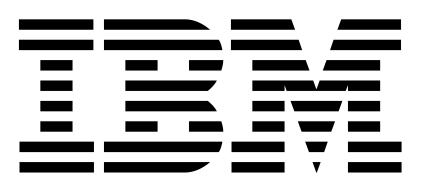
BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU

MohammadHossein AskariHemmat¹, Sean Wagner², Olexa Bilaniuk³, Yassine Hariri⁴, Yvon Savaria¹, Jean-Pierre David¹ ¹Ecole Polytechnique Montreal, Canada ²IBM, Toronto, Canada, ³Mila, Montreal, Canada, ⁴CMC Microsystems, Kingston, Canada

28th Asia and South Pacific Design Automation Conference, ASP-DAC 2023 Tokyo, Japan Jan 16-19 2023

POLYTECHNIQUE MONTRÉAL

UNIVERSITÉ **D'INGÉNIERIE**



Outline

- 1. Motivation and Background.
- 2. BARVINN Overall Architecture:
 - a. MVU Array and Architecture.
 - b. PITO: Multi-Threaded RISC-V Controller.
- 3. BARVINN programming model and software stack.
- 4. Experiments and Results.
- 5. Conclusion and Future Work

Quantized Deep Neural Networks (QDNNs) rely on floating-point computations. ullet

- Quantized Deep Neural Networks (QDNNs) rely on floating-point computations. \bullet
- \bullet and costly in terms of power consumption and silicon area.

Compared to fixed-point and integer operations, floating-point computations are slow

- Quantized Deep Neural Networks (QDNNs) rely on floating-point computations. \bullet
- and costly in terms of power consumption and silicon area.
- On the other hand, it has been shown that quantized models can achieve near floatingpoint precisions in vision tasks.

Task	Dataset	Model	Precision A/W	Acc/ MAP	Size (MB)
			LSQ(2/2)	76.81	2.889
Classification	CIFAR	ResNet18	LSQ(4/4)	76.92	5.559
	100	Resinetto	LSQ(8/8)	78.45	10.87
			FP32	76.82	42.8
			LSQ(2/2)	0.61	10.34
Object	bject VOC- SSD300-		LSQ(4/4)	0.60	11.81
Detection	2007	ResNet18	LSQ(8/8)	0.68	14.77
			FP32	0.59	32.49

Compared to fixed-point and integer operations, floating-point computations are slow

- Quantized Deep Neural Networks (QDNNs) rely on floating-point computations. \bullet
- and costly in terms of power consumption and silicon area.
- On the other hand, it has been shown that quantized models can achieve near floatingpoint precisions in vision tasks.
- efficiently process data in arbitrary precision.

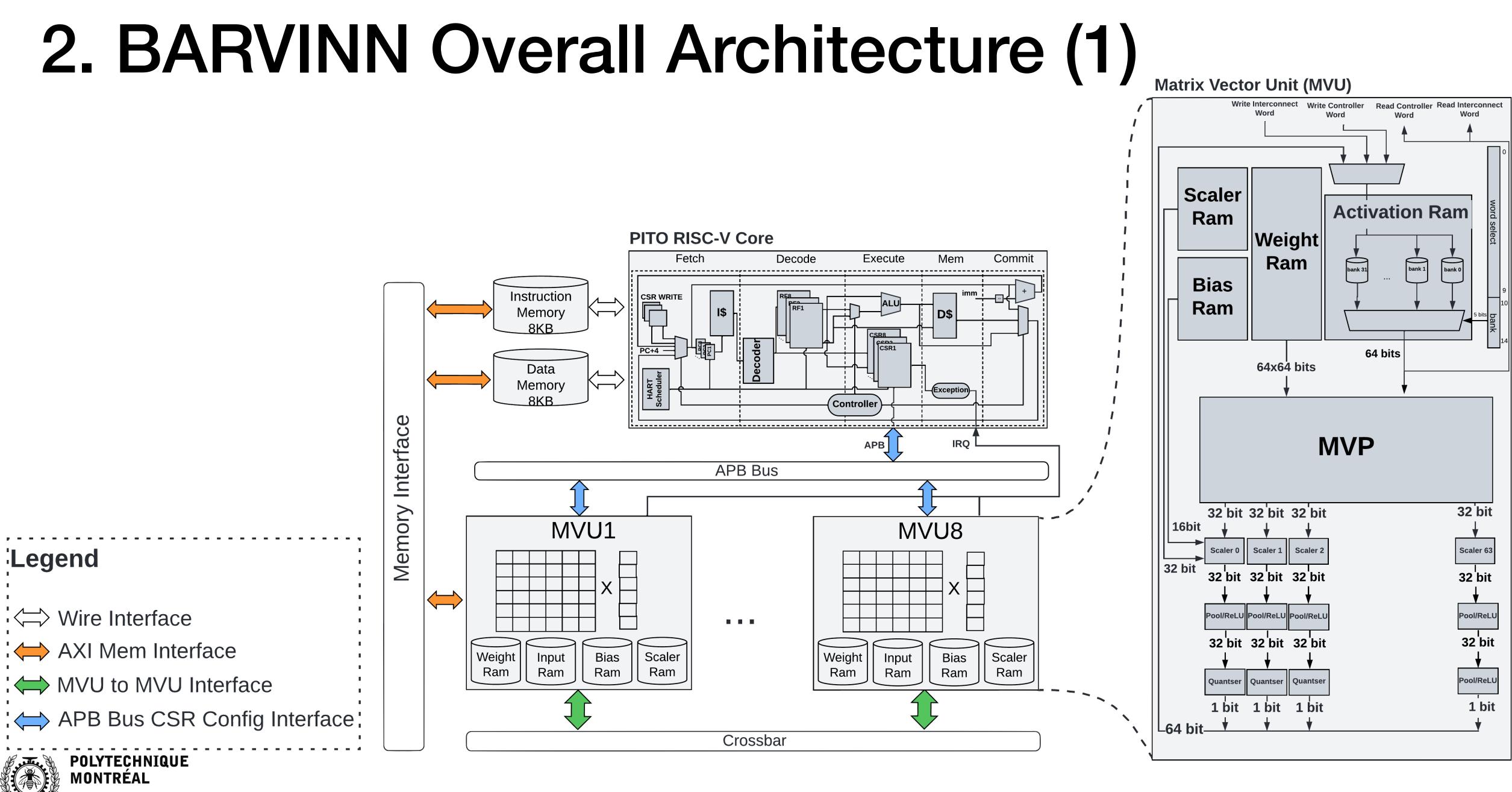
Compared to fixed-point and integer operations, floating-point computations are slow

However, there are no commercially available general processors (CPU or GPU) that can

//ONTRÉAL

VIVERSITE NGÉNIERIE

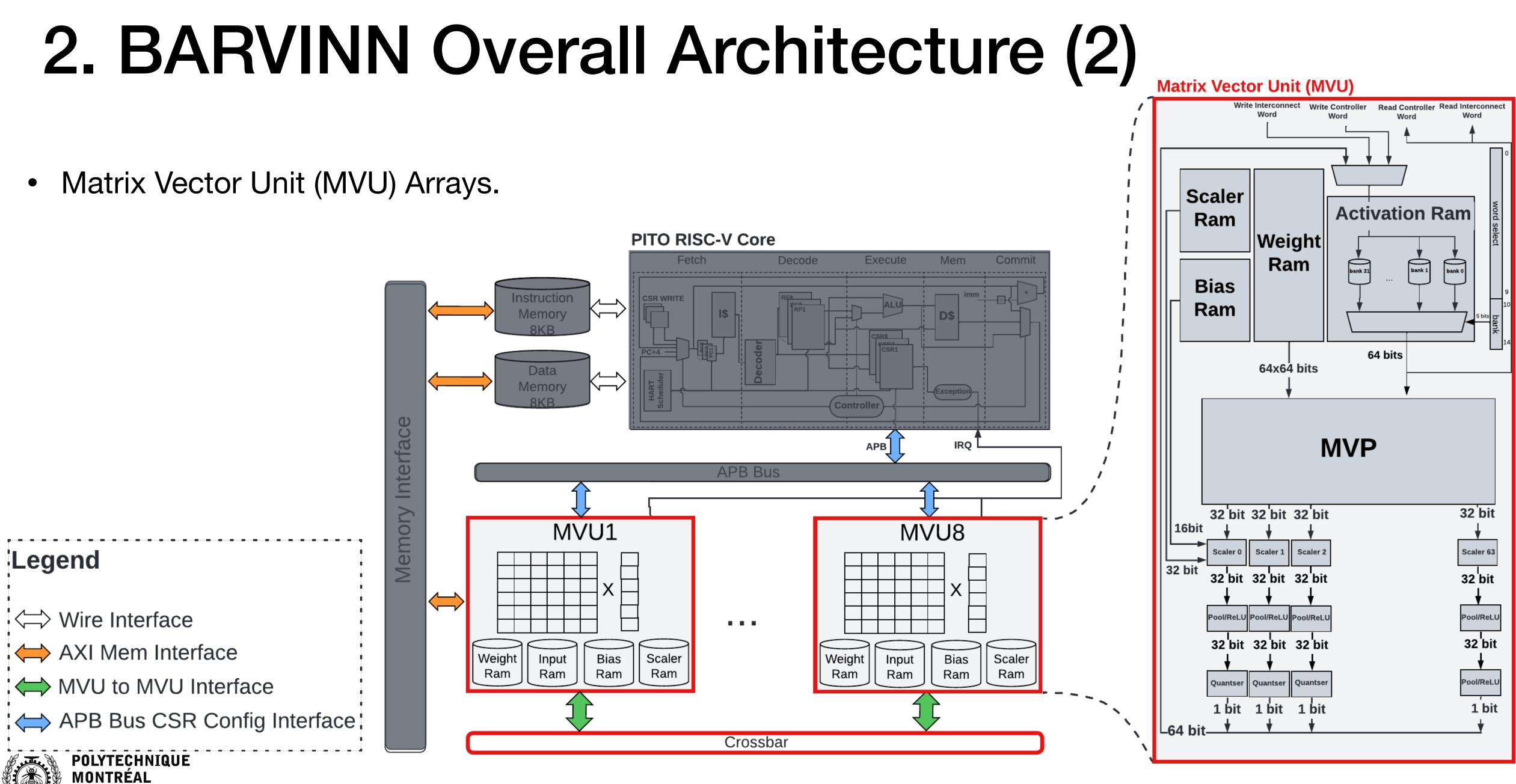
- Introducing BARVINN!
- BARVINN is a DNN for running arbitrary precision quantized models.
- It has 8 processing elements (MVUs) that are controlled by a RISC-V \bullet controller.
- It has an overall 8.2 TMACs of computational power (binary ops).
- It has been implemented on Alveo U250 FPGA platform.



UNIVERSITÉ INGÉNIERIE/

UNIVERSITÉ

'INGÉNIERIE

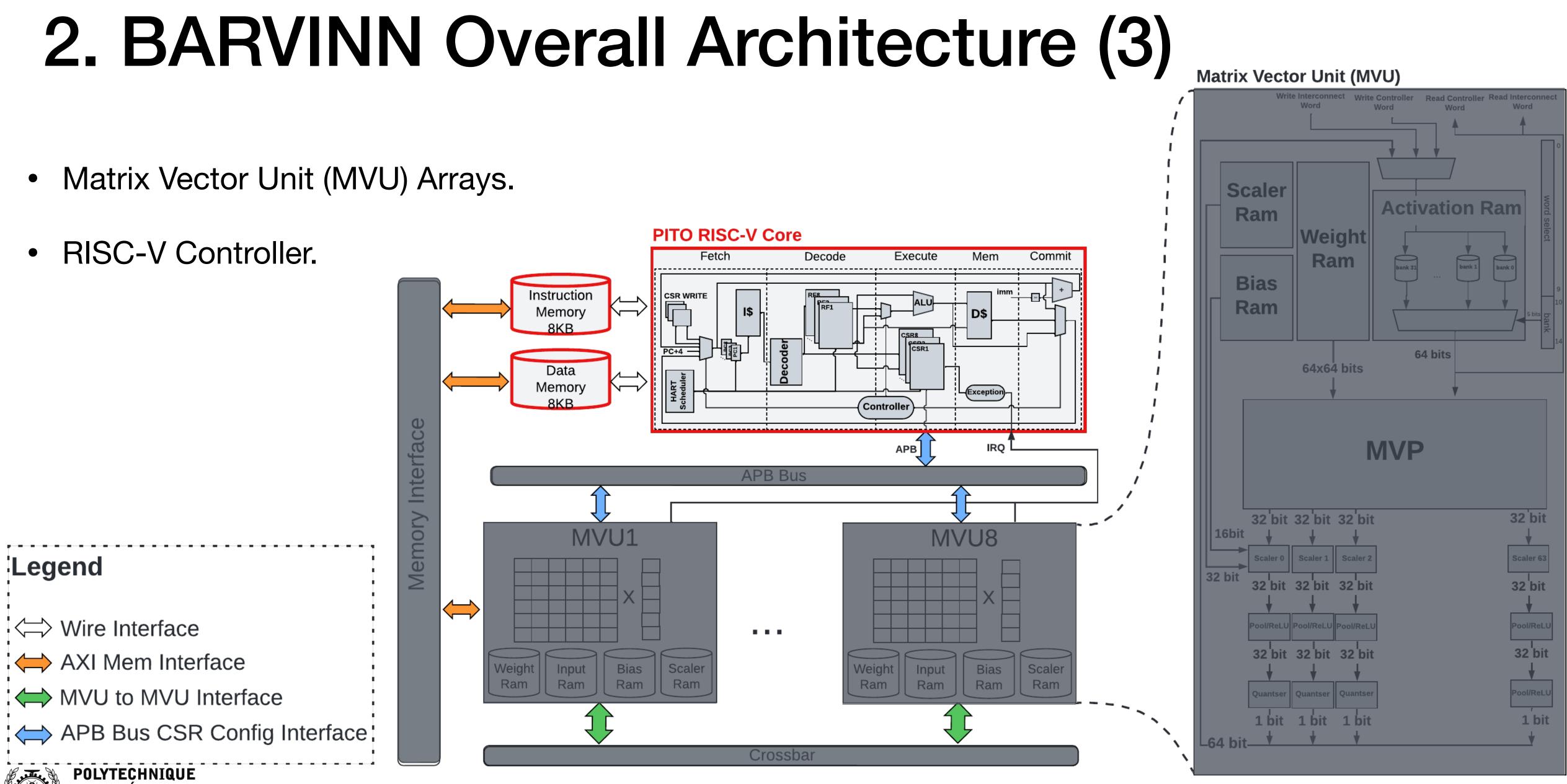


Matrix Vector Unit (MVU) Arrays.

MONTRÉAL

UNIVERSITÉ

'INGÉNIERIE



BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU

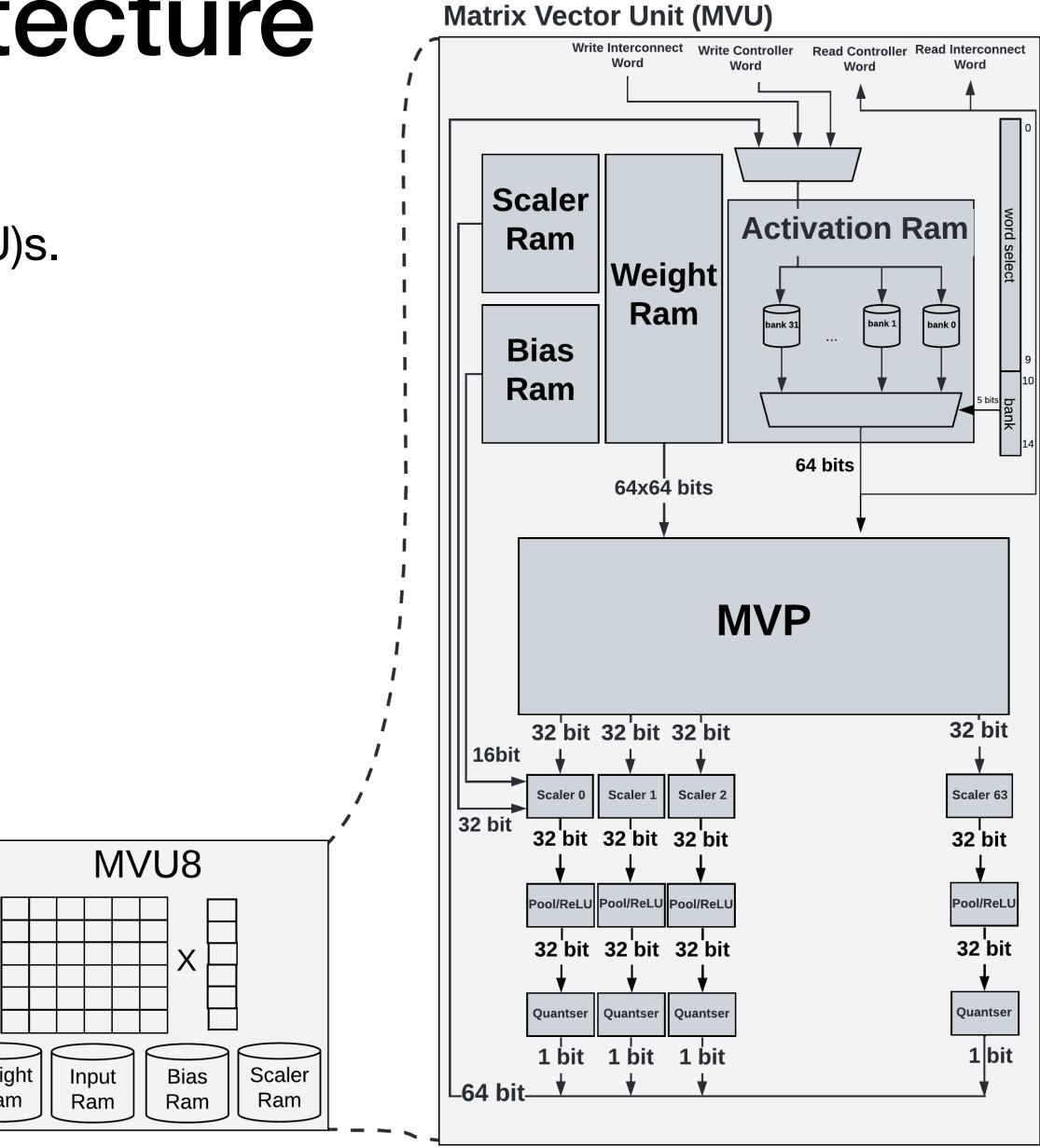
11

Matrix Vector Units: **BARVINN processing** elements.

POLYTECHNIQUE Montréal

UNIVERSITÉ D'INGÉNIERIE

- BARVINN has an array of 8 Matrix Vector Unit (MVU)s. \bullet
- Each MVU is consist of: ullet



BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU

Weight

Ram

- BARVINN has an array of 8 Matrix Vector Unit (MVU)s. \bullet
- Each MVU is consist of:
 - RAMs for activation, Weights, Scalers and Biases. ullet

Matrix Vector Unit (MVU) nnect Write Controller Read Controller Read I Scaler **Activation Ram** Ram Weight Ram bank 1 **Bias** Ram 64 bits 64x64 bits **MVP** 32 bit 32 bit 32 bit 16bit **32 bit** 32 bit 32 bit 32 bit MVU8 32 bit 32 bit 32 bit 1 bit 1 bit 1 bit Weight Bias Scaler Input _64 bit Ram Ram Ram Ram

- BARVINN has an array of 8 Matrix Vector Unit (MVU)s. \bullet
- Each MVU is consist of:
 - RAMs for activation, Weights, Scalers and Biases. \bullet
 - Matrix Vector Product unit (MVP).

