UNIVERSITY OF MINNESOTA

Reusing GEMM Hardware for Efficient
Execution of Depthwise Separable Convolution
on ASIC-based DNN Accelerators

Susmita Dey Manasil?, Suvadeep Banerjee?, Abhijit Davare?,
Anton A. Sorokin?, Steven M. Burns?, Desmond A. Kirkpatrick?,
and Sachin S. Sapatnekar?

L University of Minnesota Twin Cities 2 Intel Labs, 3 Intel Labs,
Minneapolis, MN, USA Hillsboro, OR, USA Santa Clara, CA, USA

<1 manas018@umn.edu

MR (intel) ASP-DAC’ 23

DDDDDDDDDDDDDDDDD

e
Outline of the Talk

Motivation and background

ASIC hardware platform
Methodology for GEMM-based DwC
Implementation flow

Results

Conclusion

N
Lightweight CNNs

» Lightweight versions of CNN offer competitive accuracy
» Wide range of applications:

« object detection * semantic segmentation
« Image classification » geo-localization

Depthwise convolution (DwC) layer Vegy Suki)tazjbcie ;orl mfbile
is key to enable the lightweight feature and embedded platforms

= Significantly lower parameter counts and computational
requirements as compared to standard convolution (Conv2D)

= Limited scope for leveraging data reuse and parallelism

= Maps poorly to general ASIC-based DNN accelerators which are
primarily optimized for standard convolution

R
Conv2D vs. DwC

4D filter

Conv2D DwC
3D filter j
fw‘l . % gy ﬁw | %
or UMK l L IOH
‘h] l::>0‘c\u_.I “ K R : '::)‘C\. —

. w ow w ow
Input feature Output feature Input feature Output feature
map (ifmap) map (ofmap) map (ifmap) map (ofmap)

Standard convolution Depthwise convolution

» No summation across channel, each

» Summation across all input channels .
channel operates individually

> 4D filter, le dat rtunit : .
! APs Gl Tose Oppottitiity e 3D filter, limited scope for data reusej

R
Conv2D vs. DwC

4D filter
| Conv2D DwC
3D filter j
®eq IH % % sk ®eoq IH
‘ IOH N \jl l \I:” L1 IOH
S [oo N S =
. w ow 1w ow
Input feature Output feature Input feature Output feature
map (ifmap) map (ofmap) map (ifmap) map (ofmap)
Standard convolution Depthwise convolution

General ASIC-based DNN accelerators:

Multiplier rich 2D GEMM core 4 Generic 1D ALU core A

> Executes Conv2D and FC as general » Executes DwC, activation, pooling, etc.
matrix-vector multiplication (GEMM)
operation » DwC cannot be directly mapped as
_ GEMM operation)

Value of Accelerating DwC

Percentage of cycles for DwC and
other layers wrt. total network cycles

MobileNet-v1: Operations per layer type*

Layer type #of MAC Parameters ASIC DWC Conv2D + Other

Conv2D 96.05% 74.61% accelerator cycles cycles
DWC 3.06% 1.06% Hardwarel 60.28% 39.72%
FC 0.18% 24.33% Hardware2 62.69%0 37.31%

DwC layers present significant
performance bottleneck

Our proposed solution:

» Algorithmically map DwC as channel-wise parallel matrix-vector multiplication
» Reuse the resourceful GEMM core to execute DwC along with Conv2D

» Asimple and practical solution to substantially accelerate DwC computation

*Howard et al., arXiv, 2017 6

e
Outline of the Talk

« ASIC hardware platform

e
ASIC Hardware Platform*

2D GEMM Core K GEMM core:

fweight L 4 O - t | > Ineach clock cycle:
buffer i :
- : L MAC operations between
> O O O | be
x| ifmap O O 0O O r = 1xJ ifmap vector and
a) : : :
g buffer = Jx K filter matrix
%’ T |:| |:| |:| - /|:| O Outputs a 1 x K vector of psums
buffer ‘ » ifmap vector: shared horizontally
1D ALU Core (K ALUS) » psums: reduced vertically
A general ASIC-based platform 7 ALU core: N\

with vector dot-product style hardware > K ALUs parallelly perform a single

type of operation (i.e., mul, add,
min, max, shift, etc.)

