

Agile Hardware and Software Co-design for RISC-V-based Multi-precision **Deep Learning Microprocessor**

Zicheng He^{1,2}, Ao Shen¹, Qiufeng Li¹, Quan Cheng¹ and Hao Yu¹

SUSTech¹ Speaker: Qiufeng Li¹

UCLA² Supervisor: Hao Yu¹

Multi-precision Accelerator

Multi-precision Compiler

Multi-precision System

Experiment Results

Conclusion

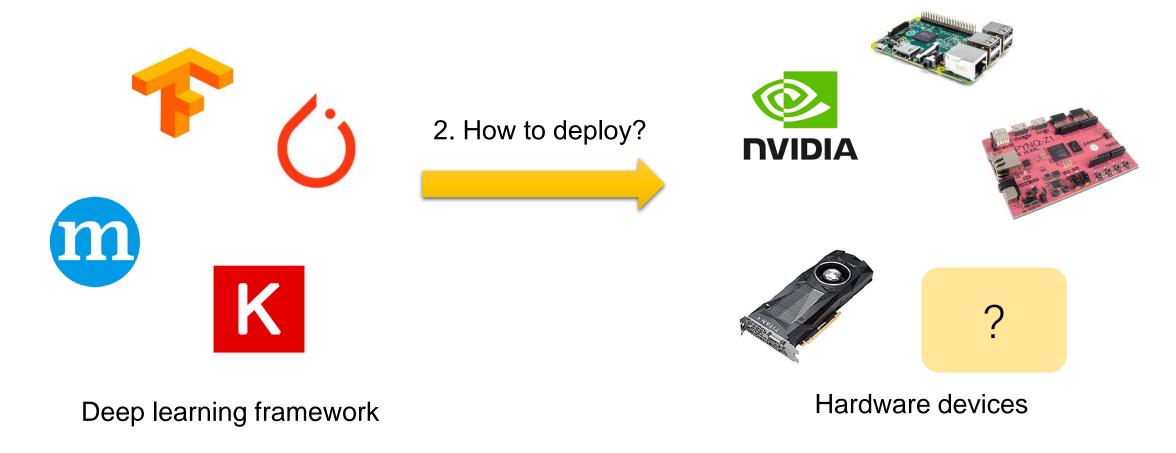
Introduction

Edge computing and future

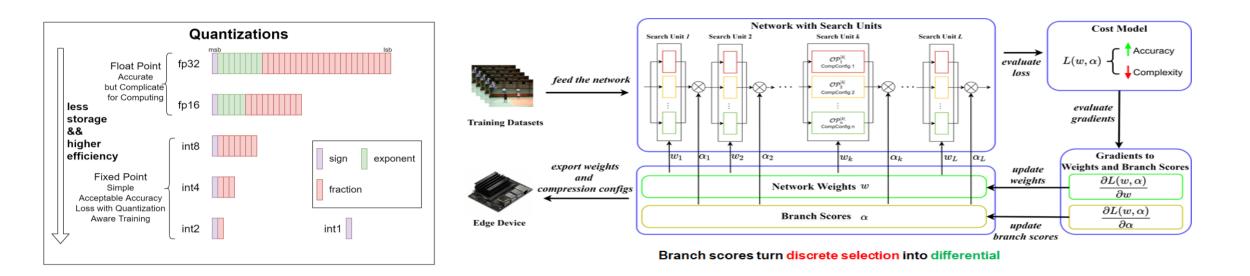
have the the

Sec. 11.