Write Interconnect Write Controller Read Controller Read Scaler **Activation Ram** Ram Weight Ram Bias Ram 64 bits 64x64 bits **MVP** 32 bit 32 bit 32 bit 16bit **32 bit** 32 bit 32 bit 32 bit MVU8 32 bit 32 bit 32 bit 1 bit 1 bit 1 bit Bias Scaler Input Weight _64 bit Ram Ram Ram Ram

Matrix Vector Unit (MVU)

- BARVINN has an array of 8 Matrix Vector Unit (MVU)s. \bullet
- Each MVU is consist of:
 - RAMs for activation, Weights, Scalers and Biases. \bullet
 - Matrix Vector Product unit (MVP).
 - Pooling and Activation units.

Write Interconnect Write Controller Read Controller Read Scaler **Activation Ram** Ram Weight Ram Bias Ram 64 bits 64x64 bits **MVP** 32 bit 32 bit 32 bit 16bit Scaler 0 **32** bit 32 bit 32 bit 32 bit MVU8 32 bit 32 bit 32 bit 1 bit 1 bit 1 bit Weight Bias Scaler Input _64 bit Ram Ram Ram Ram

Matrix Vector Unit (MVU)

- BARVINN has an array of 8 Matrix Vector Unit (MVU)s. \bullet
- Each MVU is consist of:
 - RAMs for activation, Weights, Scalers and Biases. \bullet
 - Matrix Vector Product unit (MVP).
 - Pooling and Activation units.
 - Scaler Unit. \bullet

nnect Write Controller Read Controller Read Scaler **Activation Ram** Ram Weight Ram Bias Ram 64 bits 64x64 bits **MVP** 32 bit 32 bit 32 bit 16bit **32 bit** 32 bit 32 bit 32 bit MVU8 Pool/ReLU 32 bit 32 bit 32 bit 1 bit 1 bit 1 bit Weight Bias Scaler Input _64 bit Ram Ram Ram Ram

Matrix Vector Unit (MVU)

- BARVINN has an array of 8 Matrix Vector Unit (MVU)s. \bullet
- Each MVU is consist of: lacksquare
 - RAMs for activation, Weights, Scalers and Biases. lacksquare
 - Matrix Vector Product unit (MVP).
 - Pooling and Activation units.
 - Scaler unit. ullet
 - Quantizer unit.

nect Write Controller Read Controller Read Scaler **Activation Ram** Ram Weight Ram Bias Ram 64 bits 64x64 bits **MVP** 32 bit 32 bit 32 bit 16bit **32** bit 32 bit 32 bit 32 bit MVU8 32 bit 32 bit 32 bit Quantser Quantser Quantse 1 bit 1 bit 1 bit Weight Bias Scaler Input _64 bit Ram Ram Ram Ram

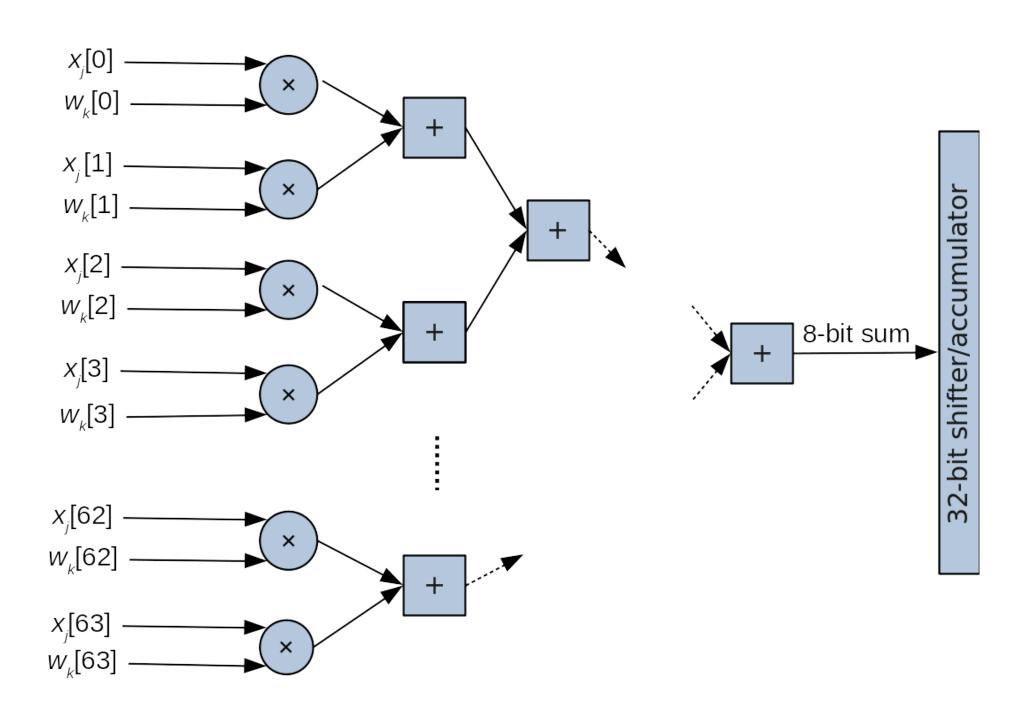
Matrix Vector Unit (MVU)

- BARVINN has an array of 8 Matrix Vector Unit (MVU)s. \bullet
- Each MVU is consist of: 1- RAMs for activation, 2- Weights, Scalers and Biases. 3- Matrix Vector Product unit (MVP). 4- Pooling and Activation units. Scaler unit. 5- Quantizer unit.
- Using 64 input element data and 64 x64 element matrix from Weight RAM, each MVU compute 64 output vector elements per each clock cycle.

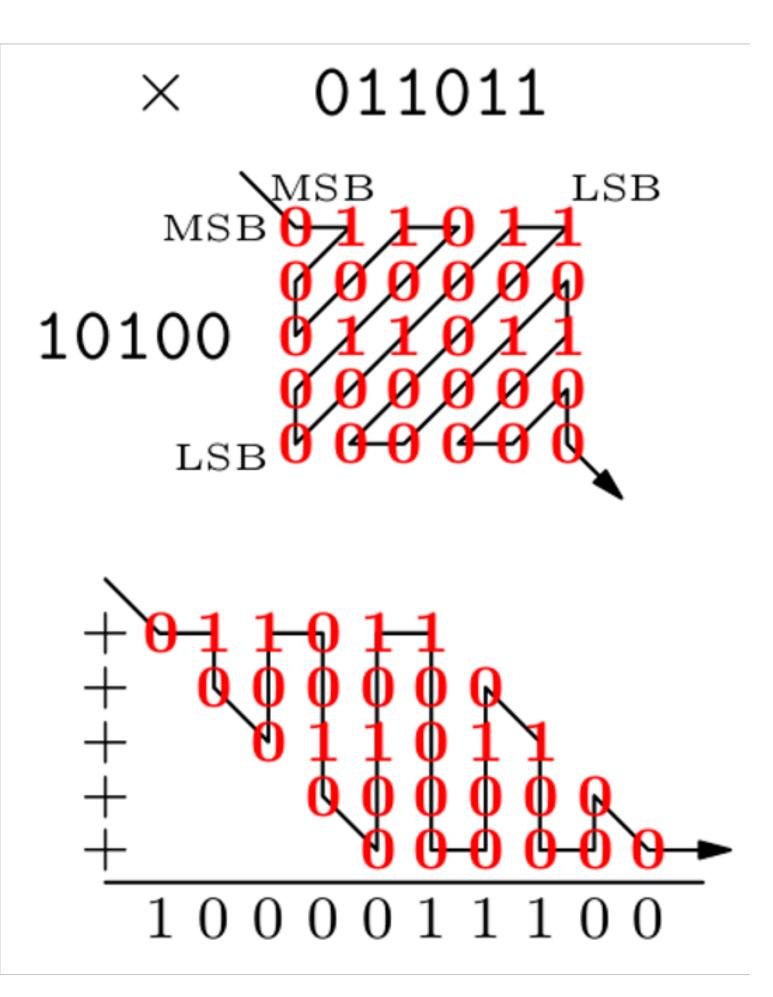
VIVERSITE NGÉNIERIE

- Matrix Vector Products (MVP)s: \bullet
 - Compute fixed-point arbitrary precision operands 1- to 16-bit.
 - Each MVP has 64 Vector-Vector Product (VVP).
 - Each cycle, 64 bits from activation RAM is broadcasted to each of the 64 VVPs, and a 64x64 matrix tile is loaded from the weight ram and loaded to separate VVPs.
 - The VVPs compute a 64-element dot product on ullet1-bit operands (as displayed in the adder tree).

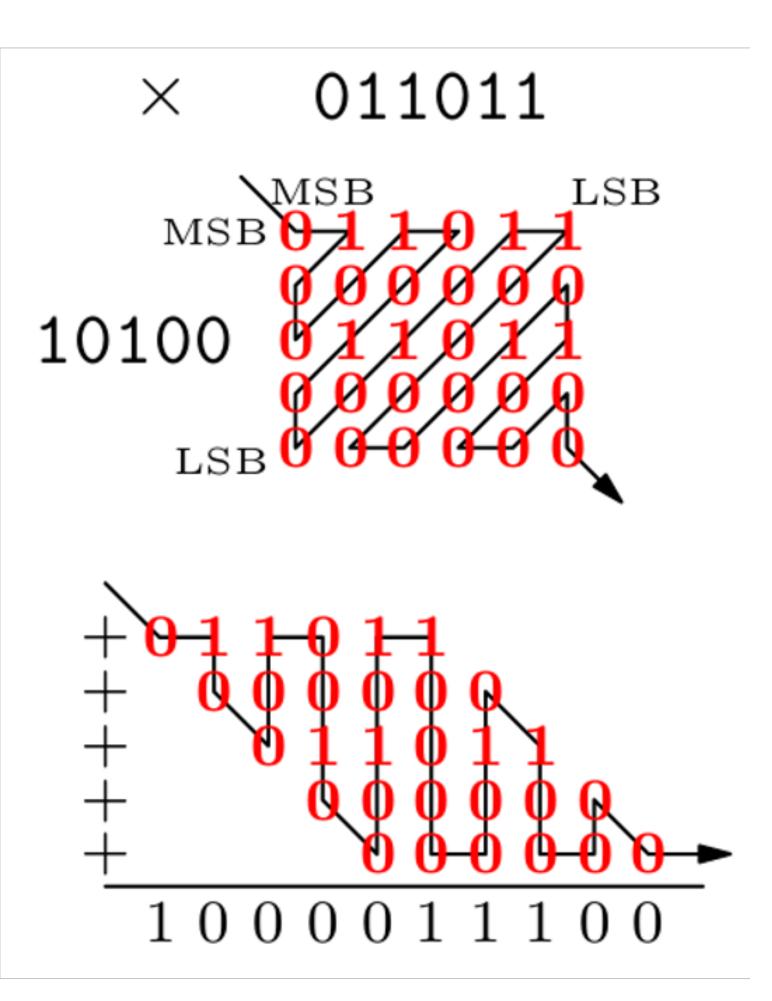
10NTRÉAL



- We use **bit-serial** math to support arbitrary precision.
- Example: A=0b011011, B=0b10100, $C=A \times B$ lacksquare

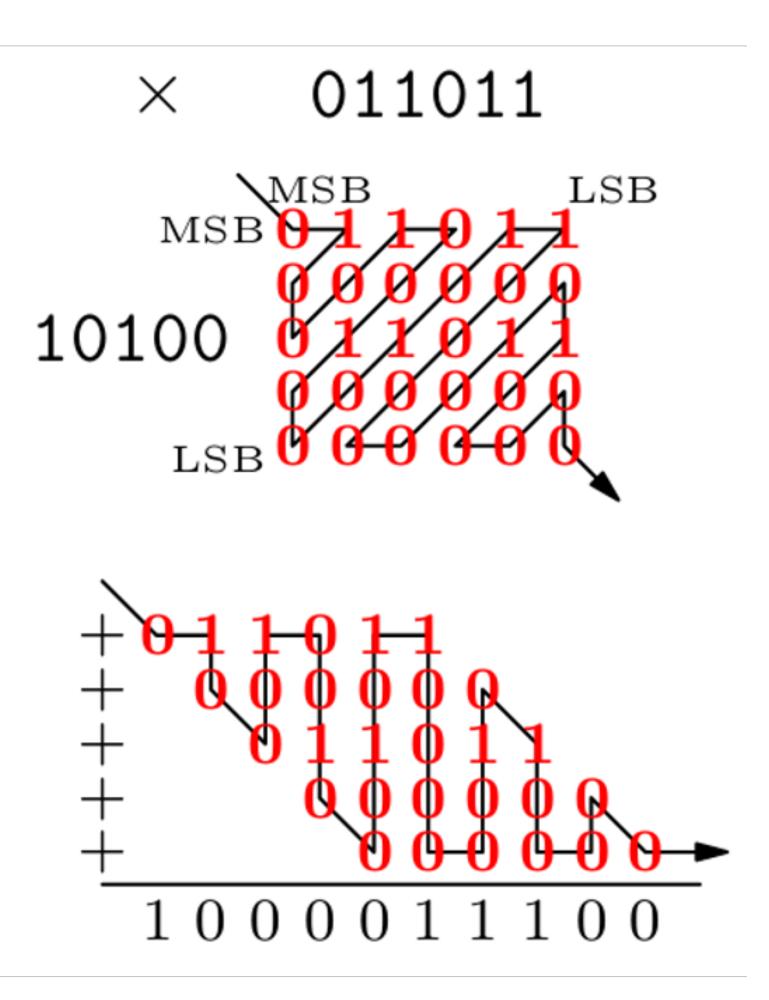


- We use bit-serial math to support arbitrary precision.
- Example: A=0b011011, B=0b10100, $C=A \times B$ \bullet Start cycle time Step 1 (t=0 011011 **A**: 10100 **B**: **0** ← Partial sums + C: 000000000



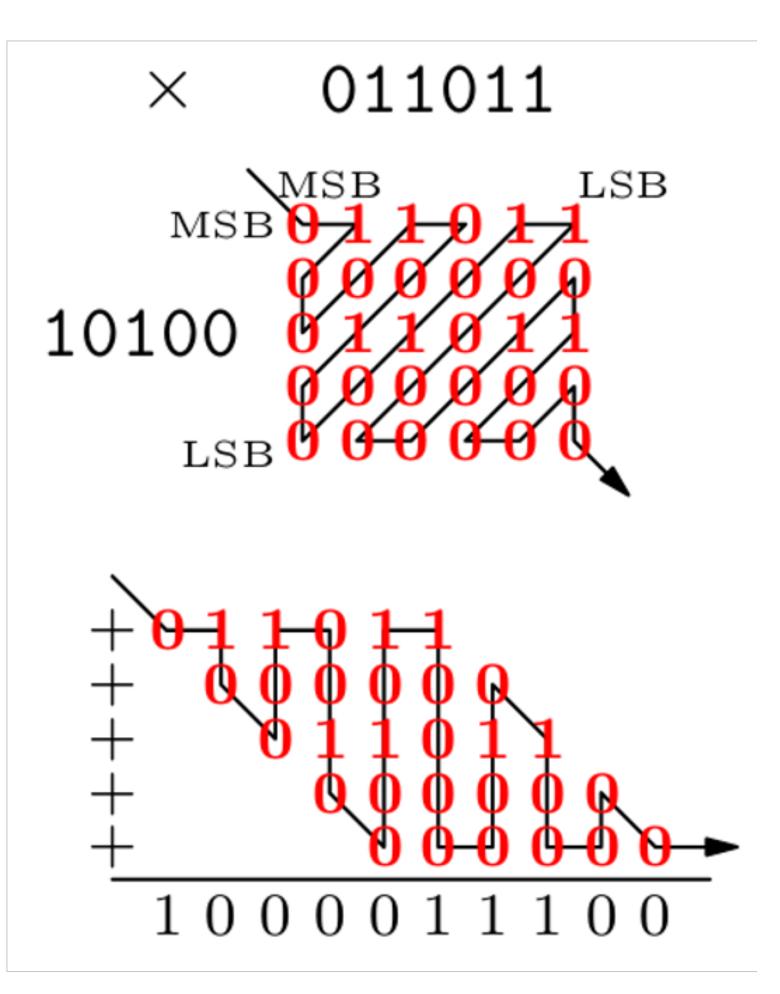
- We use bit-serial math to support arbitrary precision.
- Example: A=0b011011, B=0b10100, C= A X B

Ste	<u>ep 1 (t=0)</u>	<u>Ste</u>	<u>p 2 (t=1)</u>
A:	011011	A:	011011
B:	1 0100	B:	10 100
+	0	+	1
C:	000000000	C:	000000001
			←



- We use bit-serial math to support arbitrary precision.
- Example: A=0b011011, B=0b10100, C= A X B

<u>Step 1 (t=0)</u>	<u>Step 2 (t=1)</u>	<u>Step 3</u>
A: 011011	A: 011011	A :
B: 1 0100	B: 10100	B:
+ 0	+ 1	+
C: 000000000	C: 000000001	C: 000
	←	



- We use bit-serial math to support arbitrary precision.
- Example: A=0b011011, B=0b10100, C= A X B

Step 1 (t=0)	<u>Step 2 (t=1)</u>	Step 3	
A: 011011	A: 011011	A:	
B: 1 0100	B: 10100	B:	
+ 0	+ 1	+	
C: 000000000	C: 000000001	C: 000	
<u>Step 4 (t=6)</u>	← <u>Step 5 (t=10)</u>	<u>Step 6</u>	
A: 011011	A: 011011	A:	
B: 10100	B: 10100	B:	
+ 1	+ 10	+	
C: 000000111	C: 0000010000	C: 000	
<u>Step 7 (t=20)</u>	Step 8 (t=24)	Step 9	
A: 011011	A: 011011	A :	
B: 10100	B: 10100	в:	
+ 1	+ 1	+	
POCYTEC DOOD 100011 MONTRÉAL	C: 0010000111	C: 010	
	RARVININI Arbitrary Dr	ocicion DNI	