Full-stack evaluation on TVM-VTA*

\> Limited resources)

*VTA": Banerjee et al., arXiv, 2021; TVM: Chen et al., OSDI, 2018 8

e
Outline of the Talk

» Methodology for GEMM-based DwC

Mapping Conv2D to GEMM

weight matrix

\/ OC-K

oo OC-1 OC-2
-1 4 v 2 VT
11, 11, TICEN
1C-2 aiy 2.1 2.2 2.fK
W11\ W11\ i W11\

J
[C-J %11 w1 wlf2 wl K
/\ 11 11 TTRMEENY
g

Ifmap vector g

1 2
011 011 011

AR

ofmap/psum vector

Computation in one cycle

€ e e m m e e e e e e o o = ==

4D filter
Conv2D

! B,
\ [o %IOH

. ocC

I Kh w
Input feature
map (ifmap)

l-lﬁ

Output feature
map (ofmap)

e

=l

» Vector from ifmap using data
from J ifmap channels (shared
across columns)

» Matrix from weight using data
from K 3D filters (each column
operates on one 3D filter)

» Computation produces ofmap/
psum vector in K ofmap channels

10

N
DwC as Matrix-Vector Multiplication

One channel

w Stride=1 DwC
3D filter
w WLl ow Eﬁ ,{ Y
1] 2] s ad 2§ 2| 2af 3 1] 2] i3 o R . l':>\ ~ IOH
nl 21| 2| s * 31 _%Z_Q_%C‘LL 34| 35 |:> 21| 22| 33 |OH o w ¢ ow
31| 32| 3 i1| 32| s 34| is 31| 32| 33 gllap;t(;f;?lt:; %:gﬁffﬁggf
filter 1A S A ofmap
DwC ifmap
"> Vector is formed wusing
OH XOW i '
filter vector . ‘@ filter data
1 1 1 1 matrix
ARERERE il N » Matrix is formed usin
11] iz | 33: L 1 b 1 ! IX g
5 Pl 8 R I T D S ifmap data
h w 1 1 1 1
33 34 35 55
011'1 011'2 511'3 0%'3 > Computation produces
vector of ofmap

» Same mapping is applied to

Channel-wise mapping to
all channels

matrix-vector multiplication

11

R
Mapping DwC to GEMM: One Column

Computation in one channel

Cycle 1

Cycle 2

Cyclen > Matrix-vector multiplication
Wiy al, in one channel is performed in
N one column of the PE array
Wl o over multiple cycles
N 34
D/ » Weight vector is reused over
. multiple cycles
W33 .

One column of the ifmap
matrix is supplied by an
Im2Col module every cycle

g Im2Col modules: supply data from
033 ifmap buffer in the right sequence |

Mapping in one column over multiple cycles

12

N
Mapping DwC to GEMM: 2D PE Array

Computation in one cycle /
ifmap \

C-1 [Im2Col-1] C-2[Im2Col-2] -k [Im2Col-K] Each column is equipped
? W11\ o W11 a2, w{i\ o, ? with an Im2Col module
: == 71 |S ifmap buffer feeds Im2Col
o o) L ol ifmap buffer feeds Im2Cols
o i 12\1:'/_ 12\|:'/£ 12\|:'/“1_2 : :jr!steald of the PE array
nXKw | - | irectly
PEs 1 . . 1
| |
ol | wh g Wi ak Multiplexer logics to switch
| \I:I/_ N T o e Kbetween Conv2D and DU
J|
Unused |
PEs i welght and ofmap
Oq O% J‘}< » Same datapaths for Conv2D
11 11 011 and DWC
. J

Channel-wise parallel matrix-vector
multiplication in the GEMM core

13

e
Im2Col Hardware

ifimap clement » Line buffers:
Design for a3 .
gnfor (nputpory . @ = hold (K;, — 1) ifmap rows at a
stride-1 > .
@ time
= dual port SRAMsS to read and
K, -1 > az; a3, az Az, ajs ol %—) K, xK,, write data every CYCIC
. . . .
IN ey > _ FIFO like functionality
K, |_>_m__> S = [Initial stall cycles to fill the
oh el o Z buffer lines
1 VN =
Kp|laz a3, ais ‘1_%4_‘1%_5 11 <)
lody @by jadsyads als ! > > Window buffer:
ay o} lals aly als| .
ol ablal al, aés: @ = Produces vectorized output