1. Edge computing vs cloud computing?



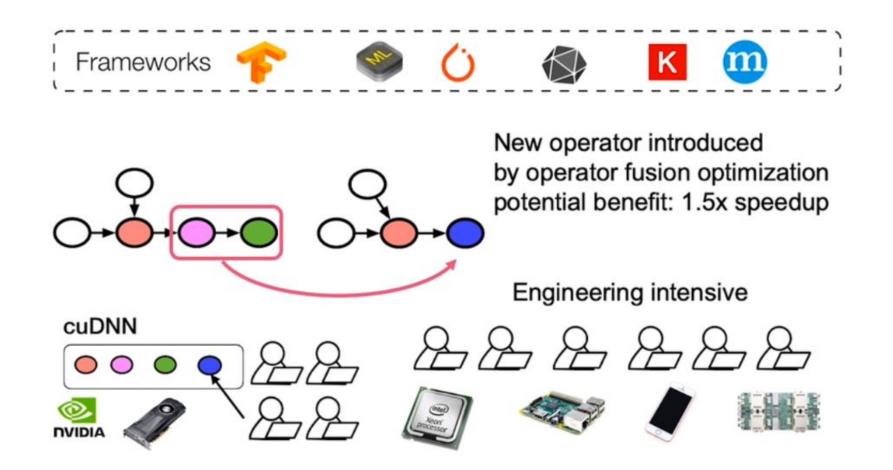
Introduction: NAS Quantization



	Precision	Accuracy (Top-1)	Weight (Ratio)	Advantages of NAS quantization:
VGG16	float	71.9%	513MB	achieve a well trade-off between
	8-bit	71.3%	128MB(25.0%)	network performance and hardware
	multi	70.9%	70MB(13.6%)	efficiency

Introduction: Main Challenge

Limitations of Existing Approach

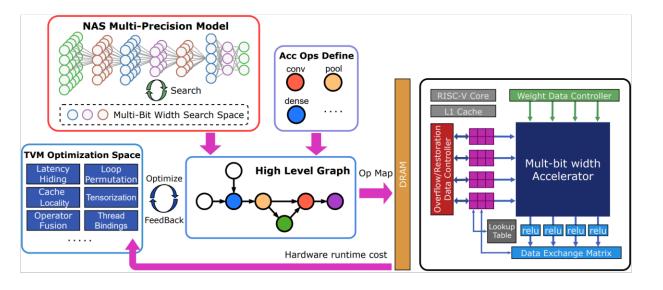


Require significant manual tuning

TVM: End to End Deep Learning Compiler

TVM provide performance portability to deep learning workloads across diverse hardware back-ends

Introduction: Main Contribution



Co-design and deep learning framework for RISC-Vbased multi-precision deep learning microprocessor

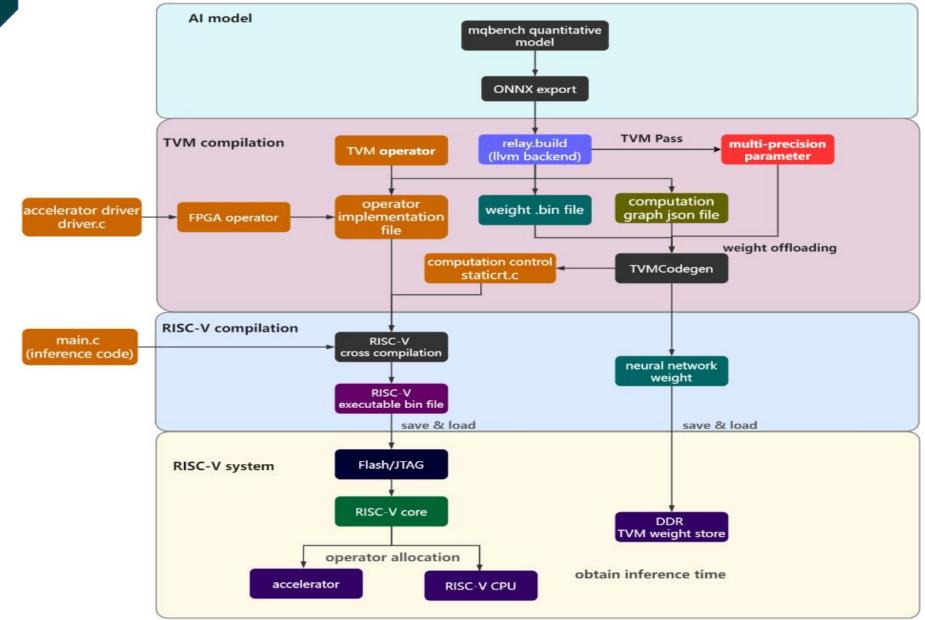
Engineering intensive: The model inference still has to be completed with manual deployment to achieve the full utilization of hardware

Few frameworks: There are however few frameworks developed supporting model deployment with mixed precision quantization on embedded devices