NGÉNIERIE

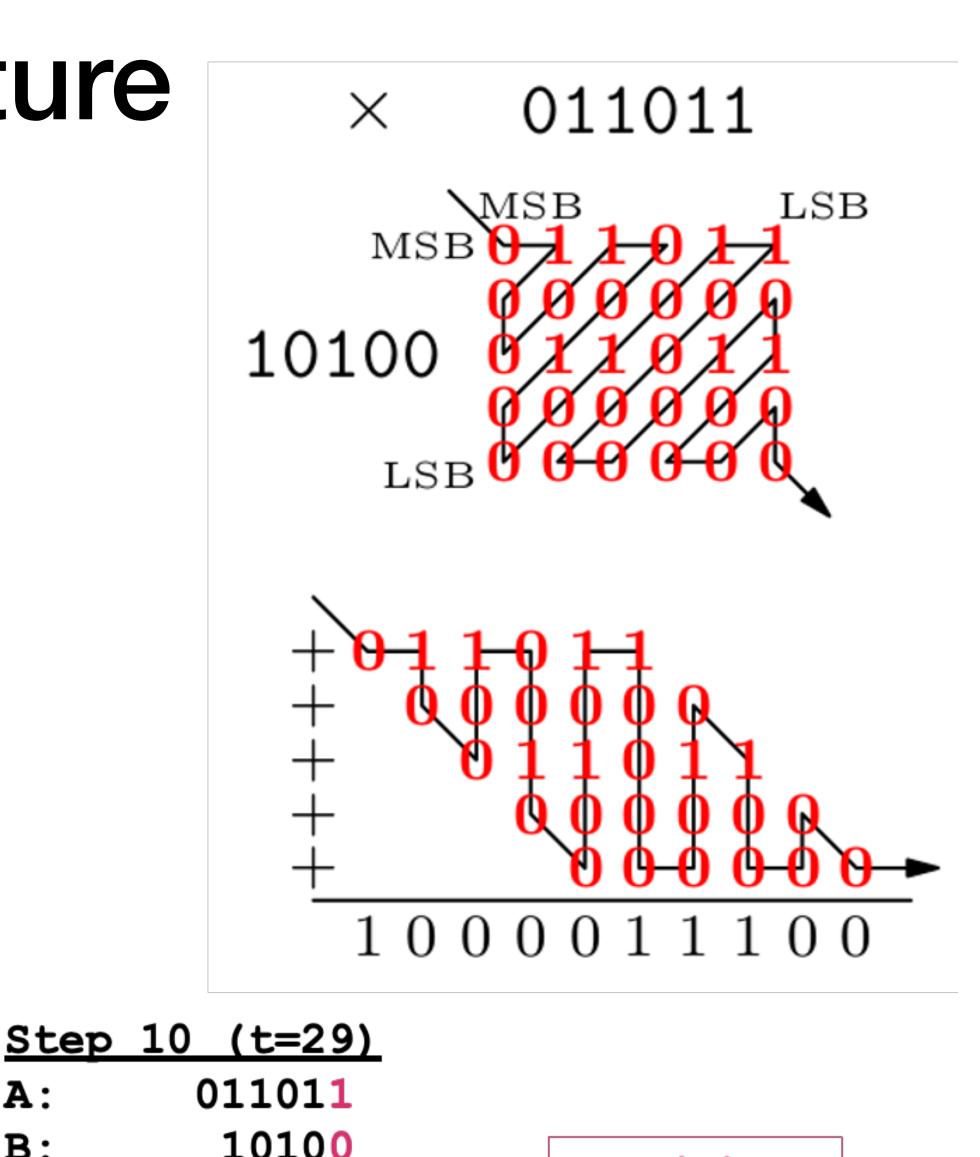
BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU

A:

B:

C:

1000011100



Total time:

30 cycles

Pito: A Simple RISC-V Procesor to Control MVU arrays.

POLYTECHNIQUE Montréal

UNIVERSITÉ D'INGÉNIERIE

• PITO is a RISC-V processor that supports RV32I instruction set.

- PITO is a RISC-V processor that supports RV32I instruction set.
- PITO has 8KB of instruction and 8KB of data RAM.

NIVERSITÉ INGÉNIERIE

- PITO is a RISC-V processor that supports RV32I instruction set.
- PITO has 8KB of instruction and 8KB of data RAM.
- It supports privilege mode to read and write from and to CSRs.

NIVERSITÉ NGÉNIERIE

- PITO is a RISC-V processor that supports RV32I instruction set.
- PITO has 8KB of instruction and 8KB of data RAM.
- It supports privilege mode to read and write from and to CSRs.
- It uses 75 extra RISC-V CSRs per MVU to control different MVU promoters.

INIVERSITÉ VINGÉNIERIE

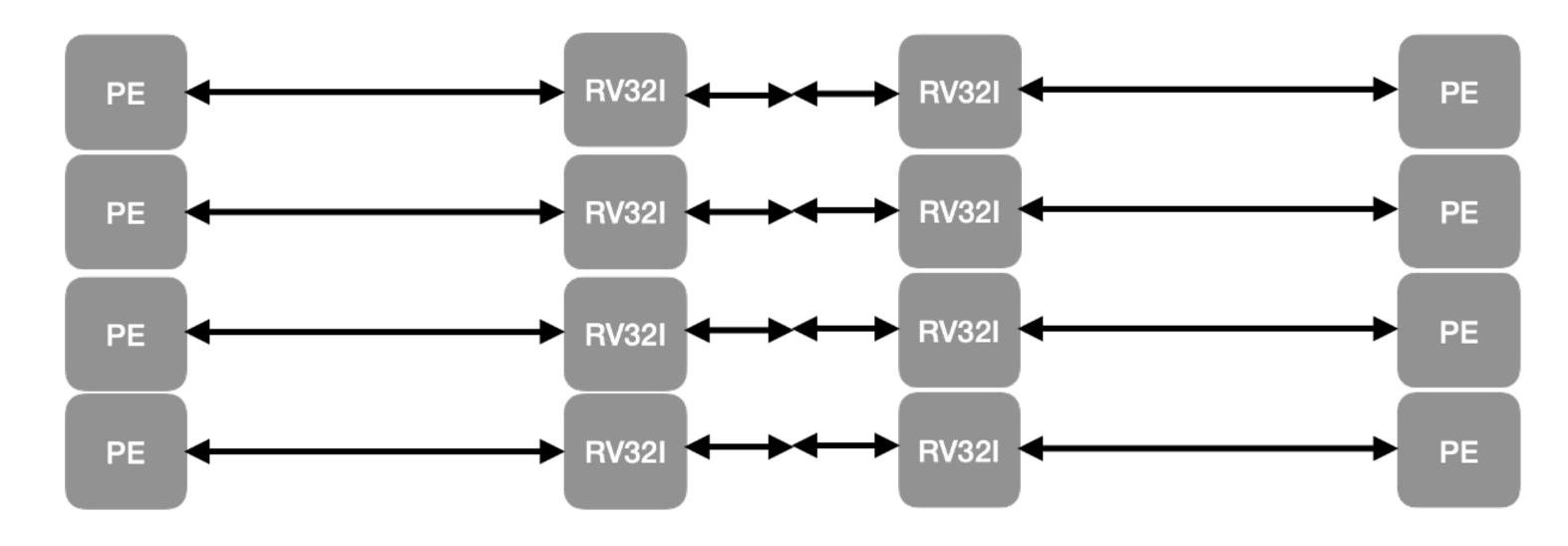
- PITO is a RISC-V processor that supports RV32I instruction set.
- PITO has 8KB of instruction and 8KB of data RAM.
- It supports privilege mode to read and write from and to CSRs.
- It uses 75 extra RISC-V CSRs per MVU to control different MVU promoters.
- It has a custom C runtime for controlling different MVUs in a thread safe environment, reducing the need for a custom RTOS.

How to control multiple processing elements?

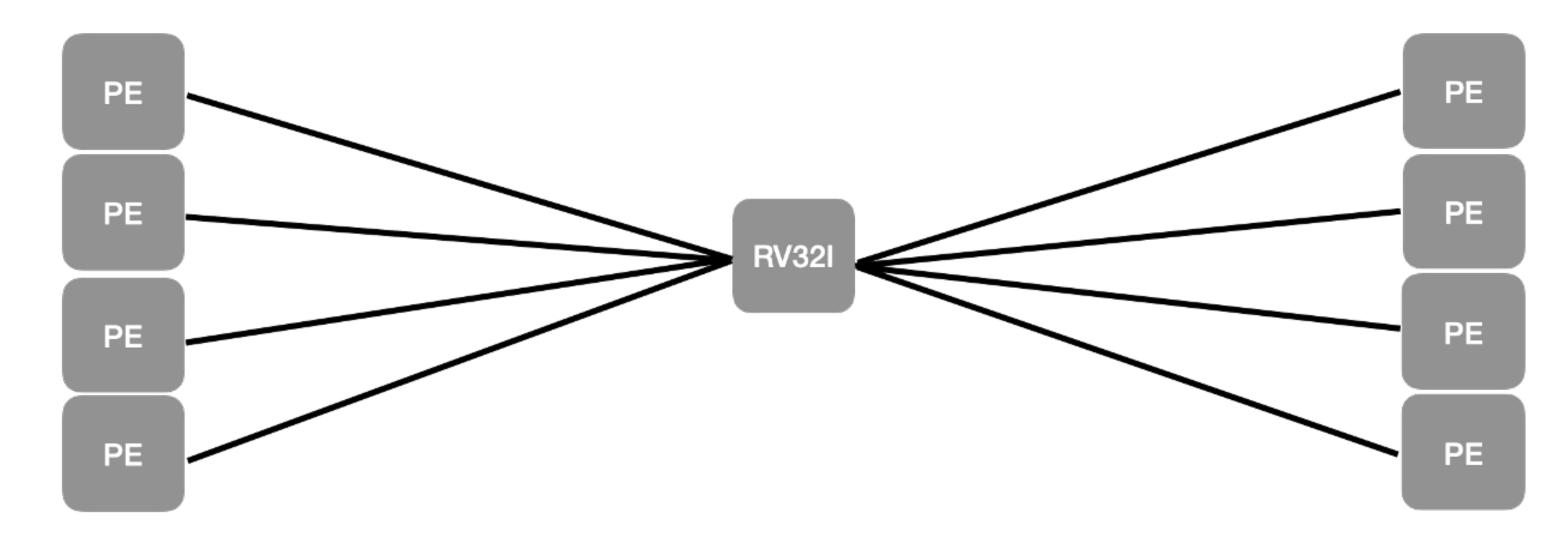
POLYTECHNIQUE Montréal

UNIVERSITÉ D'INGÉNIERIE

- How to control multiple processing elements?
 - Solution1: Use a separate controller for each PE.
 - High throughput.
 - Fine control over each PE.
 - High resource utilization.

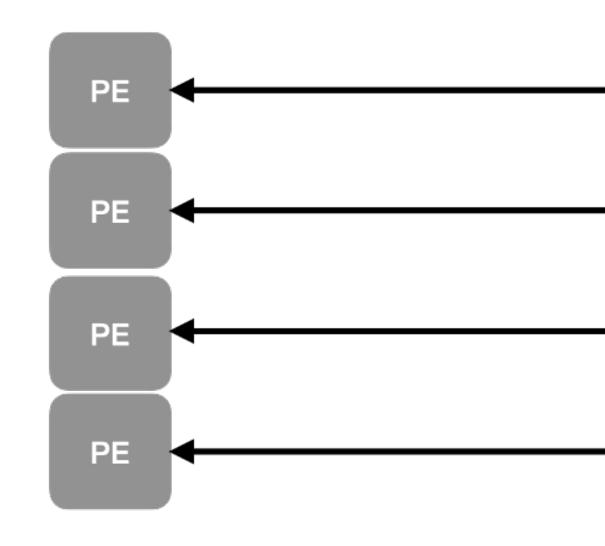


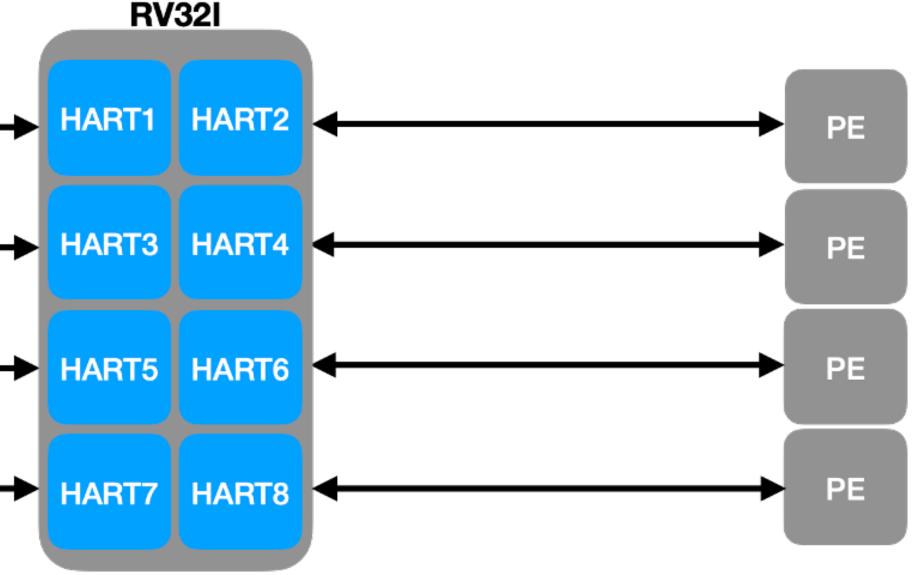
- How to control multiple processing elements?
 - Solution1: Use a separate controller for each PE.
 - Solution2: Use a shared controller for all PEs. ullet
 - Low resource utilization.
 - Lower throughput.

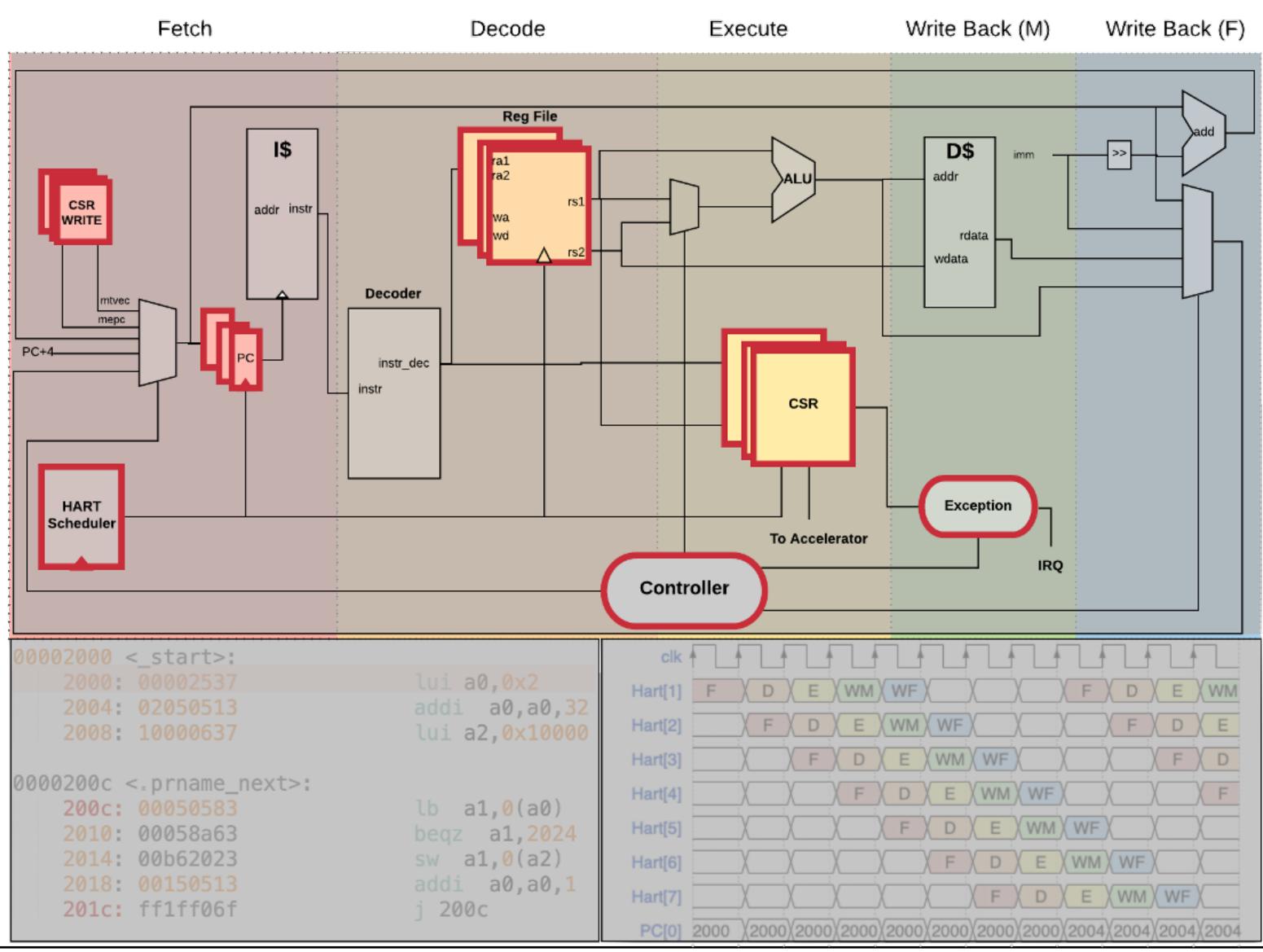


NIVERSITÉ INGÉNIERIE

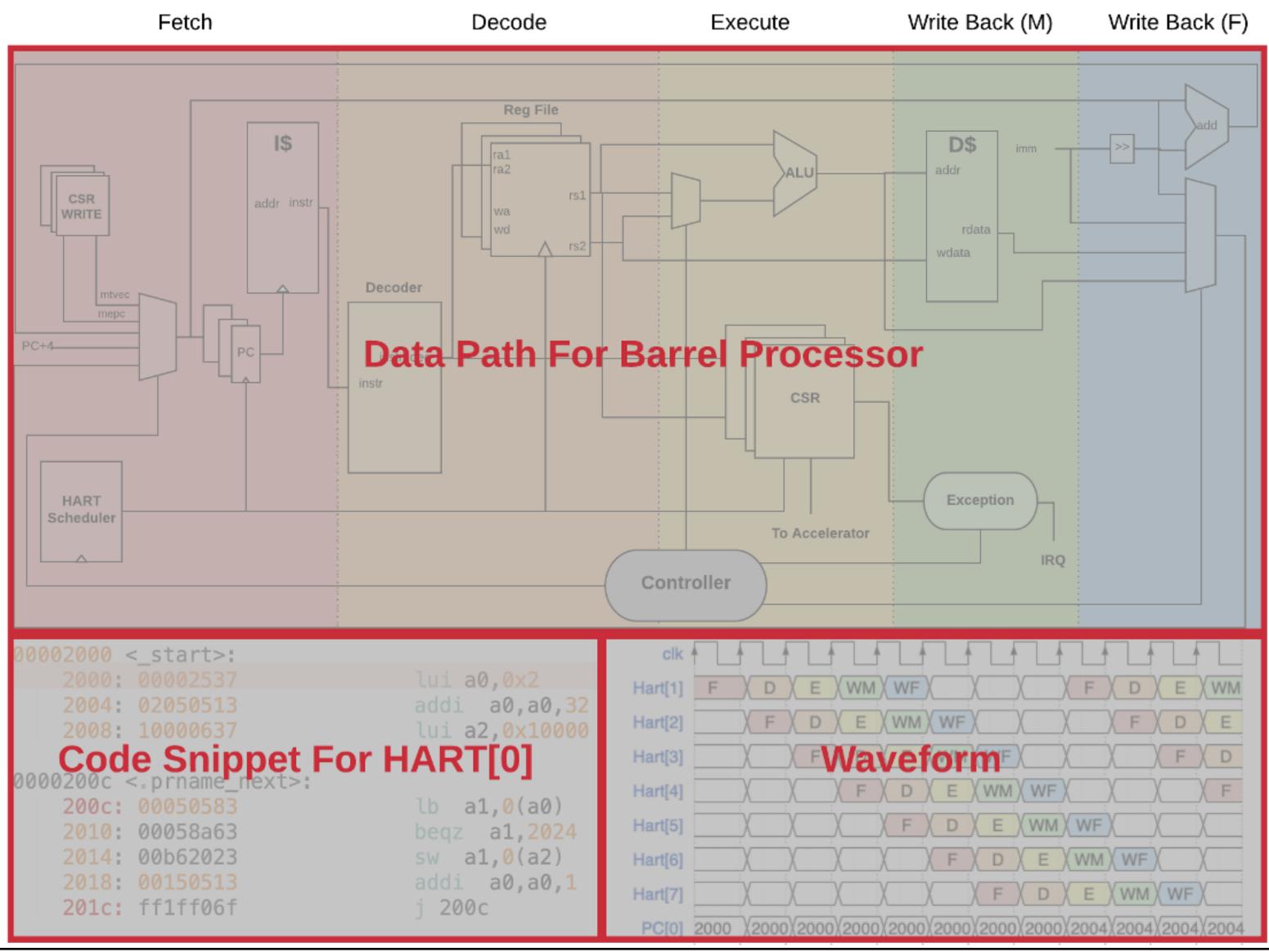
- How to control multiple processing elements? \bullet
 - Solution1: Use a separate controller for each PE.
 - Solution2: Use a shared controller for all PEs.
 - Our Solution: Barrel Processing: Share data path with multiple hardware threads (HARTs).
 - High throughput, fine grain control, low resource usage, no need for data or control hazard logic, etc