ifmap channel

= Produces one column of the ifmap matrix every cycle

= A key hardware module to enable GEMM-based DwC mapping

14

e
Outline of the Talk

 Implementation flow

15

End-to-End Implementation Flow

- . h U Guide hardware design choices at the
Analytical > pre-RTL phase
Models O Cost/benefit analysis for optimizations
\. Q J that sound superficially promising
4 A o
Defining New GEMM > d Defln_mg new opcode to support the
Oocode for DwC functionality of Im2Col-based DwC
L peode Tor Uw) using existing GEMM instruction
f =) QO RTL impl ions of the required
Hardware implementations of the require
=» hardware modules
Development , , _
L y (System-level integration with VTA"
@ stack
System-level of the
Testbench hardware

16

N
Hardware Design Trade-offs

Analytical models

> Conv2D and EC inthe GEMM core > ReLU, bias addition, shift, min, and
pooling in the ALU core
» Our GEMM-based or traditional _ o
AL U-based execution of DWC » Stalls due to off-chip data communication
Is ignored for this first order estimation.

Key design decisions for the Im2Col-augmented GEMM core

/> Q1: Should Im2Col induced stalls be hidden?

» Q2: Should dedicated stride-2 Im2Col hardware be built?

= Modified connectivity among the SRAM lines and shift
registers in the window buffer

= 4X higher data rate between the ifmap buffer and Im2Col
module to generate one column of the ifmap matrix every cycle

17

R
Im2Col-Induced Stall Cycles

MobileNet-vl: Execution on various
hardware configurations

3 0.8
O A A A
o 0.6 ko o | O 16 x 16
= ? Ol 6 32x 32
= A
D .
N | | | |
16 30 58 114

Size of each Im2Col line buffer (byte)

The number of stall cycles to fill the Im2Col buffer lines (CYy,) IS
a small fraction (< 0.8%) of the total network cycles (CY)

18

e
Stride-2 Im2Col Hardware

Network performance on three different engines for MobileNet-vl

Hardware configurations* Gain of Engine-1 Gain of Engine-1
Jx K ifmap buffer | output buffer |kt rt Engine-2 w.rt Engine-3
16x16 32 kB 64 kB 7.24%
32x32 64 kB 128 kB 9.54%
64x64 128 kB 256 kB 11.10%
Dedicated stride-2 Im2Col Use stride-1 Im2Caol for stride-2 DwC
(- .) (T : .)
L Engine-1: (extra hardware cost) d Engine-2:
= Stride-1: 8 bits/cycle = Stride-1 and 2: 8 bits/cycle
9 = Stride-2: 32 bits/cycle) . " Stride-2 computation is ~4X slower
= Engine-3: N
Faster execution of stride-2 DwC at the = Stride-1 and 2: 4 bits/cycle
expense of more hardware cost = Stride-1 computation is ~2X slower
provides small (2-1.1 7o) performance _ " Stride-2 computation is ~8x slower)
ain

* Bitwidth of ifmap = 8; Size of each Im2Col line buffer = 58 byte 19

N
Defining New DwC-GEMM Opcode

VTAT ISA: Affine function to express

deep learning operator*
» GEMM mapping of DwC is quite

GEMM Instruction Fields

different than the GEMM mapping of Opcode | Dept fag | Reset | oo | ona | Lome | Lon | Umused
Conv2D 0™ bit 637 bit
]) fo,out fo,in fi,out fi,in fw,out fw,in Unused
» A Conv2D-GEMM instruction cannot 64" bit 127" bit
be Used dlreCtIy for DWC-GEMM Arguments for DwC-GEMM Opcode
|Opcode| Dept flag | Reset | 0 | 1 | IH¢1e | IWiite |Unused|
0™ bit 63" bit
OW, 10 1 Wy | 1 0 0 Unused
th / th).
A new DWC-GEMM opcode: La 2

Expresses functionality of the Im2Col-augmented DwC-GEMM operation

Ensures data layout compatibility between consecutive Conv2D and DwC layers

Computes appropriate indices to access weight, ifmap, and ofmap data

Reuses the fields from an existing generic GEMM instruction

VTA: Moreau et al., Micro, 2021; VTA: Banerjee et al., arXiv, 2021 20

N
Hardware Design and Verification

Array of Im2Col = SRAM-based implementation
Modules E> = Parallelly operate on multiple 2D channels of a 3D ifmap

