ethz.ch ETH Zürich Zürich, Switzerland

https://arxiv.org/pdf/2211.07613.pdf

A Case for Transparent Reliability in DRAM Systems

Minesh Patel[†] Taha Shahroodi^{‡†} Aditya Manglik[†] A. Giray Yağlıkçı[†] Ataberk Olgun[†] Haocong Luo[†] Onur Mutlu[†] [†]ETH Zürich [‡]TU Delft

https://arxiv.org/pdf/2204.10378.pdf

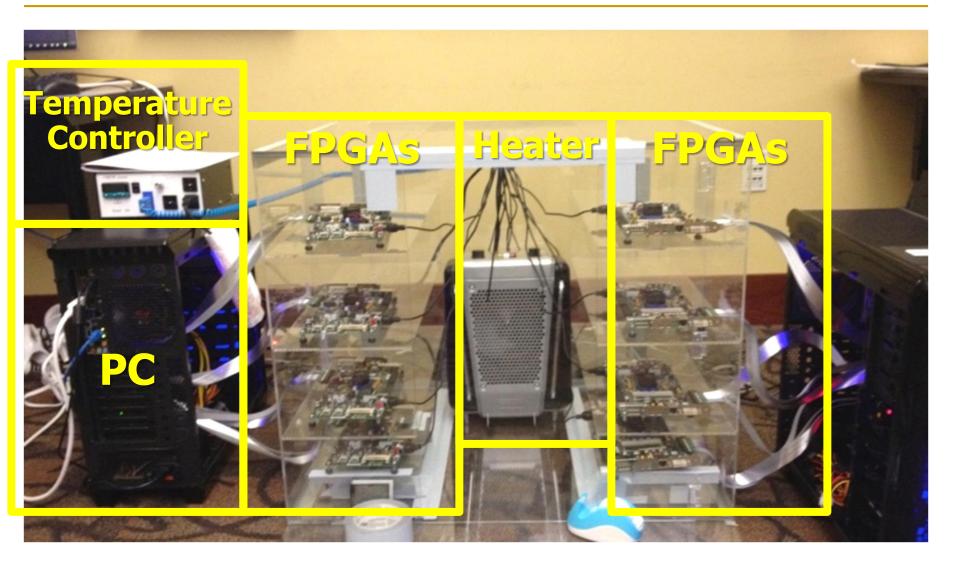
Better Coordination of DRAM & Controller

A Case for Self-Managing DRAM Chips: Improving Performance, Efficiency, Reliability, and Security via Autonomous in-DRAM Maintenance Operations

Hasan Hassan

Ataberk Olgun

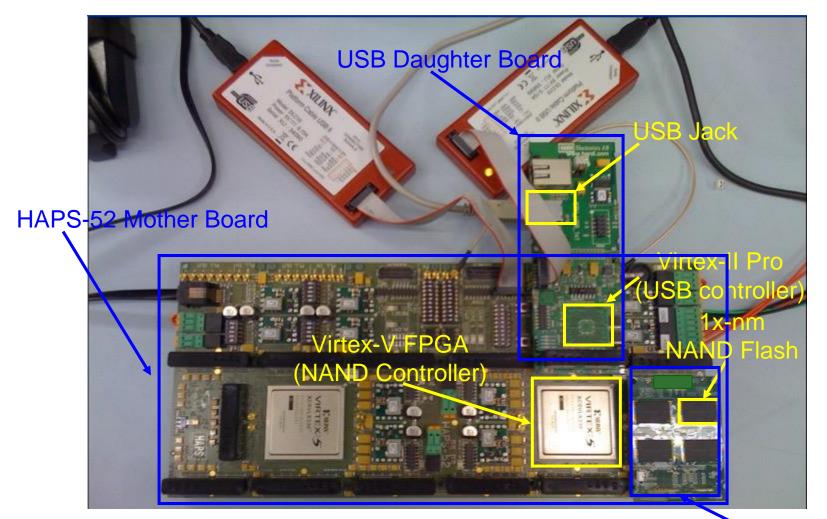
A. Giray Yağlıkçı


Haocong Luo

Onur Mutlu

ETH Zürich

https://arxiv.org/pdf/2207.13358.pdf


Understand and Model with Experiments (DRAM)

SAFARI

Kim+, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," ISCA 2014.

Understand and Model with Experiments (Flash)

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE 2017, HPCA 2018, SIGMETRICS 2018]

NAND Daughter Board

Cai+, "Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives," Proc. IEEE 2017.

An Example Intelligent Controller

Proceedings of the IEEE, Sept. 2017

Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD's reliability and lifetime.

By YU CAI, SAUGATA GHOSE, ERICH F. HARATSCH, YIXIN LUO, AND ONUR MUTLU

https://arxiv.org/pdf/1706.08642

In-Field Patch-ability (Intelligent Memory) Can Avoid Such Failures

An Early Proposal for Intelligent Controllers [IMW'13]

Onur Mutlu, <u>"Memory Scaling: A Systems Architecture Perspective"</u> *Proceedings of the <u>5th International Memory</u> <u>Workshop</u> (<i>IMW*), Monterey, CA, May 2013. <u>Slides</u> (pptx) (pdf) <u>EETimes Reprint</u>

Memory Scaling: A Systems Architecture Perspective

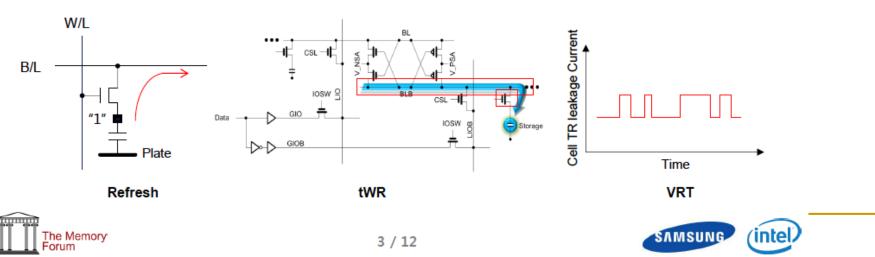
Onur Mutlu Carnegie Mellon University onur@cmu.edu http://users.ece.cmu.edu/~omutlu/

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

* Refresh


- · Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance
- · Leakage current of cell access transistors increasing

✤ tWR

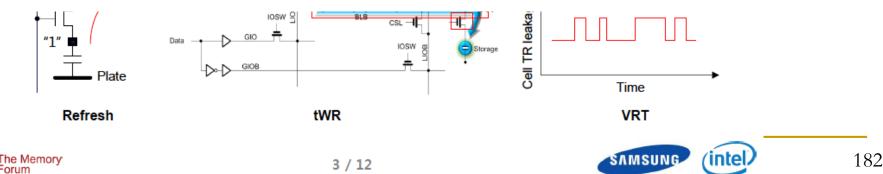
- · Contact resistance between the cell capacitor and access transistor increasing
- · On-current of the cell access transistor decreasing
- · Bit-line resistance increasing

VRT

Occurring more frequently with cell capacitance decreasing

181

Industry Is Writing Papers About It, Too


DRAM Process Scaling Challenges

* Refresh

Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance
THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng, **John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel

Final Thoughts on RowHammer

Using Memory Errors to Attack a Virtual Machine

Sudhakar Govindavajhala * Andrew W. Appel Princeton University {sudhakar,appel}@cs.princeton.edu

We present an experimental study showing that soft memory errors can lead to serious security vulnerabilities in Java and .NET virtual machines, or in any system that relies on type-checking of untrusted programs as a protection mechanism. Our attack works by sending to the JVM a Java program that is designed so that almost any memory error in its address space will allow it to take control of the JVM. All conventional Java and .NET virtual machines are vulnerable to this attack. The technique of the attack is broadly applicable against other language-based security schemes such as proof-carrying code.

We measured the attack on two commercial Java Virtual Machines: Sun's and IBM's. We show that a singlebit error in the Java program's data space can be exploited to execute arbitrary code with a probability of about 70%, and multiple-bit errors with a lower probability.

Our attack is particularly relevant against smart cards or tamper-resistant computers, where the user has physical access (to the outside of the computer) and can use various means to induce faults; we have successfully used heat. Fortunately, there are some straightforward defenses against this attack.