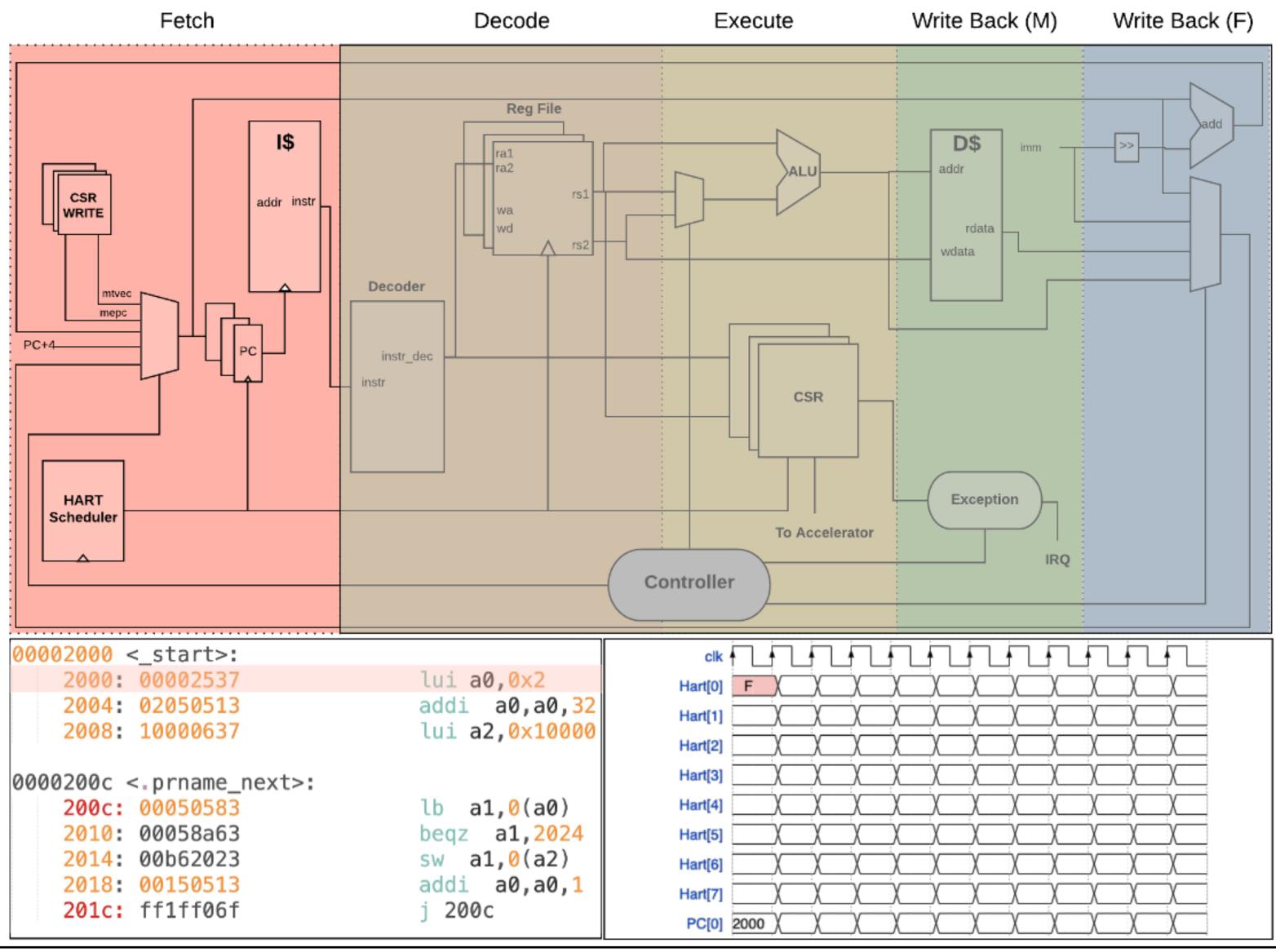


D'INGÉNIERIE



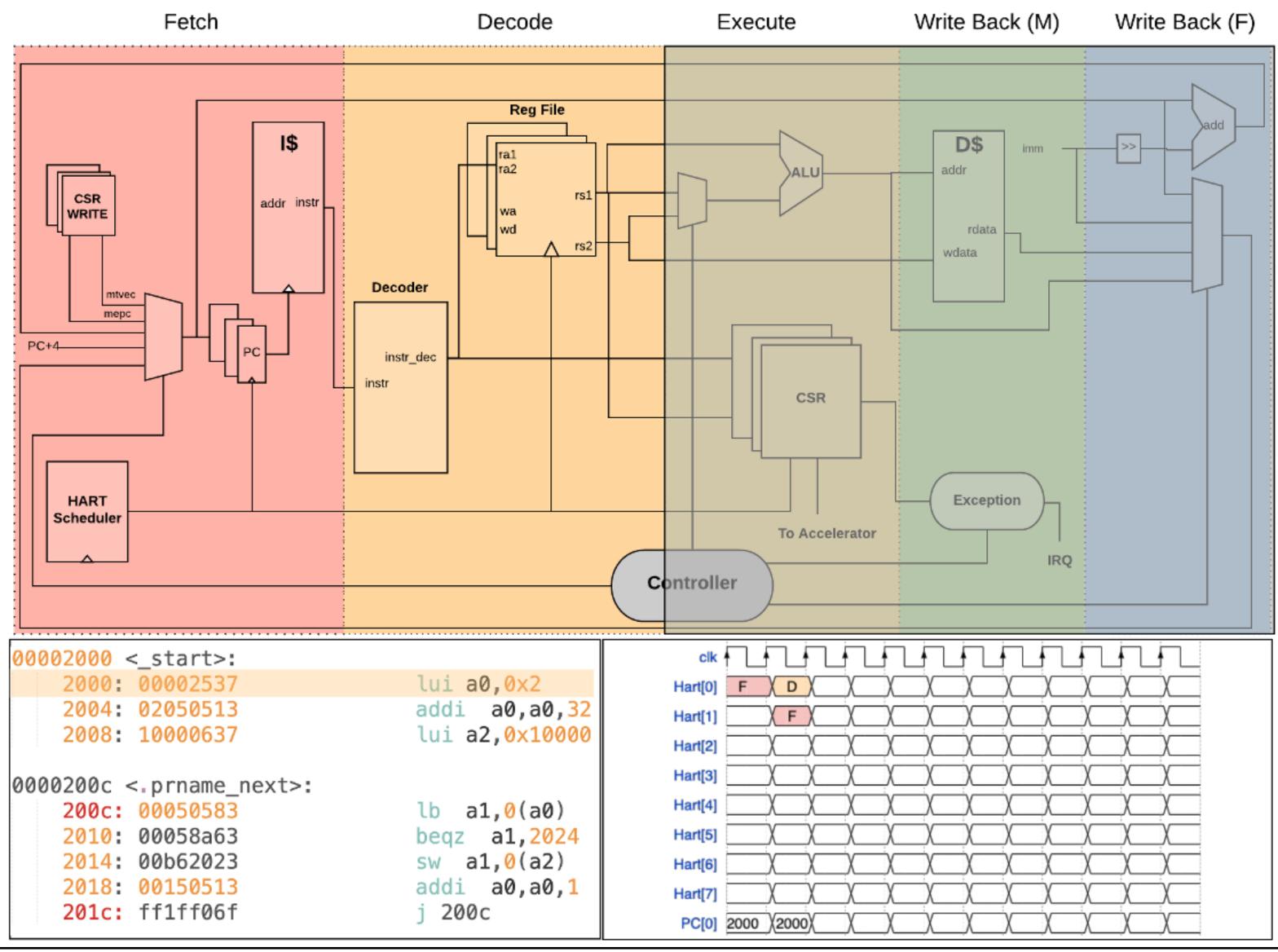
POLYTECHNIQUE MONTRÉAL

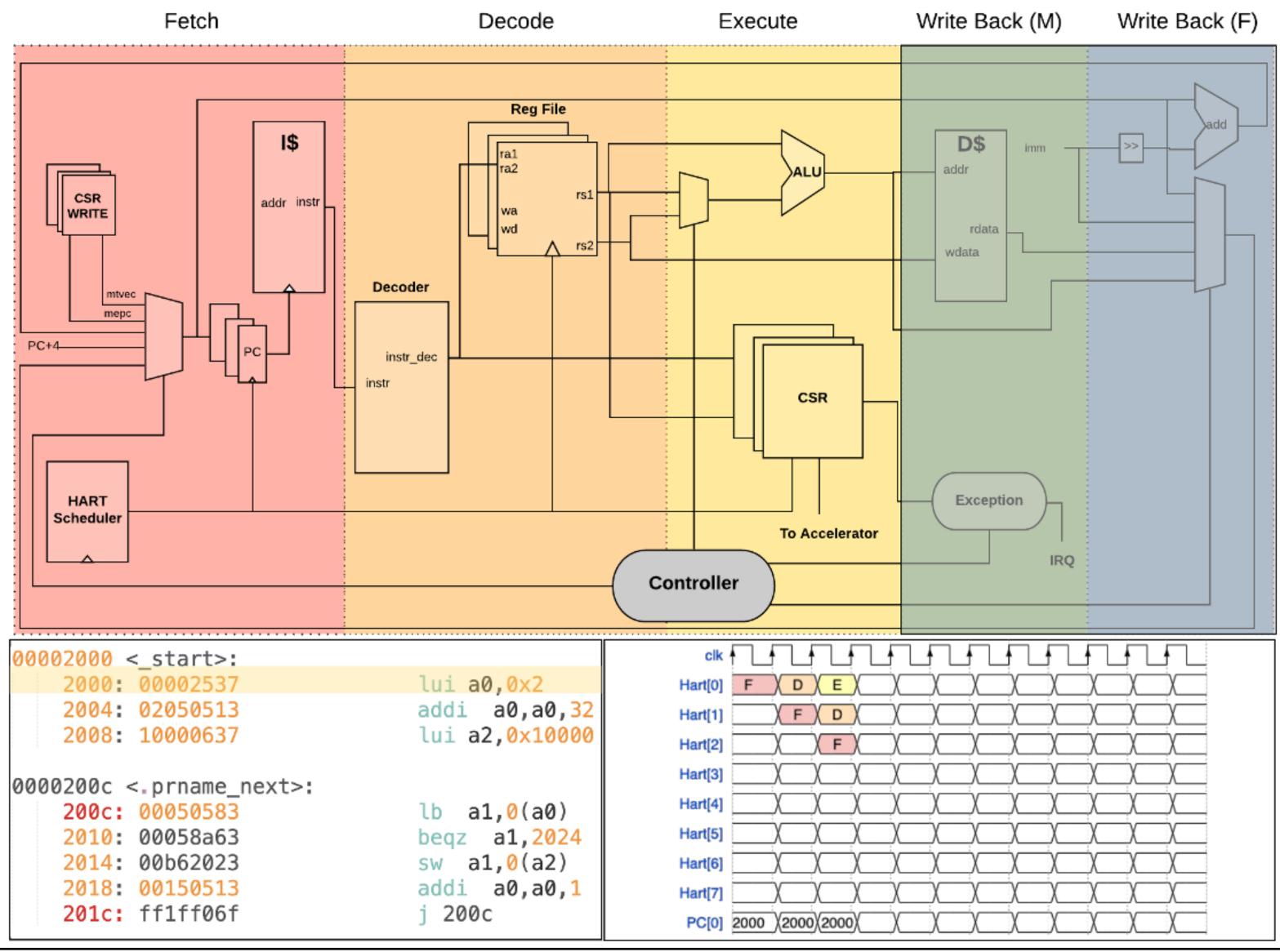
UNIVERSITÉ D'INGÉNIERIE



UNIVERSITÉ D'INGÉNIERIE

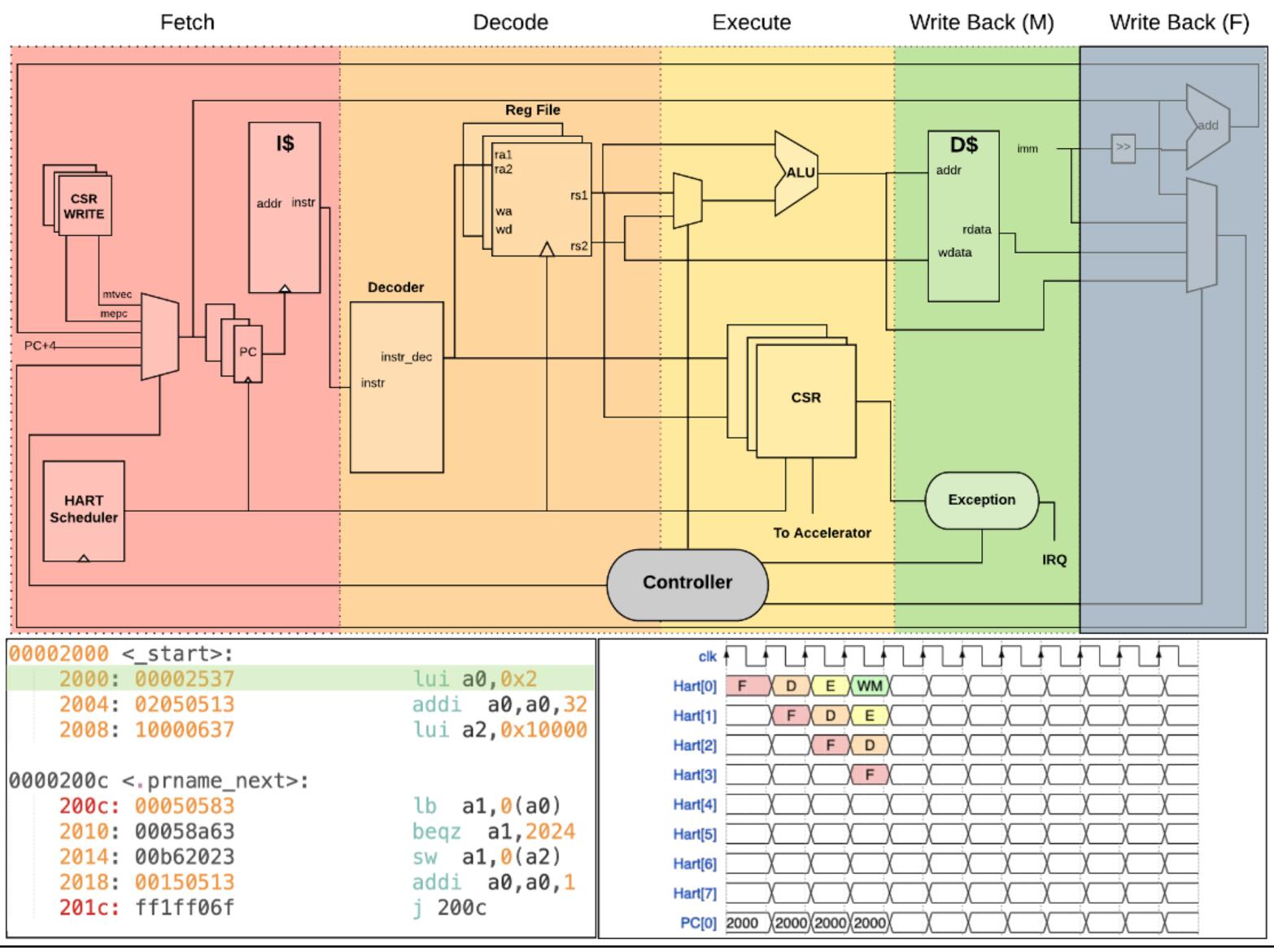
BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU





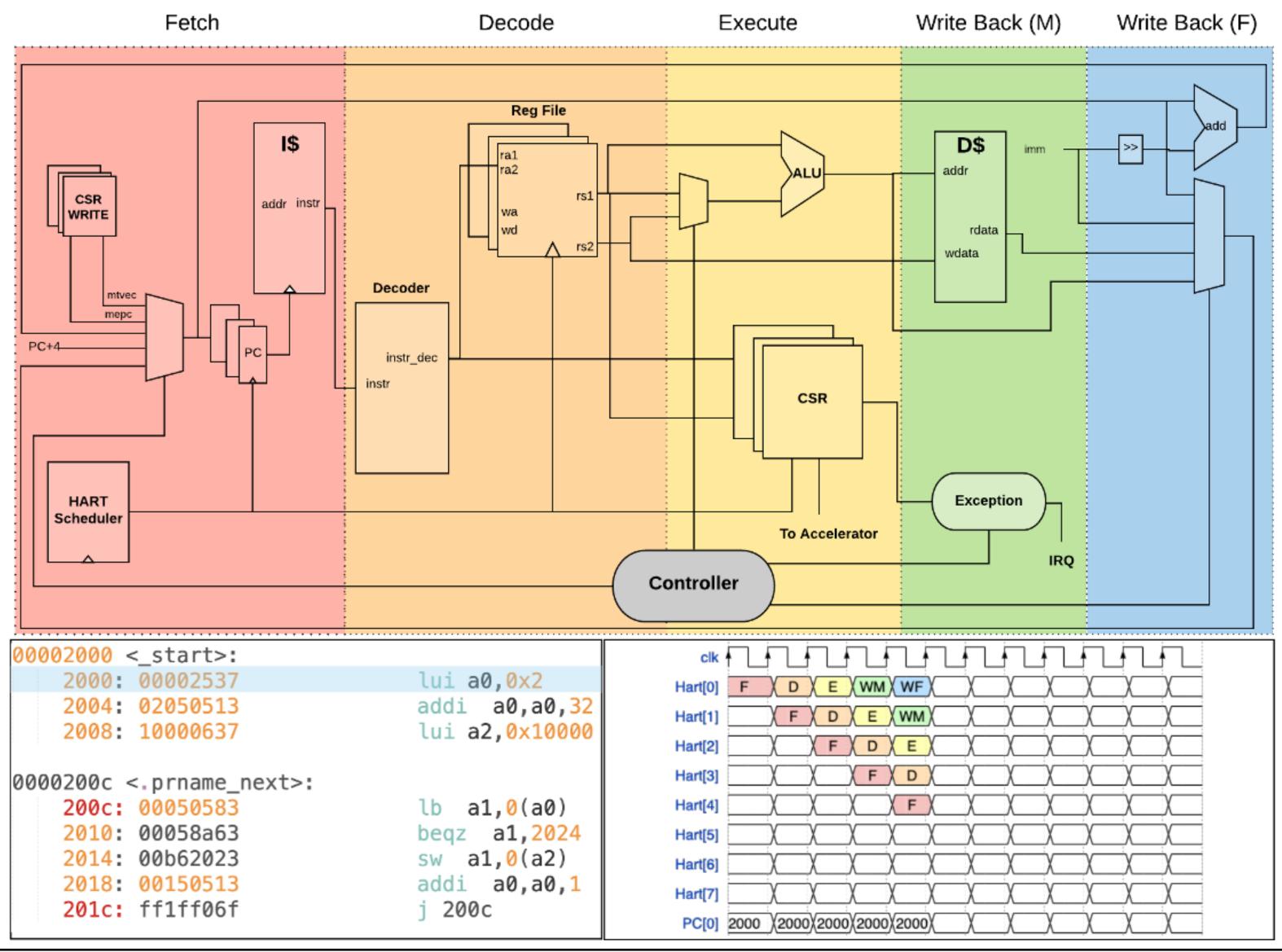
D'INGÉNIERIE

BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU

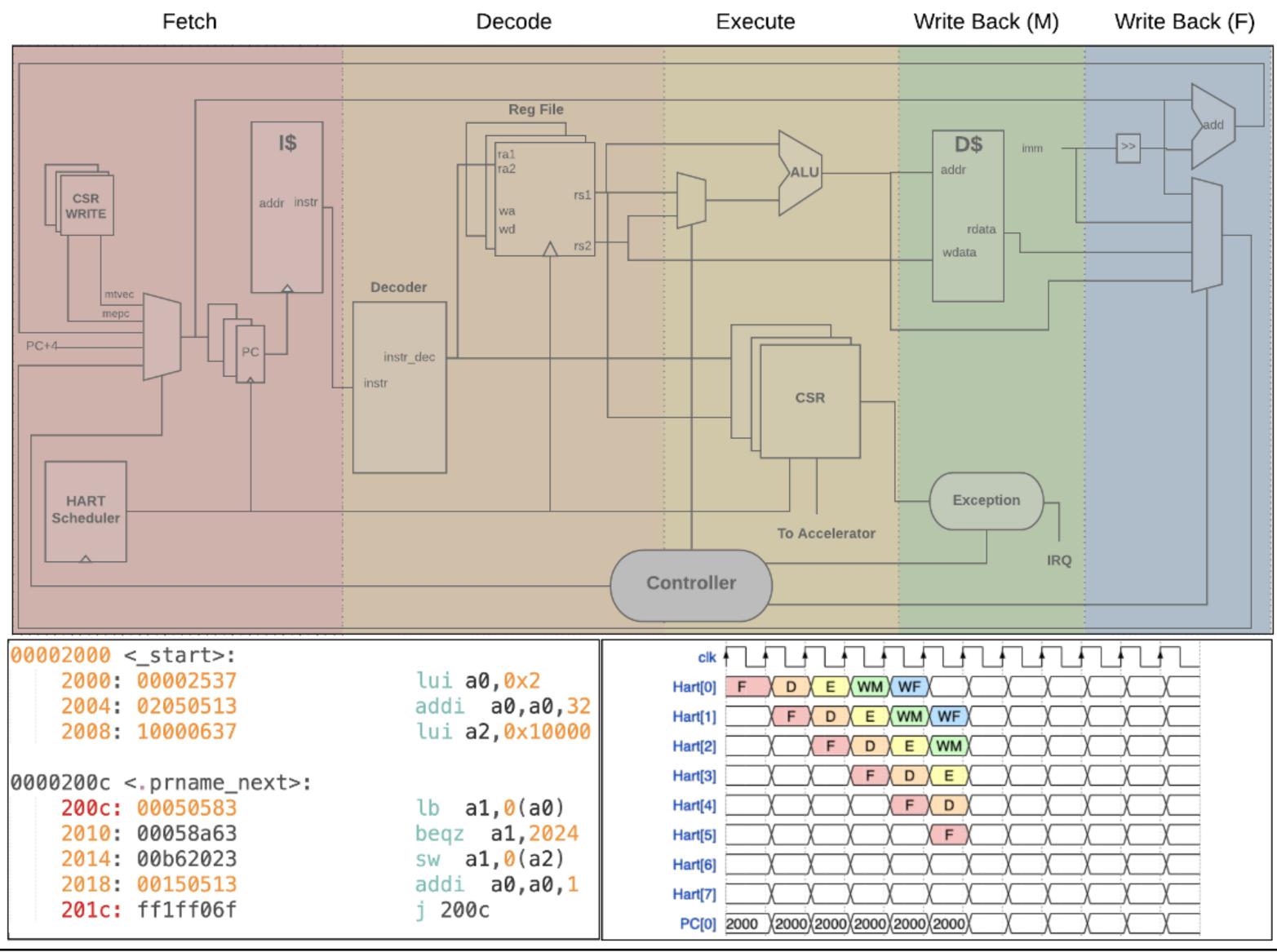


BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU

41

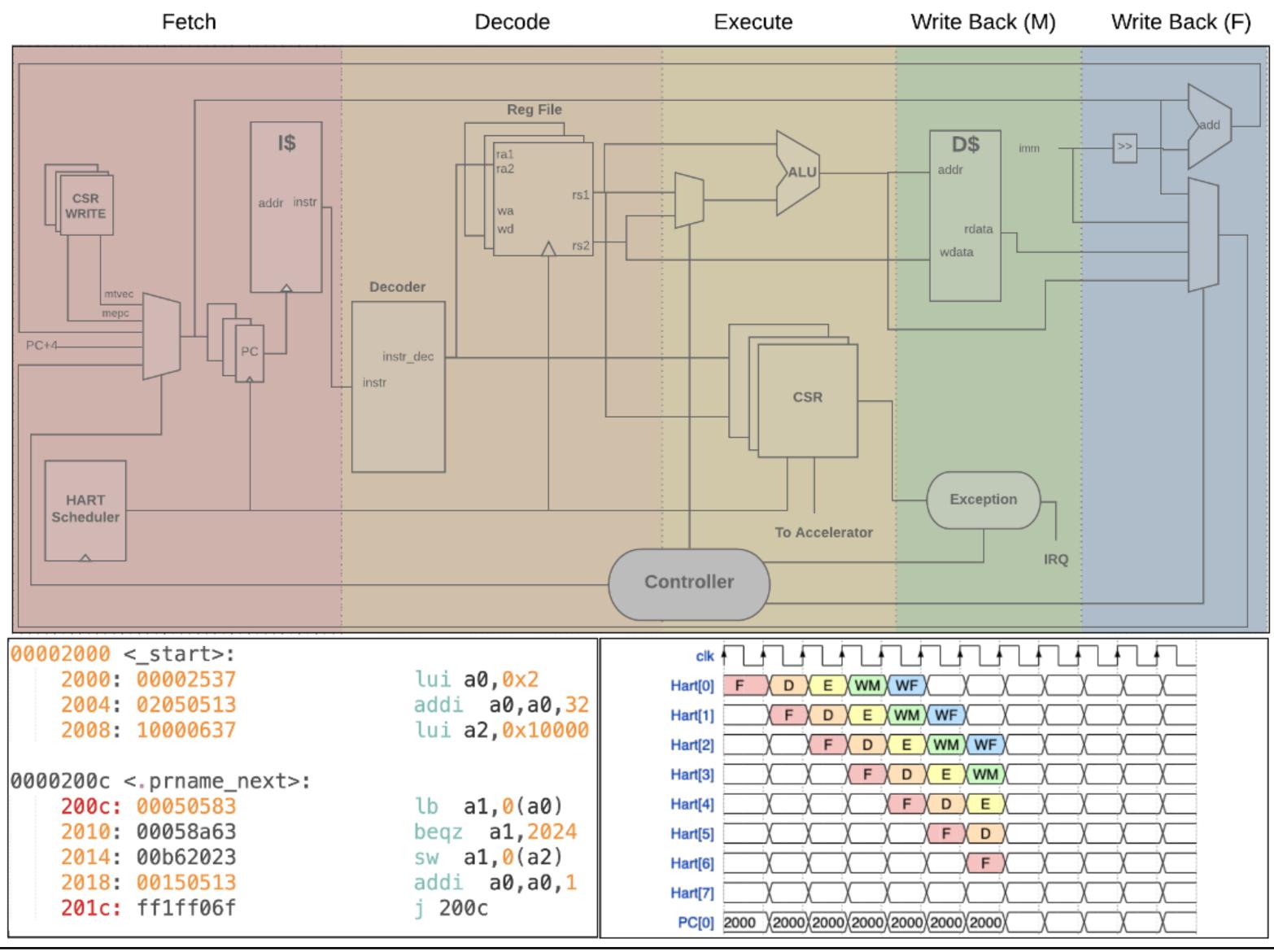


BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU

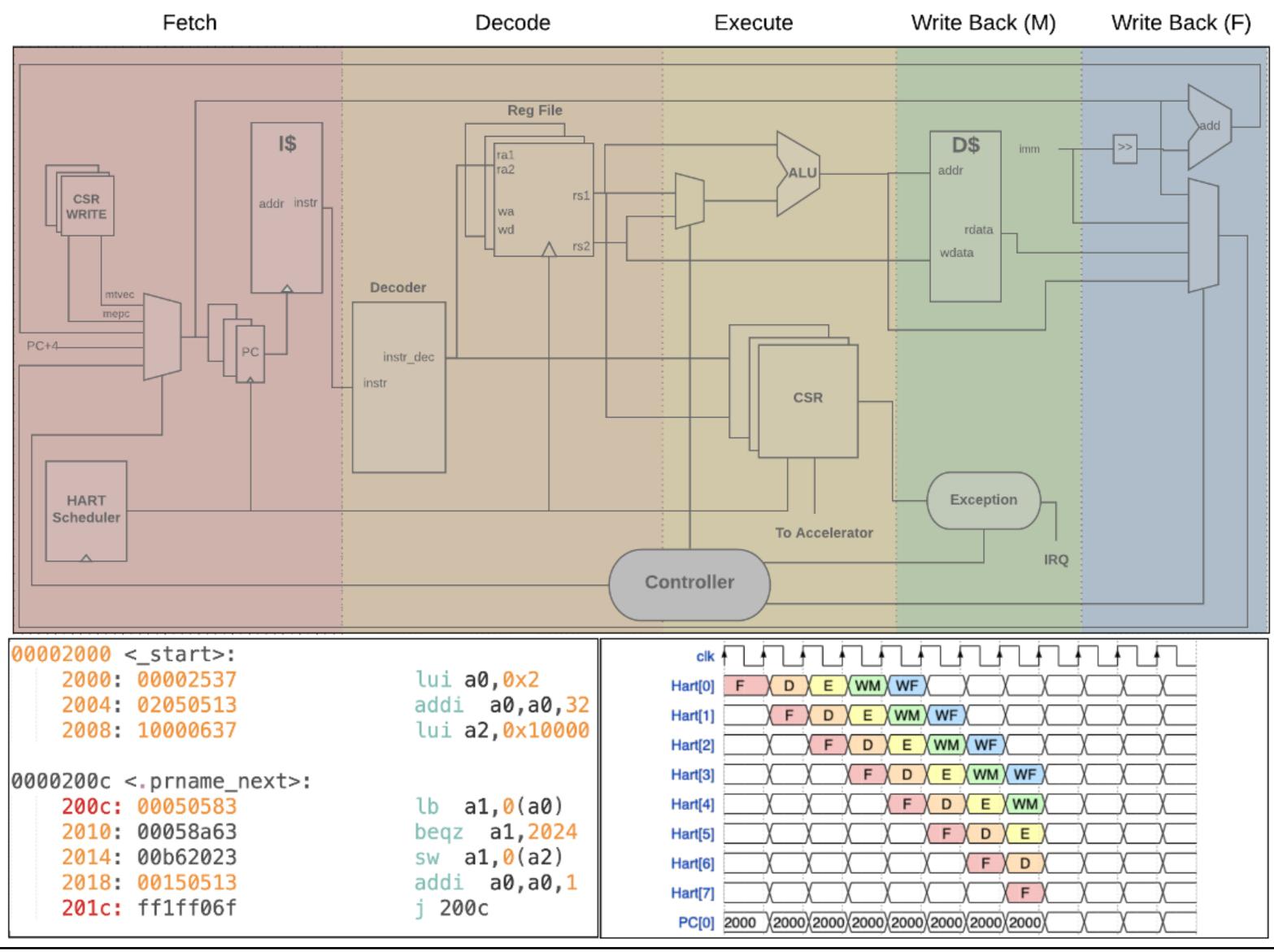


UNIVERSITÉ D'INGÉNIERIE

BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU

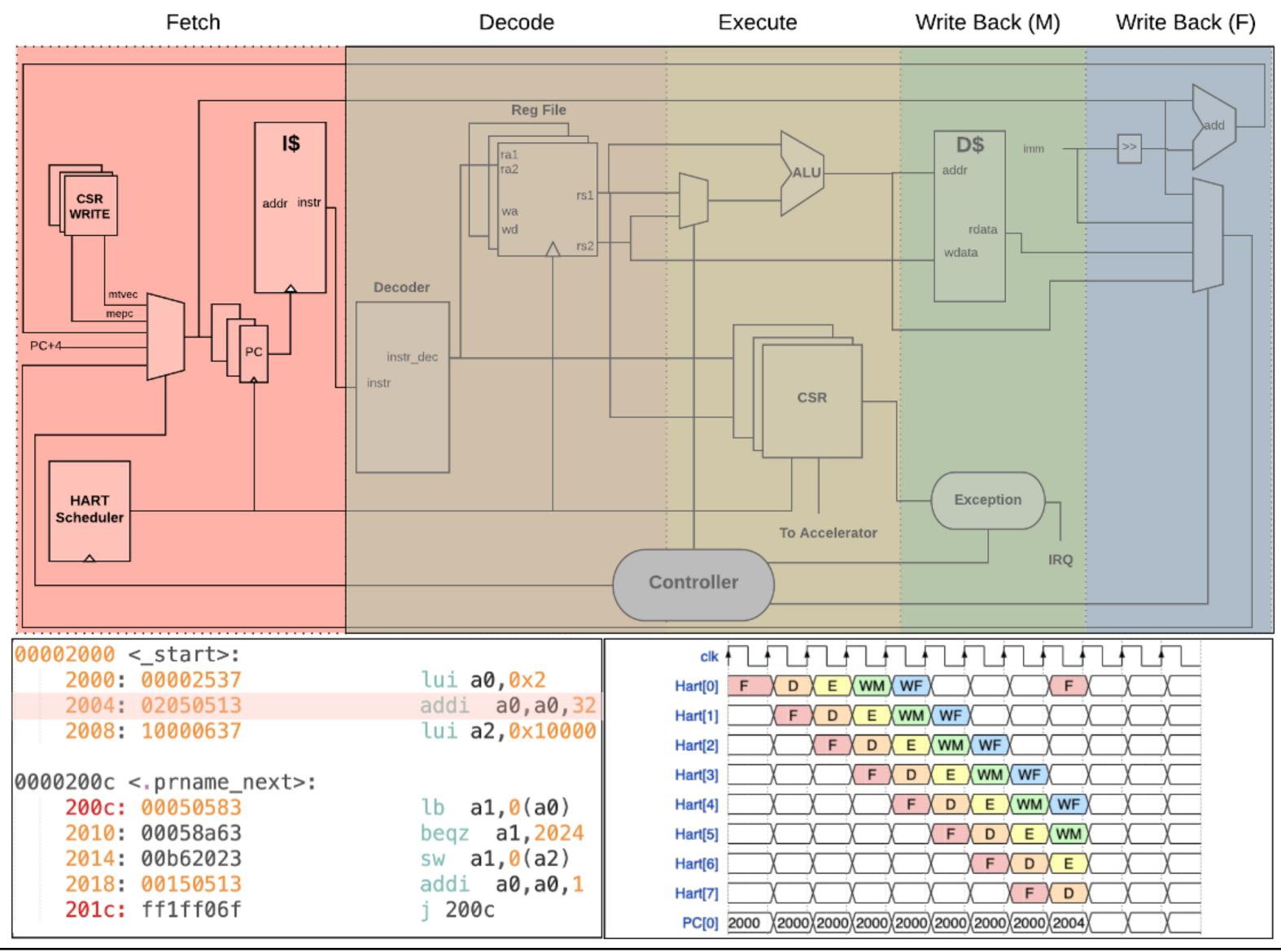


UNIVERSITÉ D'INGÉNIERIE



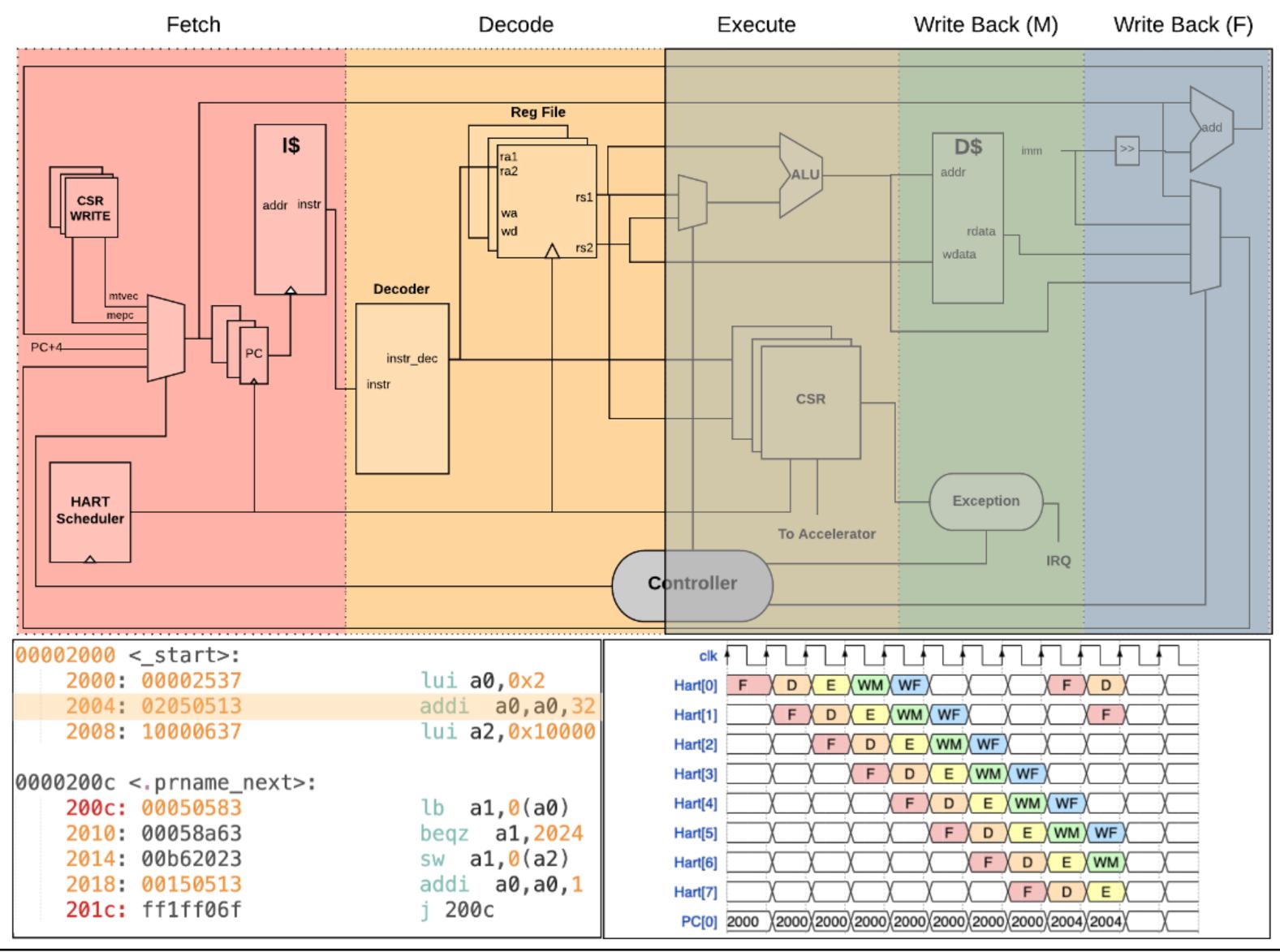
UNIVERSITÉ D'INGÉNIERIE

BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU



UNIVERSITÉ D'INGÉNIERIE

BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU

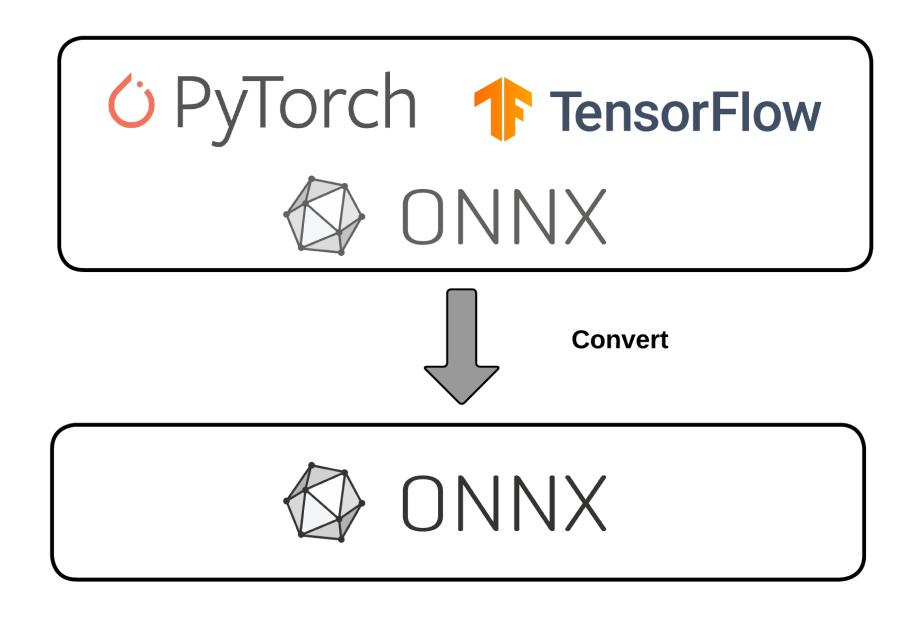


D'INGÉNIERIE

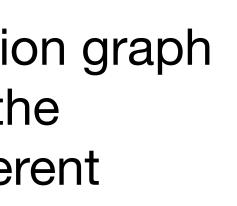
BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU

BARVINN takes in a model in onnx format. \bullet

NIVERSITÉ INGÉNIERIE

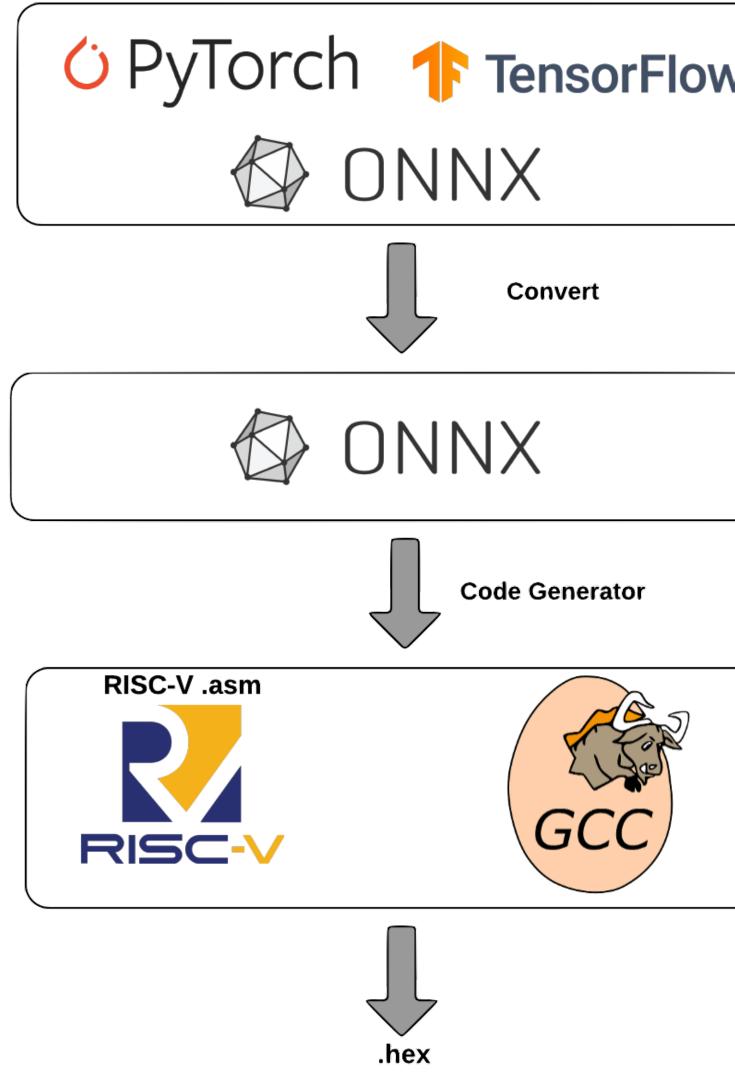


- BARVINN takes in a model in onnx format. \bullet
- Our code generator traverse the computation graph \bullet and based on the node type, it generates the appropriate jobs and assigns them to different MVUs.
- The code generator then produces C code for each \bullet node.



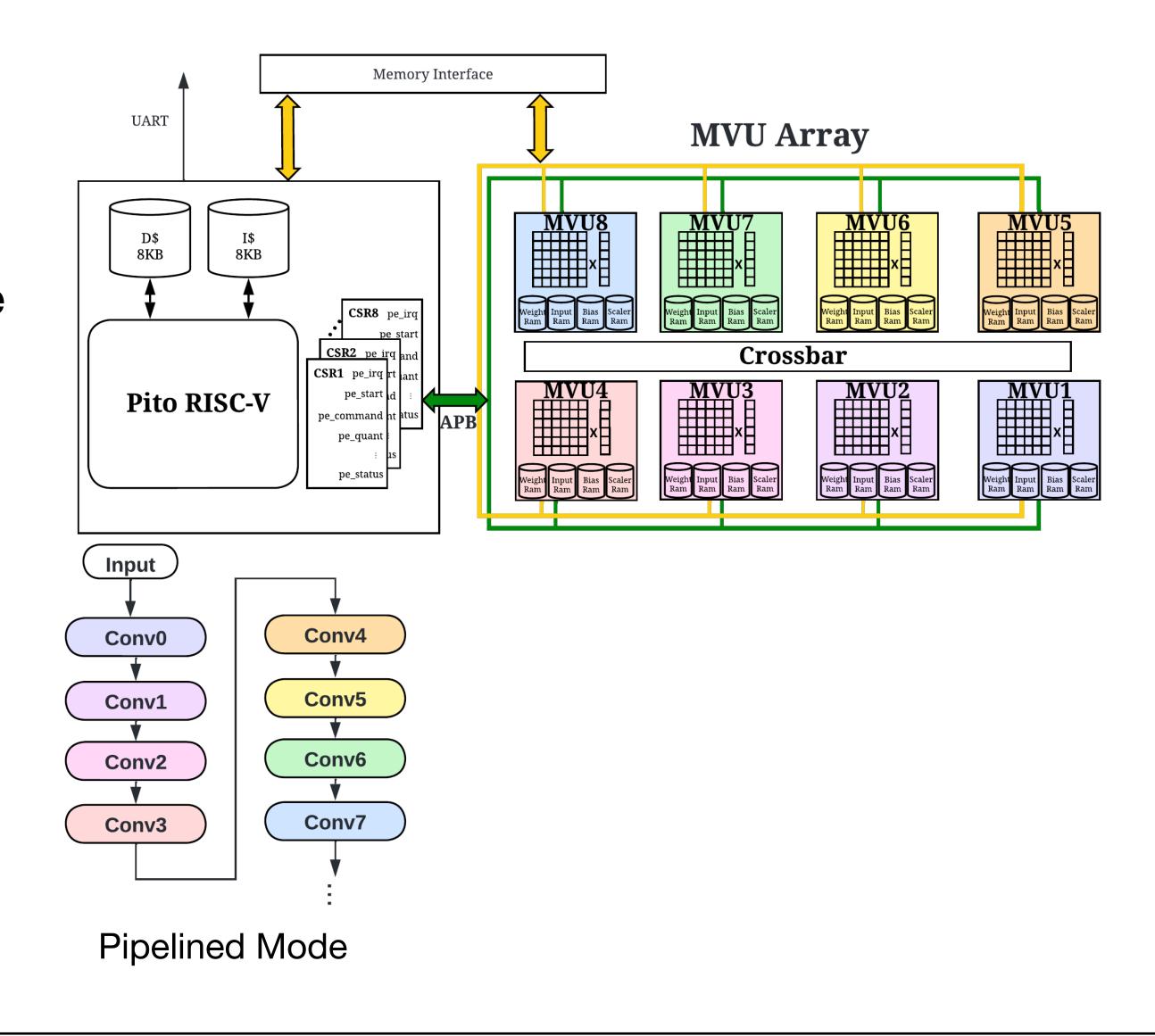


