
Reusing GEMM Hardware for Efficient

Execution of Depthwise Separable Convolution

on ASIC-based DNN Accelerators

Susmita Dey Manasi1,2, Suvadeep Banerjee3, Abhijit Davare2,

Anton A. Sorokin2, Steven M. Burns2, Desmond A. Kirkpatrick2,

and Sachin S. Sapatnekar1

1 University of Minnesota Twin Cities

Minneapolis, MN, USA

ASP-DAC’ 23

manas018@umn.edu

2 Intel Labs,

Hillsboro, OR, USA

3 Intel Labs,

Santa Clara, CA, USA

Outline of the Talk

• Motivation and background

• ASIC hardware platform

• Methodology for GEMM-based DwC

• Implementation flow

• Results

• Conclusion

2

▪ Significantly lower parameter counts and computational

requirements as compared to standard convolution (Conv2D)

▪ Limited scope for leveraging data reuse and parallelism

▪ Maps poorly to general ASIC-based DNN accelerators which are

primarily optimized for standard convolution

Lightweight CNNs

3

➢ Lightweight versions of CNN offer competitive accuracy

➢ Wide range of applications:

• object detection

• image classification

Very suitable for mobile

and embedded platforms

• semantic segmentation

• geo-localization

Depthwise convolution (DwC) layer

is key to enable the lightweight feature

Conv2D vs. DwC

4

Standard convolution Depthwise convolution

➢ Summation across all input channels

➢ 4D filter, ample data reuse opportunity

➢ No summation across channel, each

channel operates individually

➢ 3D filter, limited scope for data reuse

Multiplier rich 2D GEMM core

Conv2D vs. DwC

5

Standard convolution Depthwise convolution

➢ Executes Conv2D and FC as general

matrix-vector multiplication (GEMM)

operation

General ASIC-based DNN accelerators:

Generic 1D ALU core

➢ Executes DwC, activation, pooling, etc.

➢ DwC cannot be directly mapped as

GEMM operation

MobileNet-v1: Operations per layer type*
Percentage of cycles for DwC and

other layers wrt. total network cycles

Value of Accelerating DwC

6

Layer type #of MAC Parameters

Conv2D 96.05% 74.61%

DwC 3.06% 1.06%

FC 0.18% 24.33%

ASIC

accelerator

DwC

cycles

Conv2D + Other

cycles

Hardware1 60.28% 39.72%

Hardware2 62.69% 37.31%

DwC layers present significant

performance bottleneck

Our proposed solution:

➢ Algorithmically map DwC as channel-wise parallel matrix-vector multiplication

➢ Reuse the resourceful GEMM core to execute DwC along with Conv2D

➢ A simple and practical solution to substantially accelerate DwC computation

* Howard et al., arXiv, 2017

Outline of the Talk

• Motivation and background

• ASIC hardware platform

• Methodology for GEMM-based DwC

• Implementation flow

• Results

• Conclusion

7

Full-stack evaluation on TVM-VTA+

GEMM core:

➢ In each clock cycle:

❑ MAC operations between

▪ 1×J ifmap vector and

▪ J × K filter matrix

❑ Outputs a 1 × K vector of psums

➢ ifmap vector: shared horizontally

➢ psums: reduced vertically

ASIC Hardware Platform*

8

weight

buffer

ifmap

buffer

output

buffer

2D GEMM Core

1D ALU Core (KALUs)

O
ff

-c
h
ip

 D
R

A
M

J

K

PE

* VTA+: Banerjee et al., arXiv, 2021; TVM: Chen et al., OSDI, 2018

A general ASIC-based platform

with vector dot-product style hardware
ALU core:

➢ K ALUs parallelly perform a single

type of operation (i.e., mul, add,

min, max, shift, etc.)

➢ Limited resources

Outline of the Talk

• Motivation and background

• ASIC hardware platform

• Methodology for GEMM-based DwC

• Implementation flow

• Results

• Conclusion

9

Mapping Conv2D to GEMM

10

Computation in one cycle

ifmap vector

weight matrix

ofmap/psum vector

➢ Vector from ifmap using data

from J ifmap channels (shared

across columns)

➢ Matrix from weight using data

from K 3D filters (each column

operates on one 3D filter)