7 Physical fault injection

If the attacker has physical access to the outside of the machine, as in the case of a smart card or other tamperresistant computer, the attacker can induce memory errors. We considered attacks on boxes in form factors ranging from a credit card to a palmtop to a desktop PC.

We considered several ways in which the attacker could induce errors.⁴

IEEE S&P 2003

Before RowHammer (II)

Using Memory Errors to Attack a Virtual Machine

Sudhakar Govindavajhala * Andrew W. Appel Princeton University {sudhakar,appel}@cs.princeton.edu

Figure 3. Experimental setup to induce memory errors, showing a PC built from surplus components, clip-on gooseneck lamp, 50-watt spotlight bulb, and digital thermometer. Not shown is the variable AC power supply for the lamp.

IEEE S&P 2003

https://www.cs.princeton.edu/~appel/papers/memerr.pdf

After RowHammer

A simple memory error can be induced by software

RowHammer: Retrospective

- New mindset that has enabled a renewed interest in HW security attack research:
 - Real (memory) chips are vulnerable, in a simple and widespread manner
 → this causes real security problems
 - Hardware reliability \rightarrow security connection is now mainstream discourse
- Many new RowHammer attacks...
 - Tens of papers in top security & architecture venues
 - More to come as RowHammer is getting worse (DDR4 & beyond)
- Many new RowHammer solutions...
 - Apple security release; Memtest86 updated
 - Many solution proposals in top venues (latest in ASPLOS 2022)
 - Principled system-DRAM co-design (in original RowHammer paper)
 - More to come...

Perhaps Most Importantly...

- RowHammer enabled a shift of mindset in mainstream security researchers
 - General-purpose hardware is fallible, in a widespread manner
 - Its problems are exploitable
- This mindset has enabled many systems security researchers to examine hardware in more depth
 - And understand HW's inner workings and vulnerabilities
- It is no coincidence that two of the groups that discovered Meltdown and Spectre heavily worked on RowHammer attacks before
 - More to come...

Conclusion

Summary: RowHammer

- Memory reliability is reducing
- Reliability issues open up security vulnerabilities
 - Very hard to defend against

Rowhammer is a prime example

- First example of how a simple hardware failure mechanism can create a widespread system security vulnerability
- Its implications on system security research are tremendous & exciting
- Bad news: RowHammer is getting worse

Good news: We have a lot more to do

- □ We are now fully aware hardware is easily fallible
- We are developing both attacks and solutions
- □ We are developing principled models, methodologies, solutions

A RowHammer Survey Across the Stack

Onur Mutlu and Jeremie Kim,
 "RowHammer: A Retrospective"
 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) Special Issue on Top Picks in Hardware and Embedded Security, 2019.
 [Preliminary arXiv version]
 [Slides from COSADE 2019 (pptx)]
 [Slides from VLSI-SOC 2020 (pptx) (pdf)]
 [Talk Video (1 hr 15 minutes, with Q&A)]

RowHammer: A Retrospective

Onur Mutlu^{§‡} Jeremie S. Kim^{‡§} [§]ETH Zürich [‡]Carnegie Mellon University

Detailed Lectures on RowHammer

- Computer Architecture, Fall 2021, Lecture 5
 - RowHammer (ETH Zürich, Fall 2021)
 - https://www.youtube.com/watch?v=7wVKnPj3NVw&list=P L5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=5
- Computer Architecture, Fall 2021, Lecture 6
 - RowHammer and Secure & Reliable Memory (ETH Zürich, Fall 2021)
 - https://www.youtube.com/watch?v=HNd4skQrt6I&list=PL 5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF&index=6

https://www.youtube.com/onurmutlulectures

Funding Acknowledgments

- Alibaba, AMD, ASML, Google, Facebook, Hi-Silicon, HP Labs, Huawei, IBM, Intel, Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Samsung, Seagate, VMware, Xilinx
- Microsoft Swiss JRC
- NSF
- NIH
- GSRC
- SRC
- CyLab
- EFCL

Thank you!

Acknowledgments

SAFARI Research Group safari.ethz.ch

SAFARI Research Group

Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-january-2021/

SAFARI Research Group

https://safari.ethz.ch/safari-newsletter-december-2021/

Think Big, Aim High

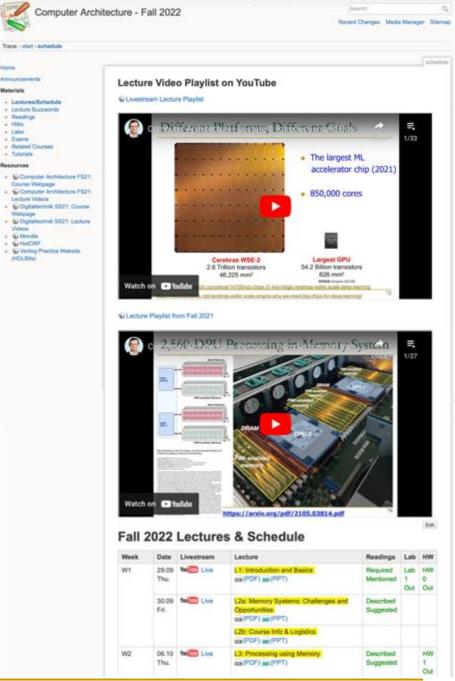
f y in 🖸

View in your browser December 2021

Comp Arch (Fall 2022)

Fall 2022 Edition:

- https://safari.ethz.ch/architecture/fall2022/doku. php?id=schedule
- Fall 2021 Edition:
 - https://safari.ethz.ch/architecture/fall2021/doku. php?id=schedule


Youtube Livestream (2022):

https://www.youtube.com/watch?v=4yfkM_5EFg o&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF

Youtube Livestream (2021):

- https://www.youtube.com/watch?v=4yfkM_5EFg o&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
- Master's level course
 - Taken by Bachelor's/Masters/PhD students
 - Cutting-edge research topics + fundamentals in Computer Architecture
 - 5 Simulator-based Lab Assignments
 - Potential research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures

DDCA (Spring 2022)

Spring 2022 Edition:

https://safari.ethz.ch/digitaltechnik/spring2022/do ku.php?id=schedule

Spring 2021 Edition:

https://safari.ethz.ch/digitaltechnik/spring2021/do ku.php?id=schedule

Youtube Livestream (Spring 2022):

https://www.youtube.com/watch?v=cpXdE3HwvK 0&list=PL5O2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6

Youtube Livestream (Spring 2021):

- https://www.youtube.com/watch?v=LbC0EZY8yw 4&list=PL5O2soXY2Zi uei3aY39YB5pfW4SJ7LIN
- Bachelor's course
 - 2nd semester at ETH Zurich
 - Rigorous introduction into "How Computers Work"
 - Digital Design/Logic
 - **Computer Architecture**
 - 10 FPGA Lab Assignments

https://www.youtube.com/onurmutlulectures

fatarials.