- BARVINN takes in a model in onnx format. \bullet
- Our code generator traverse the computation graph \bullet and based on the node type, it generates the appropriate jobs and assigns them to different MVUs.
- The code generator then produces C code for each node.
- Finally, using RISC-V toolchain, our C-Runtime and memory map, a binary is generated.



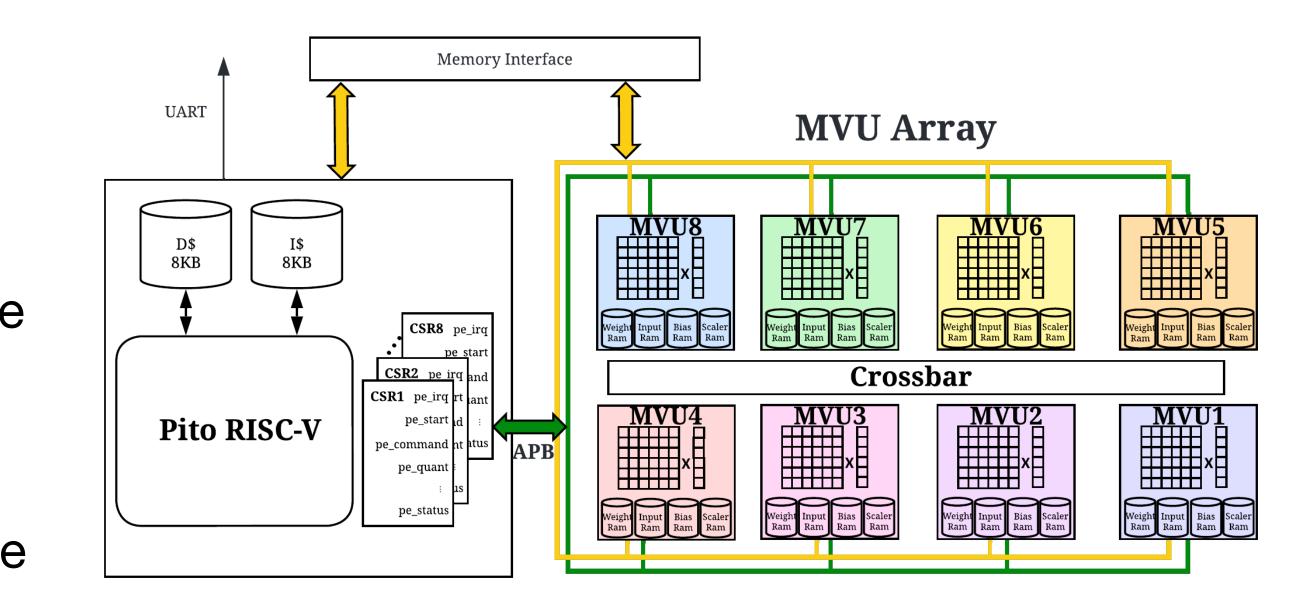
3	2	k
V		
	 J	

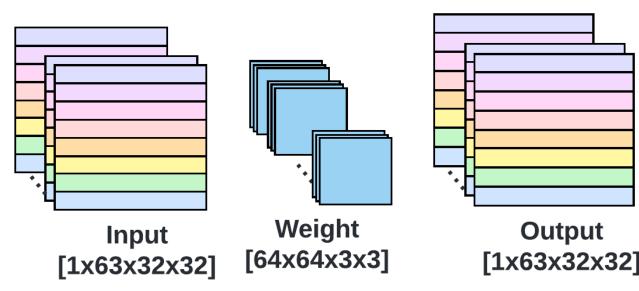
- BARVINN can be programmed for two \bullet computation modes:
 - Pipelined mode: Each computation node is assigned to a separate MVU.



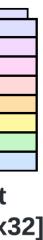
- BARVINN can be programmed for two lacksquarecomputation modes:
 - Pipelined mode: Each computation node is assigned to a separate MVU.
 - Distributed mode: Computation of a single layer is distributed among multiple MVUs.

IGÉNIERIE



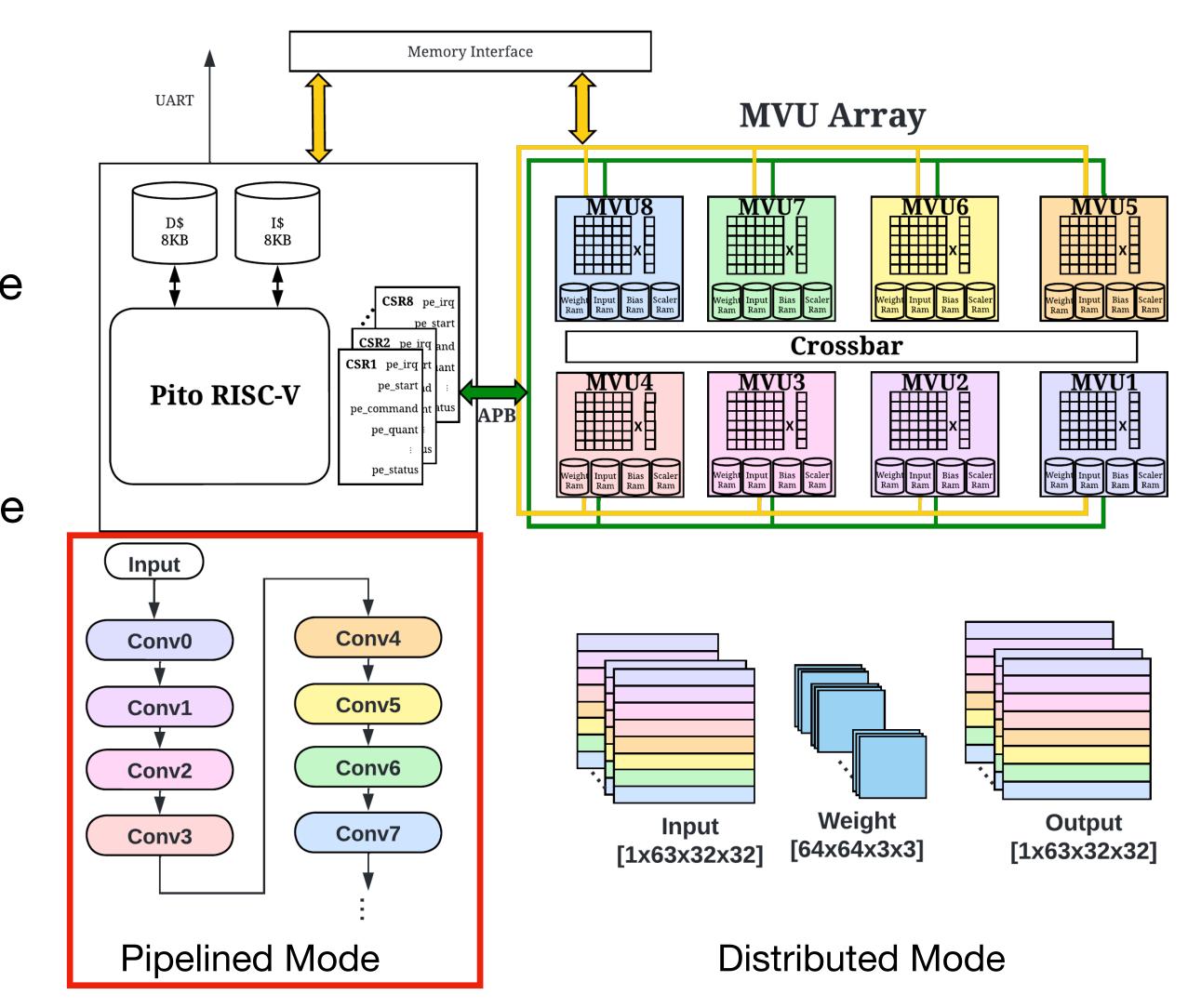


Distributed Mode



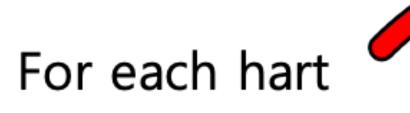
- BARVINN can be programmed for two lacksquarecomputation modes:
 - Pipelined mode: Each computation node is assigned to a separate MVU.
 - Distributed mode: Computation of a single layer is distributed among multiple MVUs.
 - For now, our code generator only supports pipelined mode code generation.