➢ Computation produces ofmap/

psum vector in K ofmap channels

DwC as Matrix-Vector Multiplication

11

� � �

� � �

� � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � �

� � �

� � �
*

filter
ifmap

ofmap

�

IH

IW

OH

OW�

Stride=1

DwC

� � �
�

�

�

�

�

�

�

�

�

�

�

�

�

� ×�

OH×OW

� ×�

� � �

*

filter vector ifmap
matrix

ofmap vector

� � �

� � �

� � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � �

� � �

� � �
*

filter
ifmap

ofmap

�

IH

IW

OH

OW�

Stride=1

DwC

� � �
�

�

�

�

�

�

�

�

�

�

�

�

�

� ×�

OH×OW

� ×�

� � �

*

filter vector ifmap
matrix

ofmap vector

➢ Vector is formed using

filter data

Channel-wise mapping to

matrix-vector multiplication

One channel

➢ Matrix is formed using

ifmap data

➢ Computation produces

vector of ofmap

➢ Same mapping is applied to

all channels

Mapping DwC to GEMM: One Column

12

Mapping in one column over multiple cycles

Computation in one channel

➢ Matrix-vector multiplication

in one channel is performed in

one column of the PE array

over multiple cycles

➢ Weight vector is reused over

multiple cycles

➢ One column of the ifmap

matrix is supplied by an

Im2Col module every cycle

Im2Col modules: supply data from

ifmap buffer in the right sequence

➢ Same datapaths for Conv2D

and DwC

Mapping DwC to GEMM: 2D PE Array

13

Computation in one cycle

➢ Each column is equipped

with an Im2Col module

➢ ifmap buffer feeds Im2Cols

instead of the PE array

directly

➢ Multiplexer logics to switch

between Conv2D and DwC

Channel-wise parallel matrix-vector

multiplication in the GEMM core

ifmap

weight and ofmap

▪ Produces one column of the ifmap matrix every cycle

▪ A key hardware module to enable GEMM-based DwC mapping

Im2Col Hardware

14

➢ Line buffers:

▪ hold (𝐾ℎ − 1) ifmap rows at a

time

▪ dual port SRAMs to read and

write data every cycle

▪ FIFO like functionality

▪ Initial stall cycles to fill the

buffer lines

➢ Window buffer:

▪ Produces vectorized output

Design for

stride-1

Outline of the Talk

• Motivation and background

• ASIC hardware platform

• Methodology for GEMM-based DwC

• Implementation flow

• Results

• Conclusion

15

End-to-End Implementation Flow

16

Defining New GEMM

Opcode for DwC

Analytical

Models

Hardware

Development

System-level

Testbench

❑ Guide hardware design choices at the

pre-RTL phase

❑ Cost/benefit analysis for optimizations

that sound superficially promising

❑ Defining new opcode to support the

functionality of Im2Col-based DwC

using existing GEMM instruction

❑ RTL implementations of the required

hardware modules

❑ System-level integration with VTA+

stack

❑ End-to-end functional verification of the

hardware

Key design decisions for the Im2Col-augmented GEMM core

➢ ReLU, bias addition, shift, min, and

pooling in the ALU core

➢ Stalls due to off-chip data communication

is ignored for this first order estimation.

Hardware Design Trade-offs

17

Analytical models

➢ Conv2D and FC in the GEMM core

➢ Our GEMM-based or traditional

ALU-based execution of DwC

➢ Q1: Should Im2Col induced stalls be hidden?

➢ Q2: Should dedicated stride-2 Im2Col hardware be built?

▪ Modified connectivity among the SRAM lines and shift

registers in the window buffer

▪ 4× higher data rate between the ifmap buffer and Im2Col

module to generate one column of the ifmap matrix every cycle

Im2Col-Induced Stall Cycles

18

16 30 58 114

Size of each Im2Col line buffer (byte)

0.4

0.6

0.8

 %
C

Y
fi

ll
 w

rt
.

 C
Y

N
et

16 16

32 32

64 64

MobileNet-v1: Execution on various

hardware configurations

The number of stall cycles to fill the Im2Col buffer lines (CYfill) is

a small fraction (< 0.8%) of the total network cycles (CYNet)

Gain of Engine-1

w.r.t. Engine-3

7.24%

9.54%

11.10%

Hardware configurations* Gain of Engine-1

w.r.t. Engine-2
J × K ifmap buffer output buffer

16×16 32 kB 64 kB 2.09%

32×32 64 kB 128 kB 2.80%

64×64 128 kB 256 kB 3.05%

❑ Engine-3:

▪ Stride-1 and 2: 4 bits/cycle

▪ Stride-1 computation is ~2× slower

▪ Stride-2 computation is ~8× slower

❑ Engine-2:

▪ Stride-1 and 2: 8 bits/cycle

▪ Stride-2 computation is ~4× slower

Stride-2 Im2Col Hardware

19

❑ Engine-1: (extra hardware cost)