Lectures/Schedule Lackste Butracette Readings

Optional HWh

Technical Decision

Computer Anthitecture (CMU) 8S15; Lecture Videos Computer Architecture (CMU)

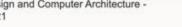
Digitaltechnik S518: Lecture

Digitaltechnik SS19: Lecture

Digitaltechnik SS19: Course

Dipitahechnik \$520 Lecture

Digitahechnik SS20 Counte

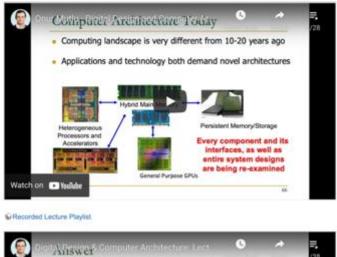

Moode

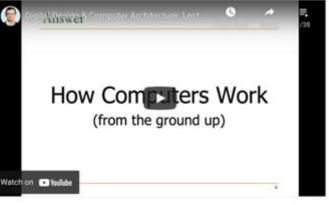
Digitaltechnik SS18, Course

8515 Course Website

1 444 Extra Assignments

Example





Lecture Video Playlist on YouTube

SUvestream Lecture Playlist

Spring 2021 Lectures/Schedule

Week	Date	Livestream	Lecture	Readings	Lab	HW
W1	25.02 Thu	Tee Live	U1: Introduction and Basics ena(PDF) as(PPT)	Required Suggested Mentioned		
	26.02 Fri.	No Chie	L2a: Tradeoffs, Metrics, Mindset eas(PDF) as(PPT)	Required		
			L2b: Mysteries in Computer Architecture ass(PDF) ast(PPT)	Required Mentioned		
W2	04.03 Thu.	Taxim Live	L3a: Mysteries in Computer Architecture II an (PDF) ini (PPT)	Required Suggested Mentioned		

Projects & Seminars: SoftMC FPGA-Based Exploration of DRAM and RowHammer (Fall 2022)

Fall 2022 Edition:

<u>https://safari.ethz.ch/projects_and_seminars/fall2</u> 022/doku.php?id=softmc

Spring 2022 Edition:

https://safari.ethz.ch/projects and seminars/sprin g2022/doku.php?id=softmc

Youtube Livestream (Spring 2022):

https://www.youtube.com/watch?v=r5QxuoJWttg &list=PL5Q2soXY2Zi_1trfCckr6PTN8WR72icUO

Bachelor's course

- Elective at ETH Zurich
- Introduction to DRAM organization & operation
- Tutorial on using FPGA-based infrastructure
- Verilog & C++
- Potential research exploration

Lecture Video Playlist on YouTube © Lecture Playlist SoftMC Course: Meeting 1: Logistics & Intro ... Share F Watch Later Share F Match Later Share Share F Match Later Share Sh

2022 Meetings/Schedule (Tentative)

Week	Date	Livestream	Meeting	Learning Materials	Assignments
WO	23.02 Wed.	W Video	P&S SoftMC Tutorial	SoftMC Tutorial Slides (PDF) (PPT)	
W1	08.03 Tue.	Tarifie Video	M1: Logistics & Intro to DRAM and SoftMC cma(PDF) and (PPT)	Required Materials Recommended Materials	HWO
W2	15.03 Tue.	Noteo Video	M2: Revisiting RowHammer am(PDF) mm(PPT)	(Paper PDF)	
W3	22.03 Tue.	Tw Dideo	M3: Uncovering in-DRAM TRR & TRRespass dist(PDF) as(PPT)		
W4	29.03 Tue.	Twitteo Video	M4: Deeper Look Into RowHammer's Sensitivities as(PDF) as(PPT)		
W5	05.04 Tue.	Tau Video	M5: QUAC-TRNG date (PDF) and (PPT)		
WB	12.04 Tue.	Yee Video	M6: PIDRAM		

https://www.youtube.com/onurmutlulectures

Projects & Seminars: Ramulator Exploration of Emerging Memory Systems (Fall 2022)

Fall 2022 Edition: https://safari.ethz.ch/projects and seminars/fall2 022/doku.php?id=ramulator **Spring 2022 Edition:** https://safari.ethz.ch/projects and seminars/sprin g2022/doku.php?id=ramulator

Youtube Livestream (Spring 2022):

- https://www.youtube.com/watch?v=aM-IIXROd3s&list=PL5O2soXY2Zi TImLGw Z8hBo292 5ZApqV
- Bachelor's course
 - Elective at ETH Zurich
 - Introduction to memory system simulation
 - Tutorial on using Ramulator
 - C++

Potential research exploration

Lecture Video Playlist on YouTube

Lecture Playlist

2022 Meetings/Schedule (Tentative)

Week	Date	Livestream	Meeting	Learning Materials	Assignments
W1	09.03 Wed.	Yw 🛗 Video	M1: Logistics & Intro to Simulating Memory Systems Using Ramulator an(PDF) an (PPT)		HWO
W2	16.03 Fri.	You The Video	M2: Tutorial on Using Ramulator ara(PDF) are(PPT)		
W3	25.02 Fri.	Yee Video	M3: BlockHammer am(PDF) am(PPT)		
W4	01.04 Fri.	You 🚻 Video	M4: CLR-DRAM ma(PDF) ma(PPT)		
W5	08.04 Fri.	Yee Video	M5: SIMDRAM aze(PDF) zee(PPT)		
W6	29.04 Fri.	You 🔝 Video	M6: DAMOV (PDF) III0 (PPT)		
W7	06.05 Fri.	Yee 🛄 Video	M7: Syncron ma(PDF) ma(PPT)		

https://www.youtube.com/onurmutlulectures

Fundamentally Understanding and Solving RowHammer

Onur Mutlu

Ataberk Olgun

A. Giray Yaglikci

omutlu@gmail.com

https://people.inf.ethz.ch/omutlu

17 January 2023

ASP-DAC

ETH zürich

Backup Slides for Further Info

SoftMC: Open Source DRAM Infrastructure

<u>https://github.com/CMU-SAFARI/SoftMC</u>

SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies

Hasan Hassan^{1,2,3} Nandita Vijaykumar³ Samira Khan^{4,3} Saugata Ghose³ Kevin Chang³ Gennady Pekhimenko^{5,3} Donghyuk Lee^{6,3} Oguz Ergin² Onur Mutlu^{1,3}

¹ETH Zürich ²TOBB University of Economics & Technology ³Carnegie Mellon University ⁴University of Virginia ⁵Microsoft Research ⁶NVIDIA Research

Data Retention in Memory [Liu et al., ISCA 2013]

Retention Time Profile of DRAM looks like this:

64-128ms >256ms **Location** dependent 128-256ms Stored value pattern dependent **Time** dependent

SAFARI Liu+, "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012.

RAIDR: Heterogeneous Refresh [ISCA'12]

 Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu, "RAIDR: Retention-Aware Intelligent DRAM Refresh" Proceedings of the <u>39th International Symposium on</u> <u>Computer Architecture</u> (ISCA), Portland, OR, June 2012. <u>Slides (pdf)</u>

RAIDR: Retention-Aware Intelligent DRAM Refresh

Jamie Liu Ben Jaiyen Richard Veras Onur Mutlu Carnegie Mellon University

Analysis of Data Retention Failures [ISCA'13]

 Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, "An Experimental Study of Data Retention Behavior in Modern DRAM <u>Devices: Implications for Retention Time Profiling Mechanisms</u>" *Proceedings of the <u>40th International Symposium on Computer Architecture</u> (ISCA), Tel-Aviv, Israel, June 2013. <u>Slides (ppt)</u> <u>Slides (pdf)</u>*

An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms

Jamie Liu* Ben Jaiyen^{*} Yoongu Kim Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University 5000 Forbes Ave. 5000 Forbes Ave. 5000 Forbes Ave. Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213 jamiel@alumni.cmu.edu bjaiyen@alumni.cmu.edu yoonguk@ece.cmu.edu Chris Wilkerson Onur Mutlu Intel Corporation Carnegie Mellon University 2200 Mission College Blvd. 5000 Forbes Ave. Santa Clara, CA 95054 Pittsburgh, PA 15213

onur@cmu.edu

chris.wilkerson@intel.com

Mitigation of Retention Issues [SIGMETRICS'14]

Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, and Onur Mutlu, **"The Efficacy of Error Mitigation Techniques for DRAM Retention** Failures: A Comparative Experimental Study"

Proceedings of the <u>ACM International Conference on Measurement and</u> Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides] (pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

The Efficacy of Error Mitigation Techniques for DRAM **Retention Failures: A Comparative Experimental Study**

Samira Khan[†]* samirakhan@cmu.edu

Donghyuk Lee[†] donghyuk1@cmu.edu

Chris Wilkerson∗

Yoongu Kim[†] yoongukim@cmu.edu

Alaa R. Alameldeen* alaa.r.alameldeen@intel.com chris.wilkerson@intel.com

Onur Mutlu[†] onur@cmu.edu

*Intel Labs [†]Carnegie Mellon University

SAFARI

208

Mitigation of Retention Issues [DSN'15]

 Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu,

"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems"

Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> <u>Dependable Systems and Networks</u> (**DSN**), Rio de Janeiro, Brazil, June 2015. [<u>Slides (pptx) (pdf)</u>]

AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems

Moinuddin K. Qureshi[†] Dae-Hyun Kim[†] [†]Georgia Institute of Technology {*moin, dhkim, pnair6*}@*ece.gatech.edu* Samira Khan[‡]

Prashant J. Nair[†] Onur Mutlu[‡] [‡]Carnegie Mellon University {*samirakhan, onur*}@*cmu.edu*

Mitigation of Retention Issues [DSN'16]

Samira Khan, Donghyuk Lee, and Onur Mutlu, "PARBOR: An Efficient System-Level Technique to Detect Data-**Dependent Failures in DRAM**" Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> Dependable Systems and Networks (DSN), Toulouse, France, June 2016. [Slides (pptx) (pdf)]

PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM

*University of Virginia

Samira Khan^{*} Donghyuk Lee^{†‡} [†]Carnegie Mellon University Onur Mutlu*[†] [‡]Nvidia *ETH Zürich

Mitigation of Retention Issues [MICRO'17]

 Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee, and Onur Mutlu,
 "Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting

<u>"Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting</u> Current Memory Content"

Proceedings of the <u>50th International Symposium on Microarchitecture</u> (**MICRO**), Boston, MA, USA, October 2017.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content

Samira Khan^{*} Chris Wilkerson[†] Zhe Wang[†] Alaa R. Alameldeen[†] Donghyuk Lee[‡] Onur Mutlu^{*} ^{*}University of Virginia [†]Intel Labs [‡]Nvidia Research ^{*}ETH Zürich

Mitigation of Retention Issues [ISCA'17]

- Minesh Patel, Jeremie S. Kim, and Onur Mutlu, <u>"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM</u> <u>Retention Failures via Profiling at Aggressive Conditions"</u> *Proceedings of the <u>44th International Symposium on Computer</u> <u>Architecture</u> (ISCA), Toronto, Canada, June 2017. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]*
- First experimental analysis of (mobile) LPDDR4 chips
- Analyzes the complex tradeoff space of retention time profiling
- Idea: enable fast and robust profiling at higher refresh intervals & temperatures

The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions

Minesh Patel^{§‡} Jeremie S. Kim^{‡§} Onur Mutlu^{§‡} [§]ETH Zürich [‡]Carnegie Mellon University

Mitigation of Retention Issues [DSN'19]

 Minesh Patel, Jeremie S. Kim, Hasan Hassan, and Onur Mutlu, <u>"Understanding and Modeling On-Die Error Correction in</u> <u>Modern DRAM: An Experimental Study Using Real Devices"</u> *Proceedings of the <u>49th Annual IEEE/IFIP International Conference on</u> <u>Dependable Systems and Networks</u> (DSN), Portland, OR, USA, June 2019. [Source Code for EINSim, the Error Inference Simulator] Best paper award.*

Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices

Minesh Patel[†] Jeremie S. Kim^{‡†} Hasan Hassan[†] Onur Mutlu^{†‡} $^{\dagger}ETH Z \ddot{u}rich$ [‡]Carnegie Mellon University

Mitigation of Retention Issues [MICRO'20]

 Minesh Patel, Jeremie S. Kim, Taha Shahroodi, Hasan Hassan, and Onur Mutlu, "Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics" Proceedings of the <u>53rd International Symposium on</u> <u>Microarchitecture</u> (MICRO), Virtual, October 2020. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (15 minutes)]
 [Lightning Talk Video (1.5 minutes)]

Best paper award.

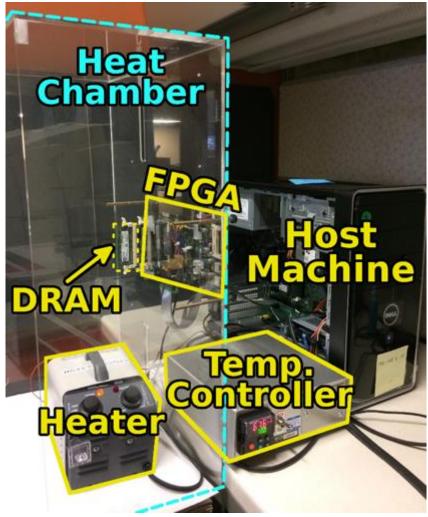
Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics

Minesh Patel[†] Jeremie S. Kim^{‡†} Taha Shahroodi[†] Hasan Hassan[†] Onur Mutlu^{†‡} [†]ETH Zürich [‡]Carnegie Mellon University

Mitigation of Retention Issues [MICRO'21]

 Minesh Patel, Geraldo F. de Oliveira Jr., and Onur Mutlu, "HARP: Practically and Effectively Identifying Uncorrectable Errors in Memory Chips That Use On-Die Error-Correcting Codes" Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (20 minutes)] [Lightning Talk Video (1.5 minutes)] [HARP Source Code (Officially Artifact Evaluated with All Badges)]

HARP: Practically and Effectively Identifying Uncorrectable Errors in Memory Chips That Use On-Die Error-Correcting Codes


Minesh Patel ETH Zürich Geraldo F. Oliveira ETH Zürich Onur Mutlu ETH Zürich

SoftMC: Enabling DRAM Infrastructure

 Hasan Hassan et al., "<u>SoftMC: A</u> <u>Flexible and Practical Open-</u> <u>Source Infrastructure for</u> <u>Enabling Experimental DRAM</u> <u>Studies</u>," HPCA 2017.

- Flexible
- Easy to Use (C++ API)
- Open-source

github.com/CMU-SAFARI/SoftMC

HiRA: Hidden Row Activation for Reducing Refresh Latency of Off-the-Shelf DRAM Chips

Abdullah Giray Yağlıkçı

Ataberk Olgun Minesh Patel Haocong Luo Hasan Hassan Lois Orosa Oğuz Ergin Onur Mutlu

SAFARI

Centro de Supercomputación de Galicia

Executive Summary

- <u>Problem:</u> *Periodic* and *preventive* refreshes cause **increasingly significant performance degradation** as DRAM chip density increases
- <u>Goal:</u> Reduce the **performance overhead** of *periodic* and *preventive* refreshes in off-the-shelf DRAM chips
- <u>Key Idea:</u> *Refresh* a DRAM row **concurrently with** *refreshing* or *activating* another row **in the same bank**, leveraging subarray-level parallelism

<u>HiRA</u>: Hidden Row Activation

- **Concurrently** opens two rows in *electrically isolated subarrays* in **quick succession**
- *Refreshes* a DRAM row **concurrently with** *refreshing* or *activating* any of the **32% of the rows** in the same bank
- **51.4% reduction** on the *overall latency* of refreshing two rows
- <u>HiRA-MC</u>: Buffers refresh requests for a time slack to leverage the parallelism HiRA provides
 - **12.6% speedup** by reducing *periodic* refresh's performance overheads
 - **3.73x speedup** by reducing *preventive* refresh's performance overheads

HiRA: Hidden Row Activation for Reducing Refresh Latency of Off-the-Shelf DRAM Chips

A. Giray Yağlıkçı¹ Ataberk Olgun¹ Minesh Patel¹ Haocong Luo¹ Hasan Hassan¹ Lois Orosa^{1,3} Oğuz Ergin² Onur Mutlu¹ ¹ETH Zürich ²TOBB University of Economics and Technology ³Galicia Supercomputing Center (CESGA)

DRAM is the building block of modern main memory systems. DRAM cells must be periodically refreshed to prevent data loss. Refresh operations degrade system performance by interfering with memory accesses. As DRAM chip density increases with technology node scaling, refresh operations also increase because: 1) the number of DRAM rows in a chip increases; and 2) DRAM cells need additional refresh operations to mitigate bit failures caused by RowHammer, a failure mechanism that becomes worse with technology node scaling. Thus, it is critical to enable refresh operations at low performance overhead. To this end, we propose a new operation, Hidden Row Activation (HiRA), and the HiRA Memory Controller (HiRA-MC) to perform HiRA operations. As DRAM density increases with technology node scaling, the performance overhead of refresh also increases due to three major reasons. First, as the DRAM chip density increases, more DRAM rows need to be periodically refreshed in a DRAM chip [55, 57–61]. Second, as DRAM technology node scales down, DRAM cells become smaller and thus can store less amount of charge, requiring them to be refreshed more frequently [10, 20, 67, 102, 103, 118, 122–124]. Third, with increasing DRAM density, DRAM cells are placed closer to each other, exacerbating charge leakage via a disturbance error mechanism called RowHammer [79, 84, 119, 120, 133, 134, 167, 180, 183], and thus requiring additional refresh operations (called *preventive* refreshes) to avoid data corruption due to RowHammer [2, 3, 5–7, 29, 33, 42, 63, 66, 76, 82, 84, 97, 98, 107, 135, 141.