NGÉNIERIE



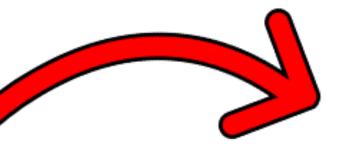
3. Use case: Matrix Multiply

- Example, Matrix Multiply:
 - Weight Matrix: 128 x 128
 - Input Vector: 8 x 128
 - Weight precision: 2 bits
 - Input precision: 2 bits
 - Activation precision: 2 bits



BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU

matmul.S # Kernel code for Matrix Multiply #include "pito_def.h" addi x1, x0, 0 addi x2, x0, 2 // set weight precision to 2 add x1, x1, x2 slli x3, x2, 6 // set input precision to 2 add x1, x1, x3 slli x3, x2, 12 // set output precision to 2 add x1, x1, x3 csrw mvu_precision, x1 // set quant_msbidx to 10 , 10 csrwi mvu_quant csrwi mvu_wbaseaddr , 0 // set weight address to 0 csrwi mvu_ibaseaddr , 0 // set input address to 0 addi x1, x0, 1 // set output address to 0x400 slli x1, x1, 10 csrw mvu_obaseaddr , x1 csrwi mvu_wstride_0 , 30 // 1 tile back move x 2 bits // 1 tile ahead move x 2 bits csrwi mvu_wstride_1 , 2 csrwi mvu_wstride_2 , 0 csrwi mvu_wstride_3 , 0 // 1 tile back move x 2 bits csrwi mvu_istride_0 , 30 csrwi mvu_istride_1 , 0 csrwi mvu_istride_2 , 0 csrwi mvu_istride_3 , 30 csrwi mvu_ostride_0 , 0 csrwi mvu_ostride_1 , 0 csrwi mvu_ostride_2 , csrwi mvu_ostride_3 , 0 csrwi mvu_wlength_0 , 1 // 2 tiles in width // number bit combinations i.e. 2x2 bits csrwi mvu_wlength_1 , 3 csrwi mvu_wlength_2 , 1 // 2 tiles in height csrwi mvu_wlength_3 , 0 csrwi mvu_ilength_0 , 1 // 2 tiles in height // number bit combinations csrwi mvu_ilength_1 , 0 // 2 tiles in width of matrix operand csrwi mvu_ilength_2 , 0 csrwi mvu_ilength_3 , 0 csrwi mvu_olength_0 , 1 csrwi mvu_olength_1 , ś csrwi mvu_olength_2 , csrwi mvu_olength_3 , 0 addi x1, x0, 1 slli x1, x1, 30 // mul mode 01 addi x1, x1, 16 // Kick start MVU, 2 tiles x 2 tiles x 2bit x 2bits csrw mvu_command, x1 ebreak



NIVERSITÉ 'INGÉNIERIE

```
# matmul.S
# Kernel code for Matrix Multiply
#include "pito_def.h"
addi x1, x0, 0
addi x2, x0, 2
add x1, x1, x2
                         // set weight precision to 2
slli x3, x2, 6
                         // set input precision to 2
add x1, x1, x3
                         // set output precision to 2
slli x3, x2, 12
    x1, x1, x3
add
csrw mvu_precision, x1
csrwi mvu_quant
                 , 10
                         // set quant_msbidx to 10
csrwi mvu_wbaseaddr , 0
                         // set weight address to 0
                         // set input address to 0
csrwi mvu_ibaseaddr , ∅
addi x1, x0, 1
slli x1, x1, 10
                         // set output address to 0x400
csrw mvu_obaseaddr , x1
csrwi mvu_wstride_0 , 30
                         // 1 tile back move x 2 bits
                         // 1 tile ahead move x 2 bits
csrwi mvu_wstride_1 , 2
csrwi mvu_wstride_2 , 0
csrwi mvu_wstride_3 , 0
                         // 1 tile back move x 2 bits
csrwi mvu_istride_0 , 30
csrwi mvu_istride_1 , 0
csrwi mvu_istride_2 , 0
csrwi mvu_istride_3 , 30
csrwi mvu_ostride_0 , 0
csrwi mvu_ostride_1 , 0
csrwi mvu_ostride_2 ,
csrwi mvu_ostride_3 , 0
                         // 2 tiles in width
csrwi mvu_wlength_0 , 1
                         // number bit combinations i.e. 2x2 bits
csrwi mvu_wlength_1 , 3
csrwi mvu_wlength_2 , 1
                         // 2 tiles in height
csrwi mvu_wlength_3 , 0
csrwi mvu_ilength_0 , 1
                         // 2 tiles in height
csrwi mvu_ilength_1 , 0
                         // number bit combinations
csrwi mvu_ilength_2 , 0
                         // 2 tiles in width of matrix operand
csrwi mvu_ilength_3 , 0
csrwi mvu_olength_0 , 1
csrwi mvu_olength_1 , ś
csrwi mvu_olength_2 , 0
csrwi mvu_olength_3 , 0
addi x1, x0, 1
slli x1, x1, 30
                         // mul mode 01
addi x1, x1, 16
                         // Kick start MVU, 2 tiles x 2 tiles x 2bit x 2bits
csrw mvu_command, x1
ebreak
```


Setting input, weight and output address

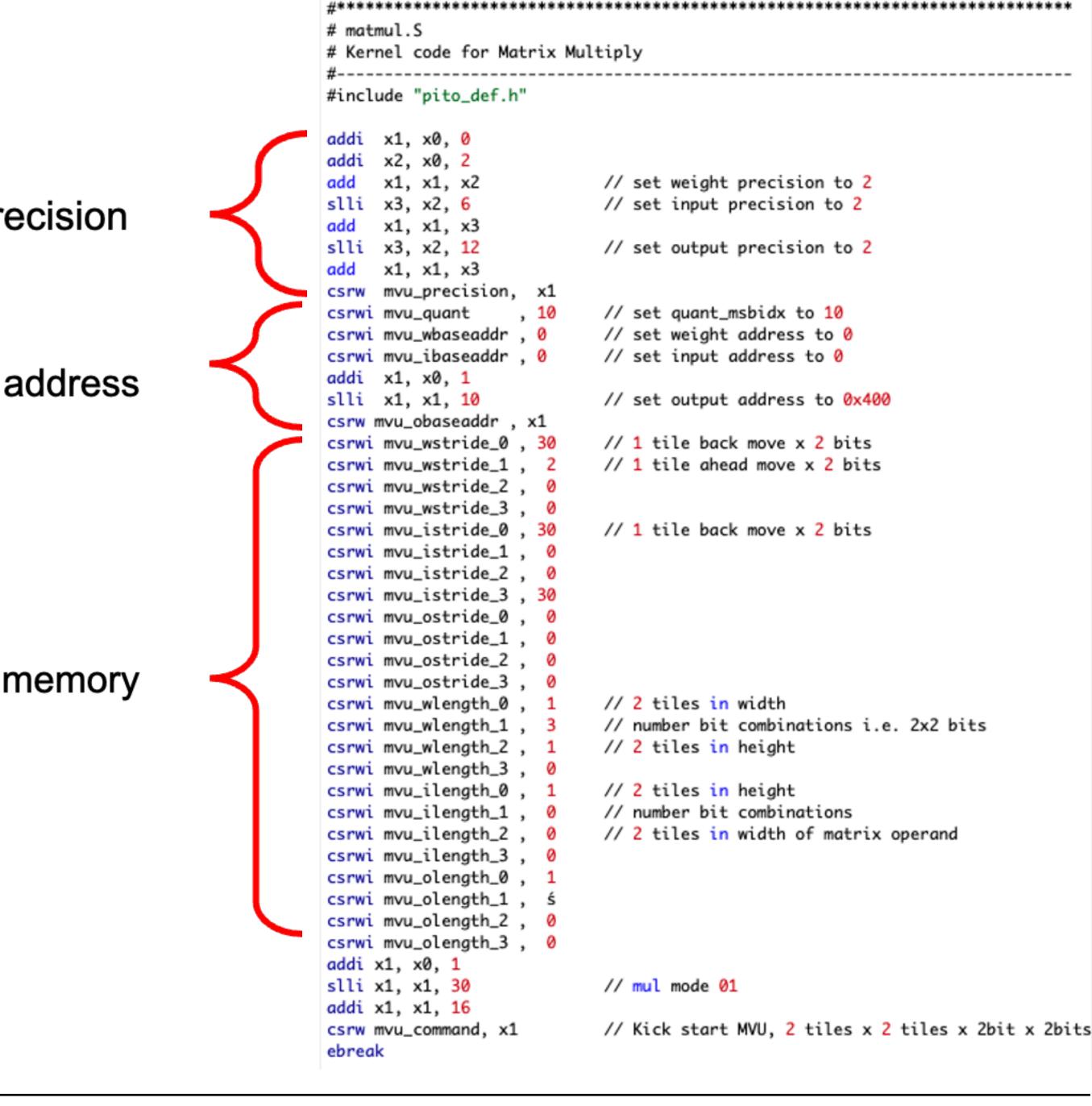

```
# matmul.S
# Kernel code for Matrix Multiply
#include "pito_def.h"
addi x1, x0, 0
addi x2, x0, 2
    x1, x1, x2
                          // set weight precision to 2
add
slli x3, x2, 6
                          // set input precision to 2
     x1, x1, x3
add
                          // set output precision to 2
slli x3, x2, 12
    x1, x1, x3
add
csrw mvu_precision, x1
                  , 10
                          // set quant_msbidx to 10
csrwi mvu_quant
csrwi mvu_wbaseaddr , 0
                          // set weight address to 0
csrwi mvu_ibaseaddr , 0
                          // set input address to 0
addi x1, x0, 1
slli x1, x1, 10
                          // set output address to 0x400
csrw mvu_obaseaddr , x1
csrwi mvu_wstride_0 , 30
                          // 1 tile back move x 2 bits
csrwi mvu_wstride_1 , 2
                          // 1 tile ahead move x 2 bits
csrwi mvu_wstride_2 , 0
csrwi mvu_wstride_3 , 0
                          // 1 tile back move x 2 bits
csrwi mvu_istride_0 , 30
csrwi mvu_istride_1 , 0
csrwi mvu_istride_2 , 0
csrwi mvu_istride_3 , 30
csrwi mvu_ostride_0 , 0
csrwi mvu_ostride_1 , 0
csrwi mvu_ostride_2 ,
csrwi mvu_ostride_3 , 0
                          // 2 tiles in width
csrwi mvu_wlength_0 , 1
csrwi mvu_wlength_1 , 3
                          // number bit combinations i.e. 2x2 bits
csrwi mvu_wlength_2 , 1
                          // 2 tiles in height
csrwi mvu_wlength_3 , 0
csrwi mvu_ilength_0 , 1
                          // 2 tiles in height
csrwi mvu_ilength_1 , 0
                          // number bit combinations
csrwi mvu_ilength_2 , 0
                          // 2 tiles in width of matrix operand
csrwi mvu_ilength_3 , 0
csrwi mvu_olength_0 , 1
csrwi mvu_olength_1 ,
csrwi mvu_olength_2 ,
csrwi mvu_olength_3 , 0
addi x1, x0, 1
slli x1, x1, 30
                          // mul mode 01
addi x1, x1, 16
                          // Kick start MVU, 2 tiles x 2 tiles x 2bit x 2bits
csrw mvu_command, x1
ebreak
```


Setting input, weight and output address

Setting input, weight and output memory access pattern variables

INIVERSITÉ INGÉNIERIE

BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU

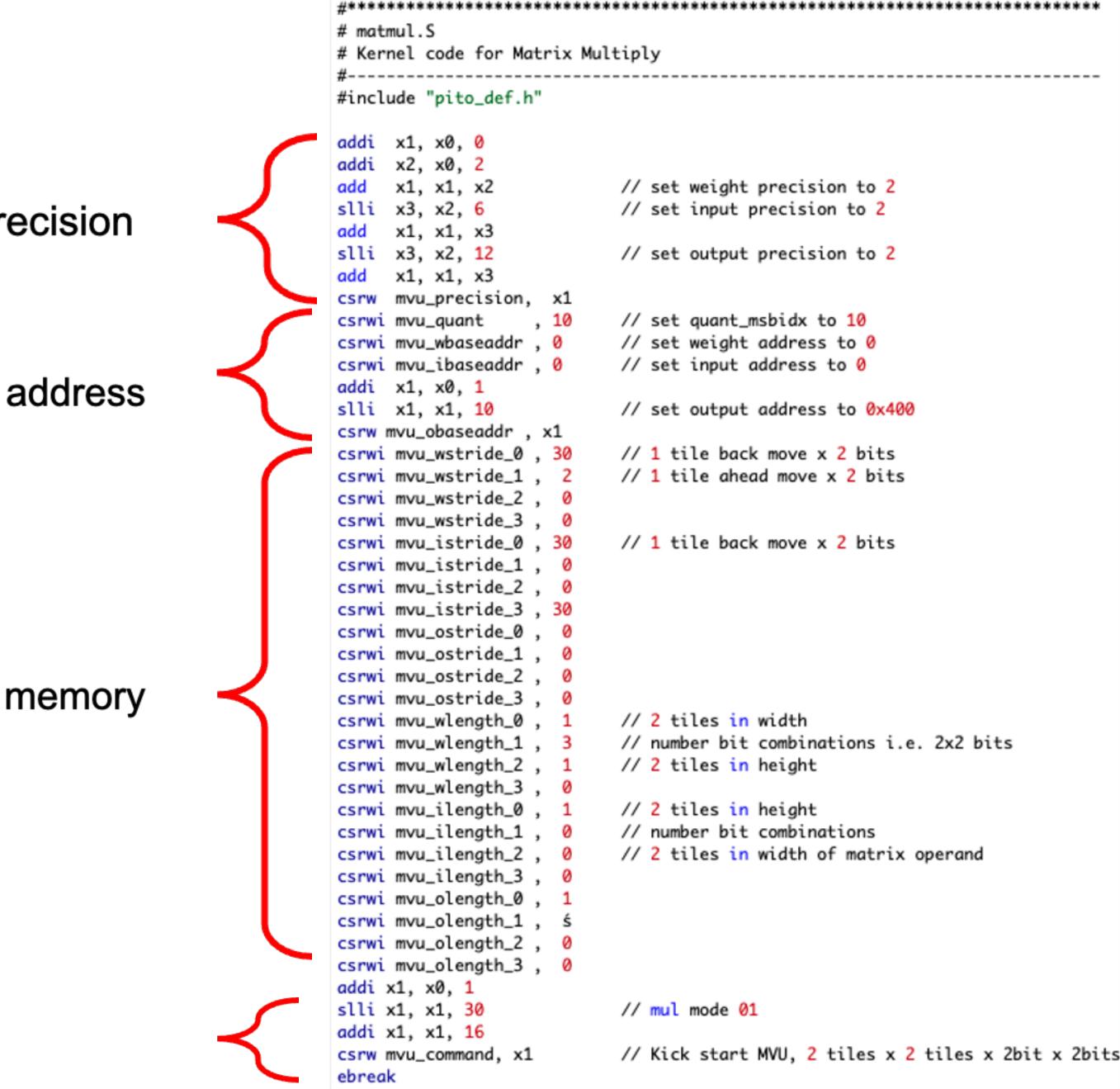


57

Setting input, weight and output address

Setting input, weight and output memory access pattern variables

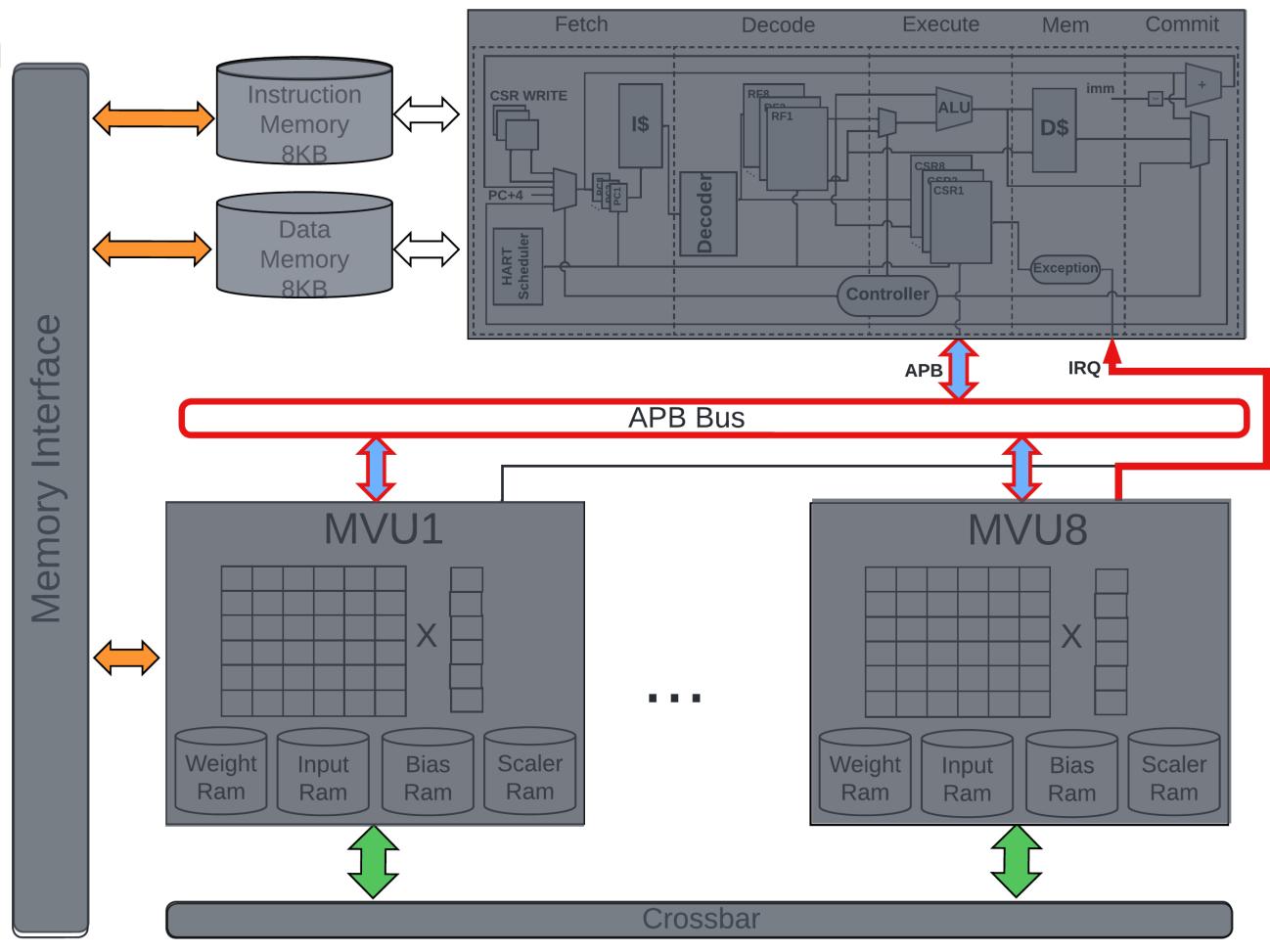
Kick start the accelerator



3. Use case: Matrix Multiply

- The configurations are written to each MVU through APB bus.
- Once the MVU is done computing, it will send and interrupt to the corresponding HART.

PITO RISC-V Core



- We synthesized BARVINN for ALVEO U250 FPGA from AMD.
- We used Vivado 2021.4 for synthesis.
- We used 8 MVUs with 64KB weight and Data RAMs and 2KB Scaler and 4KB Bias Rams.
- For PITO, we used 8KB instruction and data caches.