▪ Stride-1: 8 bits/cycle

▪ Stride-2: 32 bits/cycle

* Bitwidth of ifmap = 8; Size of each Im2Col line buffer = 58 byte

Dedicated stride-2 Im2Col Use stride-1 Im2Col for stride-2 DwC

Faster execution of stride-2 DwC at the

expense of more hardware cost

provides small (2-11%) performance

gain

Network performance on three different engines for MobileNet-v1

Defining New DwC-GEMM Opcode

20

➢ GEMM mapping of DwC is quite

different than the GEMM mapping of

Conv2D

➢ A Conv2D-GEMM instruction cannot

be used directly for DwC-GEMM

A new DwC-GEMM opcode:

▪ Expresses functionality of the Im2Col-augmented DwC-GEMM operation

▪ Ensures data layout compatibility between consecutive Conv2D and DwC layers

▪ Computes appropriate indices to access weight, ifmap, and ofmap data

▪ Reuses the fields from an existing generic GEMM instruction

VTA+ ISA: Affine function to express

deep learning operator*

* VTA: Moreau et al., Micro, 2021; VTA+: Banerjee et al., arXiv, 2021

Hardware Design and Verification

21

▪ SRAM-based implementation

▪ Parallelly operate on multiple 2D channels of a 3D ifmap

Index Generator

Integration with

VTA+ Stack

▪ Decodes the new DwC-GEMM opcode

▪ Generates data indices for stride-1 and 2 DwC, and Conv2D

▪ Generates appropriate valid signals

▪ Integration of Im2Col and index generator with GEMM core

▪ System-level integration:

➢ All implementation are done in

Chisel HDL

➢ Module level parameterizable

testbenches to verify functionality

o additional control logic

o pipeline stages

System-level Python-based testbench:

❑ Tiles and schedules GEMM-based

DwC computation

❑ Performs functional verification

of the end-to-end hardware stack

Array of Im2Col

Modules

Outline of the Talk

• Motivation and background

• ASIC hardware platform

• Methodology for GEMM-based DwC

• Implementation flow

• Results

• Conclusion

22

GEMM-executed DwC (GED) vs. ALU-executed DwC (AED)

for two DwC layers of MobileNet-v1

▪ Evaluation*1 on VTA+ accelerator platform

▪ Data obtained by a cycle-accurate simulator: extracts end-to-end

performance metric from signal traces of the RTL hardware*2

Results: Performance Comparison

23

GED offers substantial speed-up and lower off-chip

communication for DwC layers

*1 Hardware specifications: 𝐽 × 𝐾 = 32 × 32, 8-bit ifmap/weight, 32-bit psum/ofmap, 32kB, 32kB, 128kB of SRAMs, 256 bits/cycle off-chip bandwidth

*2 https://github.com/pasqoc/incubator-tvm-vta.

Results: Performance Comparison

24

GED vs. AED* for MobileNet-v1

on three hardware configurations

End-to-end network

runtime

Total DRAM accesses

GED offers substantial gain in overall network performance

* GED: GEMM-executed DwC; AED: ALU-executed DwC

Results: Area Comparison

25

DwC in

GEMM vs ALU J × K

Total

SRAM size

Normalized wrt. AED

Total

area

Hardware overhead for

GED

AED

16 × 16 24 kB

1

6%
GED 1.06

AED

32 × 32 96 kB

1

4%
GED 1.04

Post SP&R results for GED and AED using Intel 22FFL

Area cost of the supplementary

hardware modules of GED is a small

fraction of the accelerator area

Evaluation on two hardware configurations

Results: Comparison with CPU and GPU

26

Hardware platform Runtime per

inference (ms)

Speed-up of GED

GED: 64×64 PE array 396kB SRAMs,

@1GHz, Off-chip bandwidth: 512 bits/cycle 0.87 1.00×

CPU: Intel(R) Xeon(R) Gold 6132

@2.60GHz, Memory: 768GB DDR4 64.26 73.86×

GED vs. {CPU, GPU} performance for MobileNet-v1

Significant speed-up

over a modern CPU

Outperforms even a power-hungry GPU

▪ built for ML acceleration

▪ ~16× higher on chip memory than GED

GPU: NVIDIA Tesla V100S-PCI,

Memory: 32GB HBM2 1.23 1.41×

Outline of the Talk

• Motivation and background

• ASIC hardware platform

• Methodology for GEMM-based DwC

• Implementation flow

• Results

• Conclusion

27

Conclusion

28

➢ A new methodology is proposed to execute DwC on general

ASIC-based DNN accelerator:

▪ Reuses the fast GEMM core

▪ Pre-RTL hardware choices are guided by careful analytical study

▪ Incurs very small supplementary hardware cost

▪ Developed instruction-level support and system-level testbenches

to perform end-to-end evaluation on a full hardware stack

➢ Substantial performance gain:

▪ Up to 7× speed-up and 1.8× lower off-chip communication over a

conventional DL accelerator for MobileNet-v1

▪ 74× speed-up over a CPU and 1.4× speed-up over a GPU

THANK YOU

29

Questions?