HiRA: Hidden Row Activation for Reducing Refresh Latency of Off-the-Shelf DRAM Chips

Abdullah Giray Yağlıkçı

Ataberk Olgun Minesh Patel Haocong Luo Hasan Hassan Lois Orosa Oğuz Ergin Onur Mutlu

SAFARI

Centro de Supercomputación de Galicia

Understanding RowHammer

Root Causes of Disturbance Errors

- Cause 1: Electromagnetic coupling
 - Toggling the wordline voltage briefly increases the voltage of adjacent wordlines
 - − Slightly opens adjacent rows → Charge leakage
- Cause 2: Conductive bridges
- Cause 3: Hot-carrier injection

Confirmed by at least one manufacturer

RowHammer Solutions

Naive Solutions

1 Throttle accesses to same row

- − Limit access-interval: ≥500ns
- Limit number of accesses: $\leq 128K$ (=64ms/500ns)

2 Refresh more frequently

– Shorten refresh-interval by $\sim 7x$

Both naive solutions introduce significant overhead in performance and power

Revisiting RowHammer

Revisiting RowHammer An Experimental Analysis of Modern Devices and Mitigation Techniques

Jeremie S. KimMinesh PatelA. Giray YağlıkçıHasan HassanRoknoddin AziziLois OrosaOnur Mutlu

Detailed Lecture on Revisiting RowHammer

- Computer Architecture, Fall 2020, Lecture 5b
 - RowHammer in 2020: Revisiting RowHammer (ETH Zürich, Fall 2020)
 - <u>https://www.youtube.com/watch?v=gR7XR-</u> <u>Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10</u>

https://www.youtube.com/onurmutlulectures

Revisiting RowHammer in 2020 (I)

 Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu,
 "Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques"
 Proceedings of the <u>47th International Symposium on Computer</u> <u>Architecture</u> (ISCA), Valencia, Spain, June 2020.
 [Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Talk Video (20 minutes)]
 [Lightning Talk Video (3 minutes)]

Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques

Jeremie S. Kim^{§†} Minesh Patel[§] A. Giray Yağlıkçı[§] Hasan Hassan[§] Roknoddin Azizi[§] Lois Orosa[§] Onur Mutlu^{§†} [§]ETH Zürich [†]Carnegie Mellon University

Executive Summary

- <u>Motivation</u>: Denser DRAM chips are more vulnerable to RowHammer but no characterization-based study demonstrates how vulnerability scales
- **<u>Problem</u>**: Unclear if existing mitigation mechanisms will remain viable for future DRAM chips that are likely to be more vulnerable to RowHammer
- <u>Goal</u>:
 - 1. Experimentally demonstrate how vulnerable modern DRAM chips are to RowHammer and study how this vulnerability will scale going forward
 - 2. Study viability of existing mitigation mechanisms on more vulnerable chips
- **Experimental Study**: First rigorous RowHammer characterization study across a broad range of DRAM chips
 - 1580 chips of different DRAM {types, technology node generations, manufacturers}
 - We find that RowHammer vulnerability worsens in newer chips
- **<u>RowHammer Mitigation Mechanism Study</u>**: How five state-of-the-art mechanisms are affected by worsening RowHammer vulnerability
 - Reasonable performance loss (8% on average) on modern DRAM chips
 - Scale poorly to more vulnerable DRAM chips (e.g., 80% performance loss)
- <u>**Conclusion:**</u> it is critical to research more effective solutions to RowHammer for future DRAM chips that will likely be even more vulnerable to RowHammer

Motivation

- Denser DRAM chips are **more vulnerable** to RowHammer
- Three prior works [Kim+, ISCA'14], [Park+, MR'16], [Park+, MR'16], over the last six years provide RowHammer characterization data on real DRAM
- However, there is no comprehensive experimental study that demonstrates how vulnerability scales across DRAM types and technology node generations
- It is **unclear whether current mitigation mechanisms will remain viable** for future DRAM chips that are likely to be more vulnerable to RowHammer

Goal

 Experimentally demonstrate how vulnerable modern DRAM chips are to RowHammer and predict how this vulnerability will scale going forward

2. Examine the viability of current mitigation mechanisms on **more vulnerable chips**

Effective RowHammer Characterization

To characterize our DRAM chips at **worst-case** conditions, we:

1. Prevent sources of interference during core test loop

- We disable:

SAFARI

- **DRAM refresh**: to avoid refreshing victim row
- DRAM calibration events: to minimize variation in test timing
- RowHammer mitigation mechanisms: to observe circuit-level effects
- Test for less than refresh window (32ms) to avoid retention failures

2. Worst-case access sequence

- We use **worst-case** access sequence based on prior works' observations
- For each row, repeatedly access the two directly physically-adjacent rows as fast as possible

[More details in the paper]

Testing Methodology

	Row 0	Aggressor Row
REFRESH	Row 1	Victim Row
	Row 2	Aggressor Row
	Row 3	Row
	Row 4	Row
	Row 5	Row

DRAM_RowHammer_Characterization(): foreach row in DRAM:

set victim row to row

set aggressor_row1 to victim_row - 1

set *aggressor_row2* to *victim_row* + 1

Disable DRAM refresh

Refresh *victim_row*

for $n = 1 \rightarrow HC$: // core test loop activate aggressor_row1 activate aggressor_row2 Enable DRAM refresh Record RowHammer bit flips to storage Restore bit flips to original values Disable refresh to **prevent interruptions** in the core loop of our test **from refresh operations**

Induce RowHammer bit flips on a **fully charged row**

Testing Methodology

closed	Row 0	Aggressor Row
	Row 1	Aggressor Row
-	Row 2	Row
	Row 3	Aggressor Row
-	Row 4	Victim Row
-	Row 5	Aggressor Row

DRAM RowHammer Characterization(): Disable refresh to **prevent foreach** row in DRAM: interruptions in the core loop of set victim row to row our test from refresh operations set aggressor row1 to victim row -1set aggressor_row2 to victim_row + 1 Induce RowHammer bit flips on a Disable DRAM refresh fully charged row Refresh *victim_row* for $n = 1 \rightarrow HC$: // core test loop Core test loop where we alternate activate aggressor_row1 accesses to adjacent rows activate *aggressor_row2* 1 Hammer (HC) = two accesses Enable DRAM refresh Record RowHammer bit flips to storage Prevent further retention failures Restore bit flips to original values Record bit flips for analysis 234 SAFARI

1. RowHammer Vulnerability

Q. Can we induce RowHammer bit flips in all of our DRAM chips?

All chips are vulnerable, except many DDR3 chips

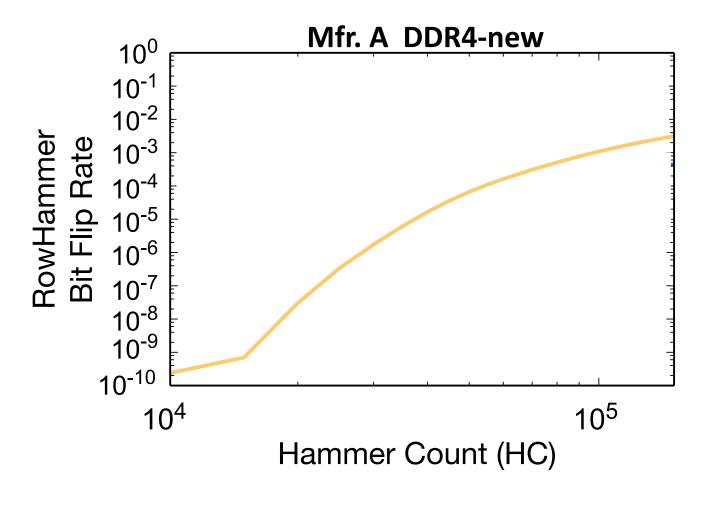
- A total of 1320 out of all 1580 chips (84%) are vulnerable
- Within DDR3-old chips, only 12% of chips (24/204) are vulnerable
- Within **DDR3-new** chips, **65%** of chips (148/228) are vulnerable