Resource	Pito RISC-V	MVU Array	Overall
LUT	10454	190625	201079
BRAM	15	1312	1327
DSP	0	512	512
Dynamic Power	0.410 W	21.066 W	21.504 W
Frequency	250 MHz	250 MHz	250 MHz

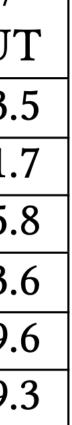
NGÉNIERIE

- We compared our platform against FINN and FILM-QNN.
- We used models provided by FINN repository.

- We compared our platform against FINN.
- We used models provided by FINN repository.
- For CNV model on CIFAR10, over different bit precisions:
 - We achieve better FPS/kLUTs
 - FINN uses less LUTs.



						-
	Bits (W/A)	kLUT	BRAM	DSP	FPS	FPS/ kLU
Ours	1/1	201.1 (15.0%)	1327	512	61035	303.
	1/2	201.1 (15.0%)	1327	512	30517	151.
	2/2	201.1 (15.0%)	1327	512	15258	75.
FINN	1/1	28.2 (2.1%)	150	0	7716	273.
	1/2	19.8(1.47%)	103	0	2170	109.
	2/2	24.3(1.81%)	202	0	2170	89.



- We compared our platform against FINN.
- We used models provided by FINN repository.
- For CNV model on CIFAR10, over different bit precisions, we achieve better FPS/kLUT.
- For Resnet50 model, we achieve better FPS/Watt compared to FINN and FILM-QNN.

	Bits (W/A)	Clock Freq.	FPS	FPS/Watt
Ours	1/2	250 MHz	2296	106.8
FINN-R [1][6]	1/2	178 MHz	2873	41.0
FILM-QNN [20]	4(8)/5	150 MHz	109	8.4

BARVINN is open source!

Documentation:

https://barvinn.readthedocs.io/en/latest/

BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU

Source Code:

https://github.com/hossein1387/BARVINN

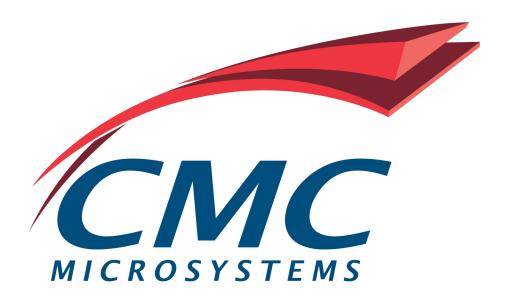
5. Conclusion and Future Work

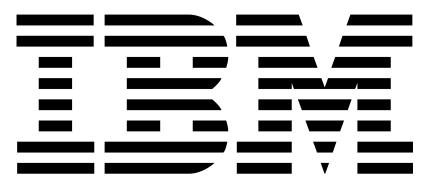
- In this work, we presented BARVINN, an arbitrary precision DNN accelerator lacksquarecontrolled by a RISC-V processor.
- We presented the architecture of different components.
- We presented synthesis results.
- We used BARVINN to run inference on different models with different bit lacksquareprecisions.
- We are preparing BARVINN for ASIC implementation (GF 22 or GF12nm)
- We are planning to use TVM to improve code generation and optimization. lacksquare

5. Acknowledgement:

- This project is made possible with the help and support from:
 - CMC Microsystems
 - IBM
 - MILA
 - Mitacs
 - FRQNT

NGÉNIERIE





Fonds de recherche Nature et technologies Québec 🏄 🏄

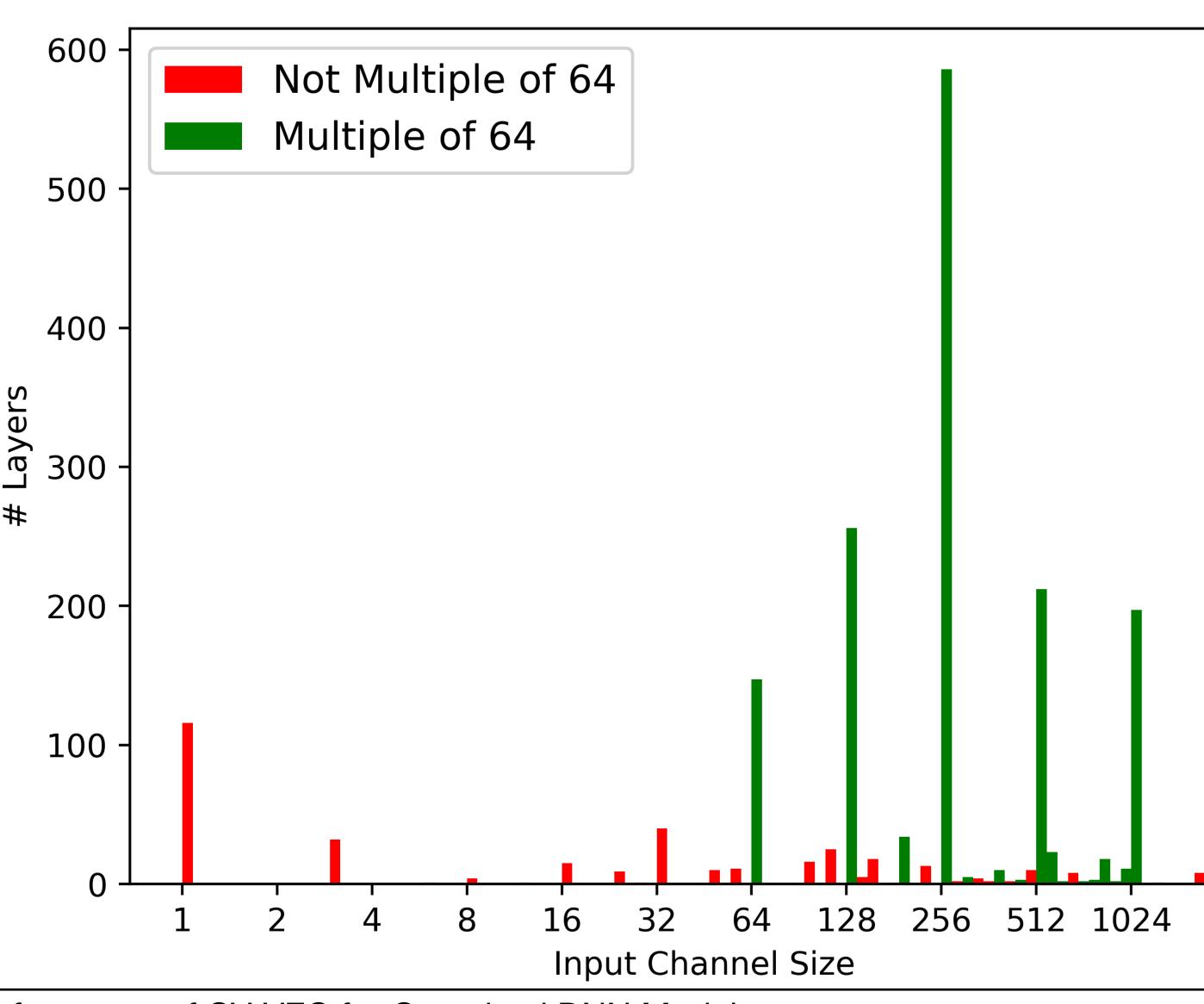
Improving the Performance of CV-VEC for Quantized DNN Models

Thank You!

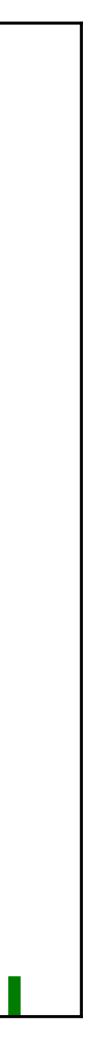
UNIVERSITÉ D'INGÉNIERIE

Improving the Performance of CV-VEC for Quantized DNN Models

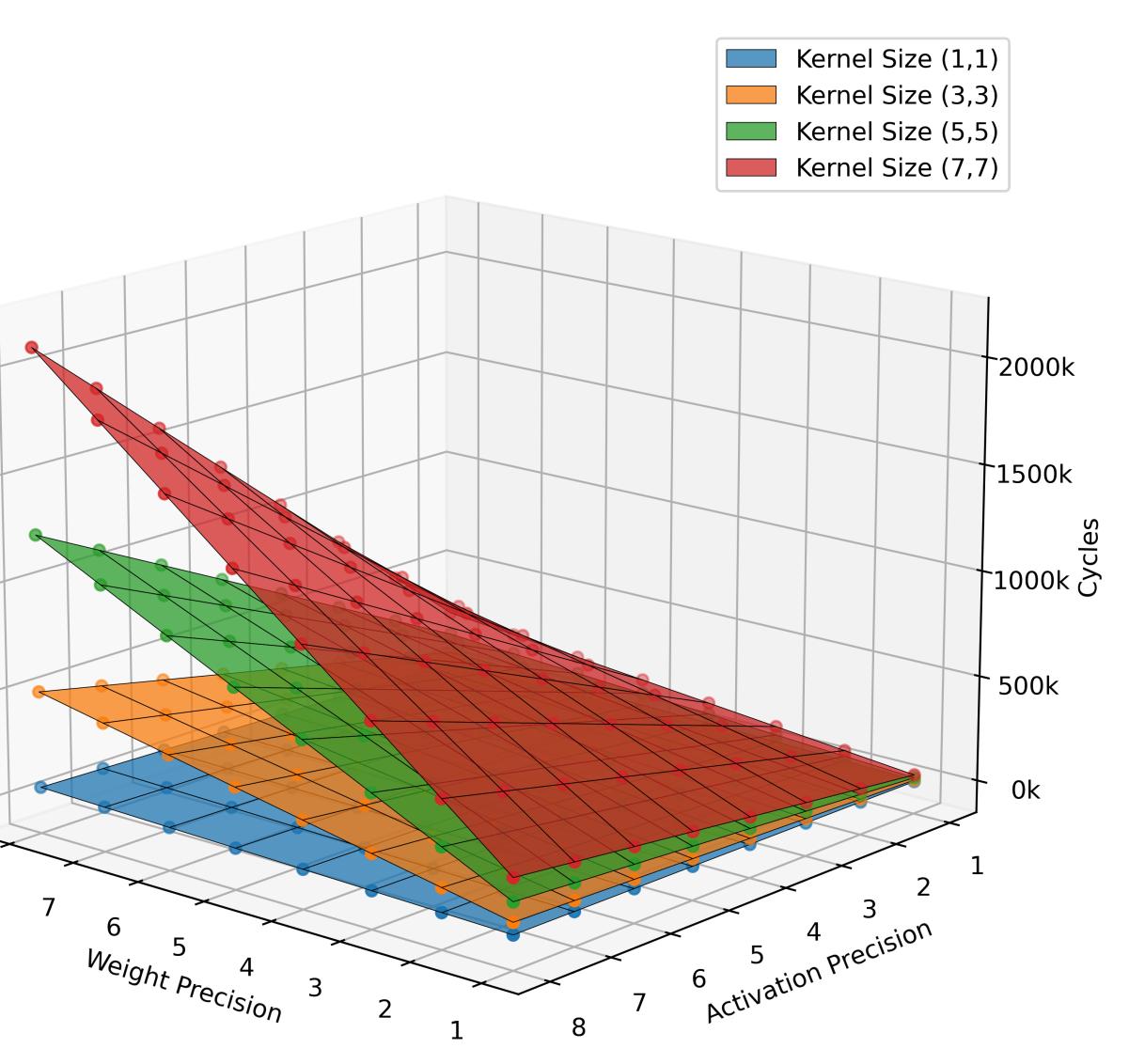
- We analyzed over classification ullet50 models from ONNX model Z00.
- Around 79% of these models \bullet use convolution with input channel sizes that are multiples of 64.



Improving the Performance of CV-VEC for Quantized DNN Models



Computation complexity ulletdiagram.



Improving the Performance of CV-VEC for Quantized DNN Models

MVU Data Storage Format

block 0 Blocks of 64 n-bit numbers

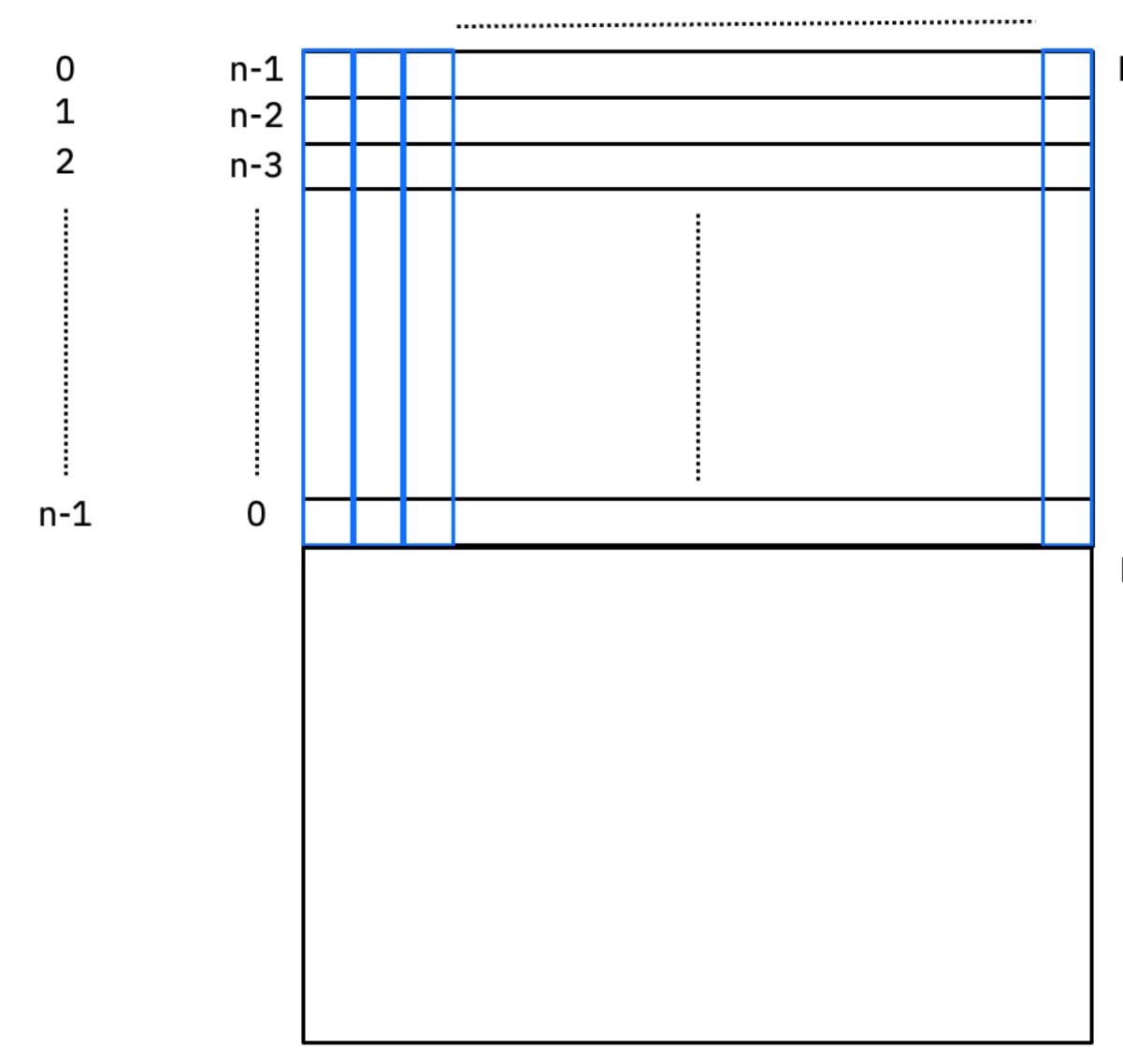
Organized in bit-sliced order

Each value is a "column"

Each row are bits from each value with same bit position

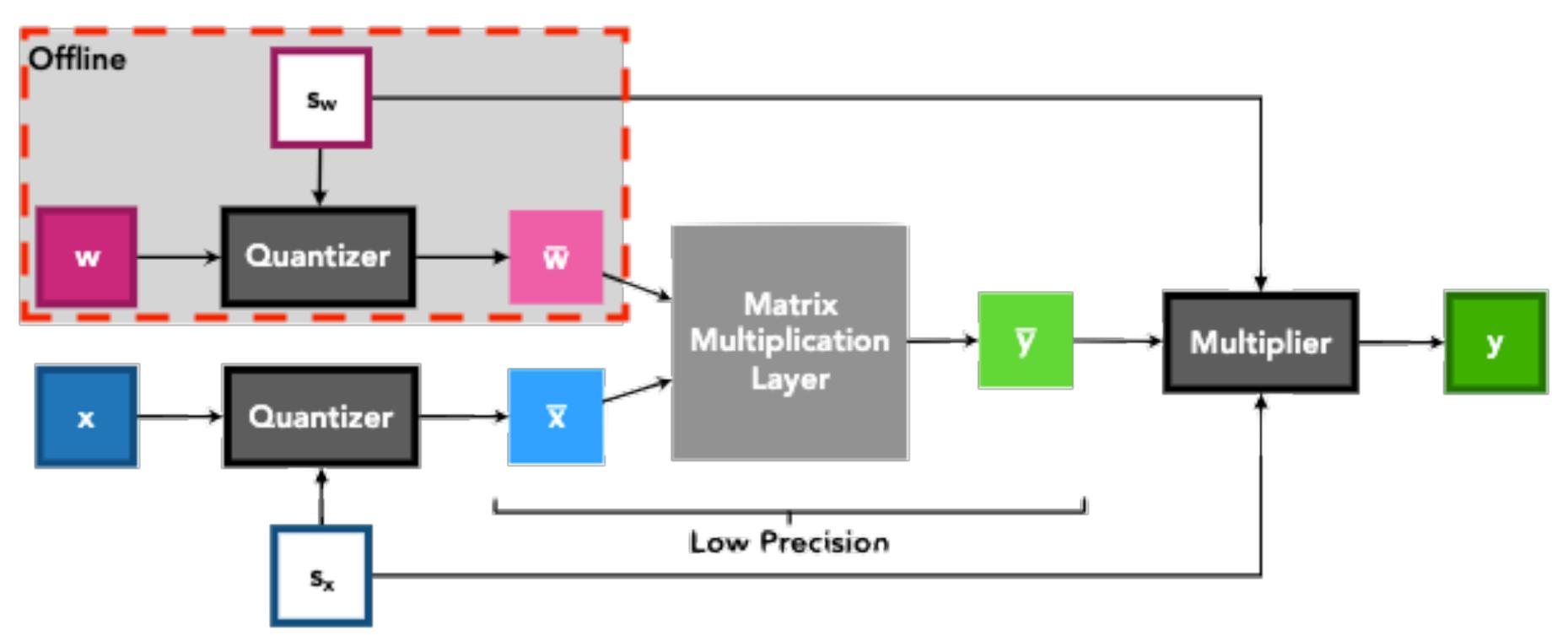
block 1

NIVERSITÉ D'INGÉNIERIE



Improving the Performance of CV-VEC for Quantized DNN Models

Low precision computation lacksquarepipeline.



Low precision computation in LSQ, this image was taken from LSQ paper SK Esser, et.al (2020)

Improving the Performance of CV-VEC for Quantized DNN Models