’ = Decodes the new DwC-GEMM opcode :
| Index Generator I:> = Generates data indices for stride-1 and 2 DwC, and Conv2D
= Generates appropriate valid signals :

| Integration with = Integration of Im2Col and index generator with GEMM core
| VTA™* Stack E> = System-level integration: o additional control logic '
o pipeline stages

, , , System-level Python-based testbench:
» All implementation are done in

Chisel HDL Tiles and schedules GEMM-based

» Module level parameterizable DwC computation

testbenches to verify functionality O Performs functional verification
of the end-to-end hardware stack

21

e
Outline of the Talk

 Results

22

Results: Performance Comparison

GEMM-executed DwC (GED) vs. ALU-executed DwC (AED)
for two DwC layers of MobileNet-v1

5 x10° | _ x10° ‘
mDwC in GEMM 3 mEDwWC in GEMM
215 mEDwC in ALU 5 mDwC in ALU
: 52|
O 1! g
© 20.2X &
Q L
0.5 E !
15.3X a7
0 m | 35,
DwCl1 DwC9 DwCl1 DwC9
= Evaluation*! on VTA* accelerator platform
= Data obtained by a cycle-accurate simulator: extracts end-to-end
performance metric from signal traces of the RTL hardware*?
GED offers substantial speed-up and lower off-chip
communication for DwC layers
*1 Hardware specifications: J] x K =32 x 32, 8-bit ifmap/weight, 32-bit psum/ofmap, 32kB, 32kB, 128kB of SRAMs, 256 hits/cycle off-chip bandwidth 23

*2 https://github.com/pasgoc/incubator-tvm-vta.

Results: Performance Comparison

><107
» |EEDwC in GEMM EEDwC in ALU [1Conv2D + FC
2| |
&
21l 4.19X%
> 5. 10><
@) 7.02X
N 2¥ |
16 x 16 32><32 64 x 64
= ><107 | | |
Lg 4 [IDwC in GEMM EEDwC in ALU [__[Conv2D + FC |
=
I3 1.57X 1. 65>< 1 81)(
> |
M
=
<
.
16 x 16 32><32 64><64

GED vs. AED* for MobileNet-v1
on three hardware configurations

End-to-end network
runtime

Total DRAM accesses

GED offers substantial gain in overall network performance

* GED: GEMM-executed DwC; AED: ALU-executed DwC

24

R
Results: Area Comparison

Post SP&R results for GED and AED using Intel 22FFL

Evaluation on two hardware configurations

DwC in Total Normalized wrt. AED

GEMMvsALU JxK SRAM size Hardware overhead for

area GED

AED 1
16 x 16 24 kB

(0)
AED 1
(0)

Area cost of the supplementary
hardware modules of GED is a small
fraction of the accelerator area

25

N
Results: Comparison with CPU and GPU

GED vs. {CPU, GPU} performance for MobileNet-v1

Hardware platform Runtime per Speed-up of GED

inference (ms)
GED: 64x64 PE array 396kB SRAMs,

@1GHz, Off-chip bandwidth: 512 bits/cycle 0.87 1.00x
CPU: Intel(R) Xeon(R) Gold 6132
@2.60GHz, Memory: 768GB DDR4 64.26 73.86%

GPU: NVIDIA Tesla V100S-PCl,
Memory: 32GB HBM?2 1.23

/Outperforms even a power-hungry GPU

\
Significant speed-up
over a modern CPU = built for ML acceleration

= ~16X% higher on chip memory than GED/

26

e
Outline of the Talk

e Conclusion

27

e
Conclusion

» A new methodology is proposed to execute DwC on general
ASIC-based DNN accelerator:

= Reuses the fast GEMM core
= Pre-RTL hardware choices are guided by careful analytical study
= [ncurs very small supplementary hardware cost

= Developed instruction-level support and system-level testbenches
to perform end-to-end evaluation on a full hardware stack

» Substantial performance gain:

= Up to 7x speed-up and 1.8x lower off-chip communication over a
conventional DL accelerator for MobileNet-v1
= 74x speed-up over a CPU and 1.4x speed-up over a GPU

28

THANK YOU

Questions?