Newer DRAM chips are more vulnerable to RowHammer

2. Data Pattern Dependence

Q. Are some data patterns more effective in inducing RowHammer bit flips?

• We test **several data patterns** typically examined in prior work to identify the worst-case data pattern

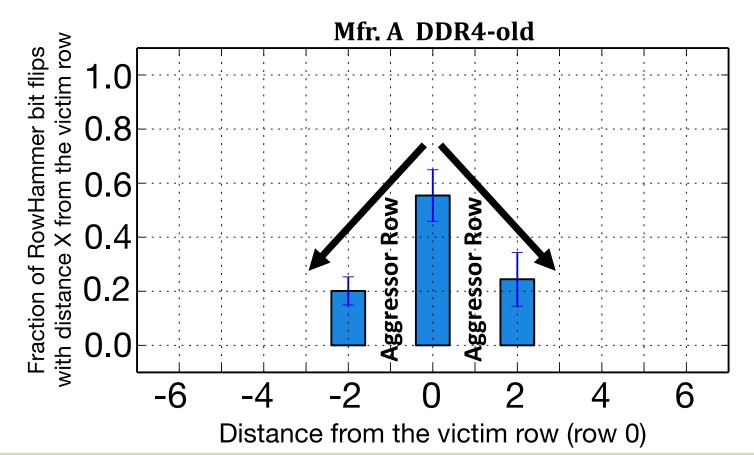

• The worst-case data pattern is **consistent across chips** of the same manufacturer and DRAM type-node configuration

 We use the worst-case data pattern per DRAM chip to characterize each chip at worst-case conditions and minimize the extensive testing time

[More detail and figures in paper]

3. Hammer Count (HC) Effects

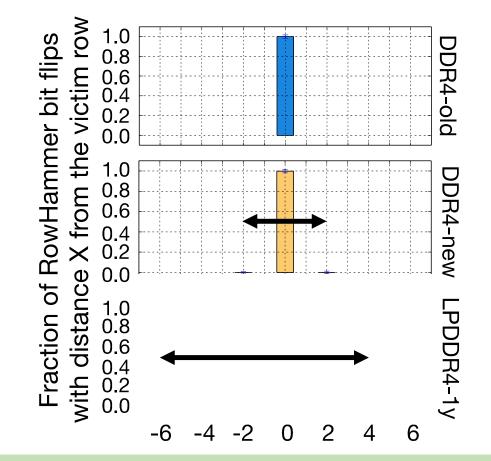
Q. How does the Hammer Count affect the number of bit flips induced?


Hammer Count = 2 Accesses, one to each adjacent row of victim

SAFARI

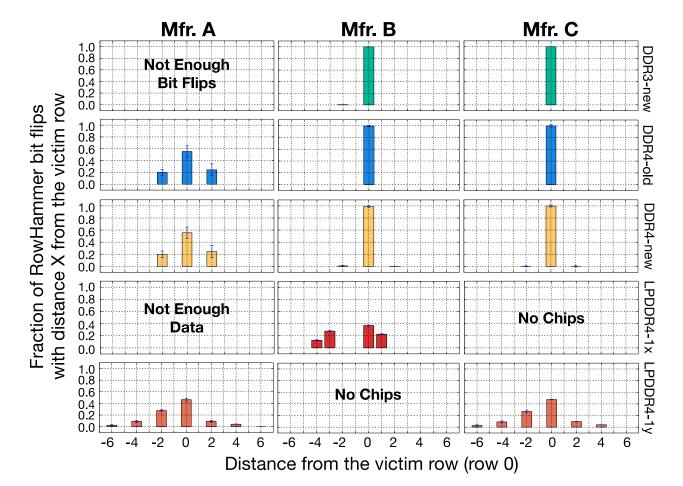
237

4. Spatial Effects: Row Distance


Q. Where do RowHammer bit flips occur relative to aggressor rows?

The number of RowHammer bit flips that occur in a given row decreases as the distance from the **victim row (row 0)** increases.

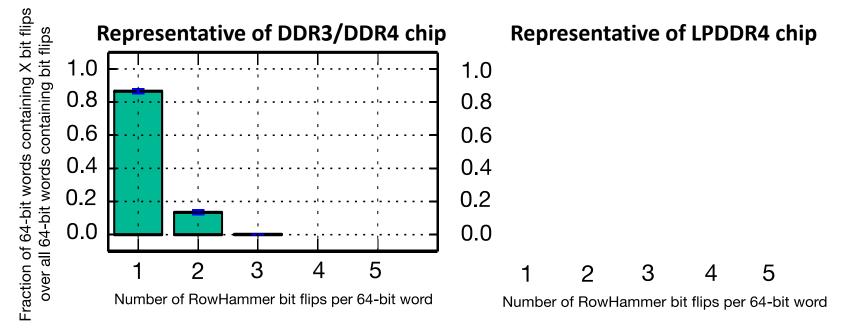
4. Spatial Effects: Row Distance


We normalize data by inducing a bit flip rate of 10⁻⁶ in each chip

Chips of newer DRAM technology nodes can exhibit RowHammer bit flips 1) in **more rows** and 2) **farther away** from the victim row.

4. Spatial Effects: Row Distance

We plot this data for each DRAM type-node configuration per manufacturer

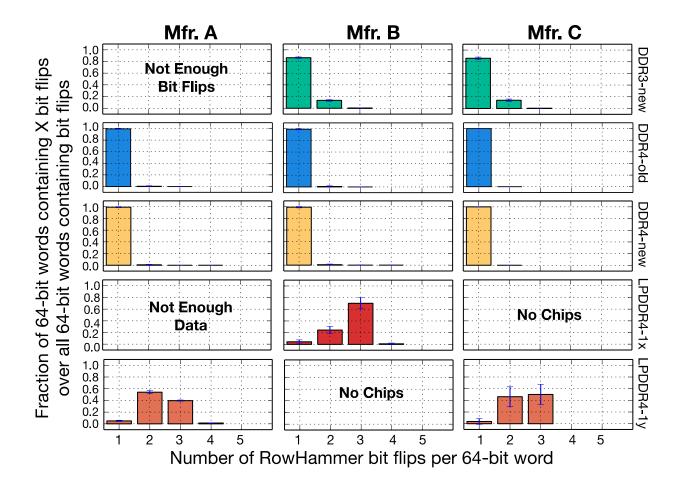


[More analysis in the paper]

4. Spatial Distribution of Bit Flips

Q. How are RowHammer bit flips spatially distributed across a chip?

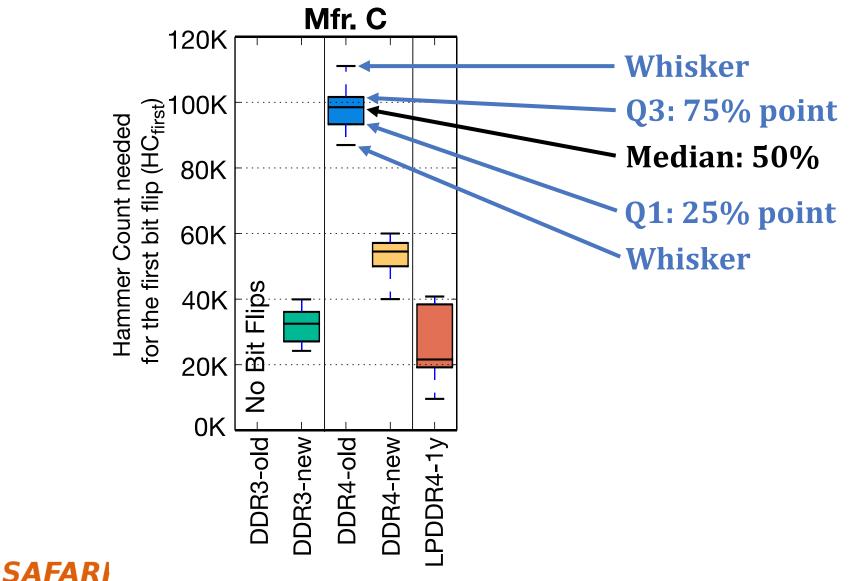
We normalize data by inducing a bit flip rate of **10**⁻⁶ in each chip



The distribution of RowHammer bit flip density per word changes significantly in LPDDR4 chips from other DRAM types

At a bit flip rate of 10⁻⁶, a 64-bit word can contain up to **4 bit flips**. Even at this very low bit flip rate, a **very strong ECC** is required

4. Spatial Distribution of Bit Flips


We plot this data for each DRAM type-node configuration per manufacturer

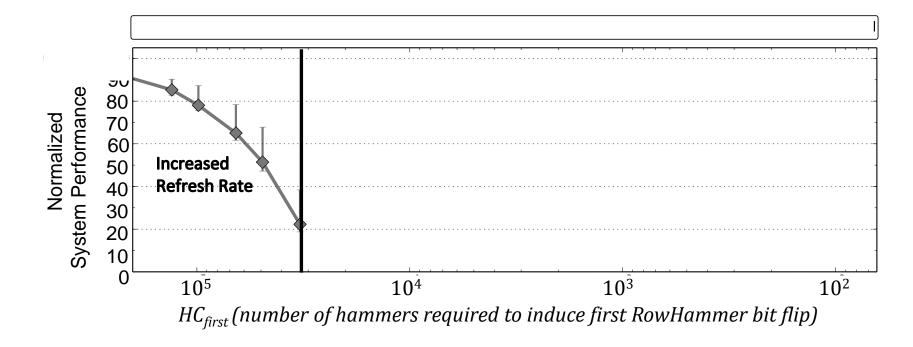
[More analysis in the paper]

5. First RowHammer Bit Flips per Chip

What is the minimum Hammer Count required to cause bit flips (HC_{first})?

Evaluation Methodology

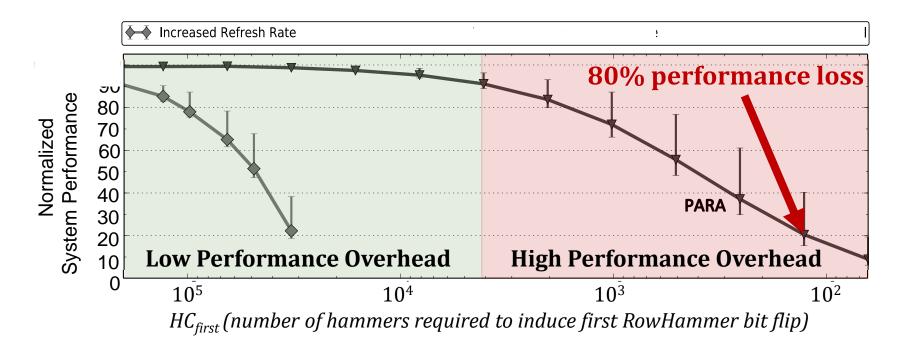
- **Cycle-level simulator:** Ramulator [Kim+, CAL'15] https://github.com/CMU-SAFARI/ramulator
 - 4GHz, 4-wide, 128 entry instruction window
 - 48 8-core workload mixes randomly drawn from SPEC CPU2006 (10 < MPKI < 740)
- Metrics to evaluate mitigation mechanisms
 - **1. DRAM Bandwidth Overhead:** fraction of total system DRAM bandwidth consumption from mitigation mechanism
 - *2. Normalized System Performance:* normalized weighted speedup to a 100% baseline


Evaluation Methodology

- We evaluate **five** state-of-the-art mitigation mechanisms:
 - Increased Refresh Rate [Kim+, ISCA'14]
 - PARA [Kim+, ISCA'14]
 - ProHIT [Son+, DAC'17]
 - MRLOC [You+, DAC'19]
 - TWiCe [Lee+, ISCA'19]
- and one ideal refresh-based mitigation mechanism:
 Ideal

• More detailed descriptions in the paper on:

- Descriptions of mechanisms in our paper and the original publications
- How we scale each mechanism to more vulnerable DRAM chips (lower HC_{first})


Mitigation Mech. Eval. (Increased Refresh)

Substantial overhead for high HC_{first} values.

This mechanism does not support HC_{first} < 32k due to the prohibitively high refresh rates required

Mitigation Mechanism Evaluation (PARA)

Mitigation Mechanism Evaluation (Ideal)

Ideal mechanism issues a refresh command to a row only right before the row can potentially experience a RowHammer bit flip

Additional Details in the Paper

- Single-cell RowHammer bit flip probability
- More details on our **data pattern dependence** study
- Analysis of **Error Correcting Codes (ECC)** in mitigating RowHammer bit flips
- Additional **observations** on our data
- Methodology details for characterizing DRAM
- Further discussion on comparing data across different infrastructures
- Discussion on scaling each mitigation mechanism
 SAFARI

Some More History

An Interview on Research and Education

- Computing Research and Education (@ ISCA 2019)
 - https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2 soXY2Zi 4oP9LdL3cc8G6NIjD2Ydz

- Maurice Wilkes Award Speech (10 minutes)
 - https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2 soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15

Some Selected Readings

Selected Readings on RowHammer (I)

- Our first detailed study: Rowhammer analysis and solutions (June 2014)
 - Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
 "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"
 Proceedings of the <u>41st International Symposium on Computer Architecture</u> (ISCA), Minneapolis, MN, June 2014. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data]
- Our Source Code to Induce Errors in Modern DRAM Chips (June 2014)
 - <u>https://github.com/CMU-SAFARI/rowhammer</u>
- Google Project Zero's Attack to Take Over a System (March 2015)
 - Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)
 - <u>https://github.com/google/rowhammer-test</u>
 - Double-sided Rowhammer

Selected Readings on RowHammer (II)

- Remote RowHammer Attacks via JavaScript (July 2015)
 - <u>http://arxiv.org/abs/1507.06955</u>
 - <u>https://github.com/IAIK/rowhammerjs</u>
 - Gruss et al., DIMVA 2016.
 - CLFLUSH-free Rowhammer
 - "A fully automated attack that requires nothing but a website with JavaScript to trigger faults on remote hardware."
 - "We can gain unrestricted access to systems of website visitors."
- ANVIL: Software-Based Protection Against Next-Generation Rowhammer Attacks (March 2016)
 - http://dl.acm.org/citation.cfm?doid=2872362.2872390
 - Aweke et al., ASPLOS 2016
 - CLFLUSH-free Rowhammer
 - Software based monitoring for rowhammer detection

Selected Readings on RowHammer (III)

- Dedup Est Machina: Memory Deduplication as an Advanced Exploitation Vector (May 2016)
 - https://www.ieee-security.org/TC/SP2016/papers/0824a987.pdf
 - Bosman et al., IEEE S&P 2016.
 - Exploits Rowhammer and Memory Deduplication to overtake a browser
 - "We report on the first reliable remote exploit for the Rowhammer vulnerability running entirely in Microsoft Edge."
 - "[an attacker] ... can reliably "own" a system with all defenses up, even if the software is entirely free of bugs."
- CAn't Touch This: Software-only Mitigation against Rowhammer Attacks targeting Kernel Memory (August 2017)
 - https://www.usenix.org/system/files/conference/usenixsecurity17/sec17brasser.pdf
 - Brasser et al., USENIX Security 2017.
 - Partitions physical memory into security domains, user vs. kernel; limits rowhammer-induced bit flips to the user domain.

Selected Readings on RowHammer (IV)

- A New Approach for Rowhammer Attacks (May 2016)
 - https://ieeexplore.ieee.org/document/7495576
 - Qiao et al., HOST 2016
 - CLFLUSH-free RowHammer
 - "Libc functions memset and memcpy are found capable of rowhammer."
 - Triggers RowHammer with malicious inputs but benign code
- One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation (August 2016)
 - https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_pa per_xiao.pdf
 - Xiao et al., USENIX Security 2016.
 - "Technique that allows a malicious guest VM to have read and write accesses to arbitrary physical pages on a shared machine."
 - Graph-based algorithm to reverse engineer mapping of physical addresses in DRAM

Selected Readings on RowHammer (V)

- Curious Case of RowHammer: Flipping Secret Exponent Bits using Timing Analysis (August 2016)
 - https://link.springer.com/content/pdf/10.1007%2F978-3-662-53140-2_29.pdf
 - Bhattacharya et al., CHES 2016
 - Combines timing analysis to perform rowhammer on cryptographic keys stored in memory
- DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks (August 2016)
 - https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_pa per_pessl.pdf
 - Pessl et al., USENIX Security 2016
 - Shows RowHammer failures on DDR4 devices despite TRR solution
 - Reverse engineers address mapping functions to improve existing RowHammer attacks

Selected Readings on RowHammer (VI)

- Flip Feng Shui: Hammering a Needle in the Software Stack (August 2016)
 - https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper razavi.pdf
 - Razavi et al., USENIX Security 2016.
 - Combines memory deduplication and RowHammer
 - "A malicious VM can gain unauthorized access to a co-hosted VM running OpenSSH."
 - Breaks OpenSSH public key authentication
- Drammer: Deterministic Rowhammer Attacks on Mobile Platforms (October 2016)
 - <u>http://dl.acm.org/citation.cfm?id=2976749.2978406</u>
 - Van Der Veen et al., ACM CCS 2016
 - **Can take over an ARM-based Android system deterministically**
 - Exploits predictable physical memory allocator behavior
 - Can deterministically place security-sensitive data (e.g., page table) in an attackerchosen, vulnerable location in memory

Selected Readings on RowHammer (VII)

- When Good Protections go Bad: Exploiting anti-DoS Measures to Accelerate Rowhammer Attacks (May 2017)
 - https://web.eecs.umich.edu/~misiker/resources/HOST-2017-Misiker.pdf
 - □ Aga et al., HOST 2017
 - "A virtual-memory based cache-flush free attack that is sufficiently fast to rowhammer with double rate refresh."
 - Enabled by Cache Allocation Technology
- SGX-Bomb: Locking Down the Processor via Rowhammer Attack (October 2017)
 - https://dl.acm.org/citation.cfm?id=3152709
 - □ Jang et al., SysTEX 2017
 - Launches the Rowhammer attack against enclave memory to trigger the processor lockdown."
 - Running unknown enclave programs on the cloud can shut down servers shared with other clients.

Selected Readings on RowHammer (VIII)

- Another Flip in the Wall of Rowhammer Defenses (May 2018)
 - https://arxiv.org/pdf/1710.00551.pdf
 - Gruss et al., IEEE S&P 2018
 - A new type of Rowhammer attack which only hammers one single address, which can be done without knowledge of physical addresses and DRAM mappings
 - Defeats static analysis and performance counter analysis defenses by running inside an SGX enclave
- GuardION: Practical Mitigation of DMA-Based Rowhammer Attacks on ARM (June 2018)
 - https://link.springer.com/chapter/10.1007/978-3-319-93411-2_5
 - Van Der Veen et al., DIMVA 2018
 - Presents RAMPAGE, a DMA-based RowHammer attack against the latest Android OS

Selected Readings on RowHammer (IX)

- Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU (May 2018)
 - https://www.vusec.net/wp-content/uploads/2018/05/glitch.pdf
 - Frigo et al., IEEE S&P 2018.
 - The first end-to-end remote Rowhammer exploit on mobile platforms that use our GPU-based primitives in orchestration to compromise browsers on mobile devices in under two minutes.
- Throwhammer: Rowhammer Attacks over the Network and Defenses (July 2018)
 - https://www.cs.vu.nl/~herbertb/download/papers/throwhammer_atc18.pdf
 - Tatar et al., USENIX ATC 2018.
 - "[We] show that an attacker can trigger and exploit Rowhammer bit flips directly from a remote machine by only sending network packets."

Selected Readings on RowHammer (X)

- Nethammer: Inducing Rowhammer Faults through Network Requests (July 2018)
 - https://arxiv.org/pdf/1805.04956.pdf
 - Lipp et al., arxiv.org 2018.
 - "Nethammer is the first truly remote Rowhammer attack, without a single attacker-controlled line of code on the targeted system."

- ZebRAM: Comprehensive and Compatible Software Protection Against Rowhammer Attacks (October 2018)
 - https://www.usenix.org/system/files/osdi18-konoth.pdf
 - Konoth et al., OSDI 2018
 - A new pure-software protection mechanism against RowHammer.

Selected Readings on RowHammer (XI.A)

PassMark Software, memtest86, since 2014

<u>https://www.memtest86.com/troubleshooting.htm#hammer</u>

Why am I only getting errors during Test 13 Hammer Test?

The Hammer Test is designed to detect RAM modules that are susceptible to disturbance errors caused by charge leakage. This phenomenon is characterized in the research paper Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors by Yoongu Kim et al. According to the research, a significant number of RAM modules manufactured 2010 or newer are affected by this defect. In simple terms, susceptible RAM modules can be subjected to disturbance errors when repeatedly accessing addresses in the same memory bank but different rows in a short period of time. Errors occur when the repeated access causes charge loss in a memory cell, before the cell contents can be refreshed at the next DRAM refresh interval.

Starting from MemTest86 v6.2, the user may see a warning indicating that the RAM may be vulnerable to high frequency row hammer bit flips. This warning appears when errors are detected during the first pass (maximum hammer rate) but no errors are detected during the second pass (lower hammer rate). See <u>MemTest86 Test Algorithms</u> for a description of the two passes that are performed during the Hammer Test (Test 13). When performing the second pass, address pairs are hammered only at the rate deemed as the maximum allowable by memory vendors (200K accesses per 64ms). Once this rate is exceeded, the integrity of memory contents may no longer be guaranteed. If errors are detected in both passes, errors are reported as normal.

The errors detected during Test 13, albeit exposed only in extreme memory access cases, are most certainly real errors. During typical nome PC usage (eg. web browsing, word processing, etc.), it is less likely that the memory usage pattern will fail into the extreme case that make it vulnerable to disturbance errors. It may be of greater concern if you were running highly sensitive equipment such as medical equipment, aircraft control systems, or bank database servers. It is impossible to predict with any accuracy if these errors will occur in real life applications. One would need to do a major scientific study of 1000 of computers and their usage patterns, then do a forensic analysis of each application to study how it makes use of the RAM while it executes. To date, we have only seen 1-bit errors as a result of running the Hammer Test.

Selected Readings on RowHammer (XI.B)

PassMark Software, memtest86, since 2014

<u>https://www.memtest86.com/troubleshooting.htm#hammer</u>

Detection and mitigation of row hammer errors

The ability of MemTest86 to detect and report on row hammer errors depends on several factors and what mitigations are in place. To generate errors adjacent memory rows must be repeatedly accessed. But hardware features such as multiple channels, interleaving, scrambling, Channel Hashing, NUMA & XOR schemes make it nearly impossible (for an arbitrary CPU & RAM stick) to know which memory addresses correspond to which rows in the RAM. Various mitigations might also be in place. Different BIOS firmware might set the refresh interval to different values (tREFI). The shorter the interval the more resistant the RAM will be to errors. But shorter intervals result in higher power consumption and increased processing overhead. Some CPUs also support pseudo target row refresh (pTRR) that can be used in combination with pTRR-compliant RAM. This field allows the RAM stick to indicate the MAC (Maximum Active Count) level which is the RAM can support. A typical value might be 200,000 row activations. Some CPUs also support the Joint Electron Design Engineering Council (JEDEC) Targeted Row Refresh (TRR) algorithm. The TRR is an improved version of the previously implemented pTRR algorithm and does not inflict any performance drop or additional power usage. As a result the row hammer test implemented in MemTest86 maybe not be the worst case possible and vulnerabilities in the underlying RAM might be undetectable due to the mitigations in place in the BIOS and CPU.

Keeping Future Memory Secure