The main contribution of the proposed work:

- Agile hardware/software co-design topology
- Multi-precision accelerator
- TVM stack with multi-precision quantization support and custom RISC-V instructions

Introduction: Overall Flowchart

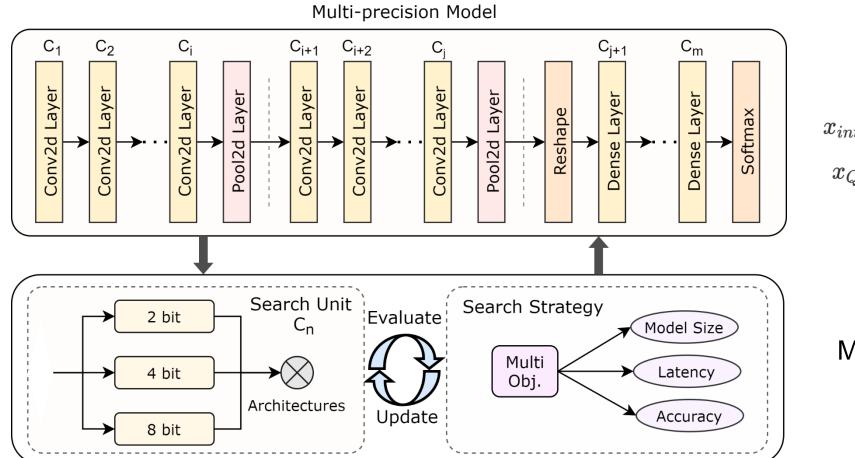


Multi-precision Accelerator

TUNI

Multi-precision hardware and software implementation methods

Multi-precision Accelerator: Quantization



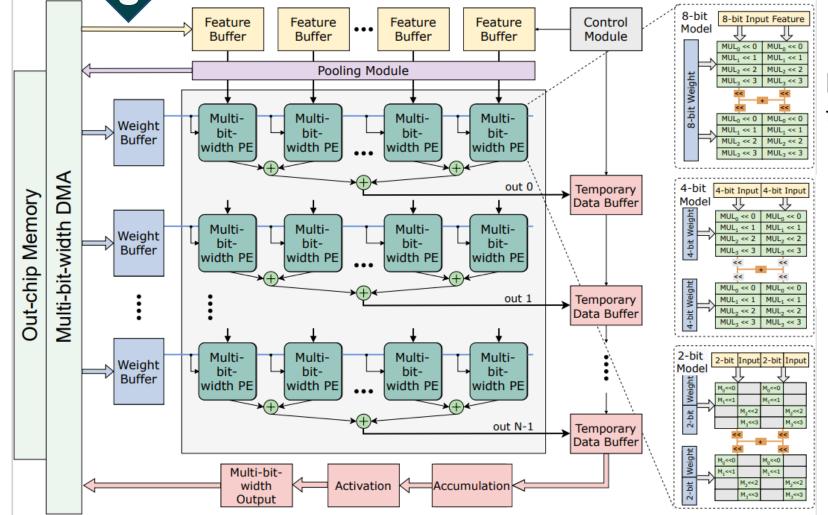
Model quantization

$$egin{aligned} x_{int} = round(rac{x}{\Delta}) \ x_Q = clamp(-N_{range}, N_{range} - 1, x_{int}) \end{aligned}$$

Multi-precision bit-width search

 $\min_{A\in\mathcal{A}}\min_{W,\alpha}L(w,\alpha)$

Multi-precision Accelerator: Architecture



Multi-bit-width PE use **BSC method** that supports 8, 4, 2-bit multiplication

$$f_{calc}(x, y, z) = \sum_{i=0}^{K-1} \sum_{j=0}^{K-1} \sum_{m=1}^{C_{in}} F_{i,a}(x+i, y+j, m) K_{M,b}(i, j, m, z)$$

$$F_{out}(x, y, z) = \sum_{a=0}^{U-1} (2^{a} \cdot \sum_{b=0}^{U-1} (2^{b} \cdot f_{calc}(x, y, z)))$$

Hardware architecture of multi-precision accelerator

Multi-precision Compiler

ALC: NUMBER

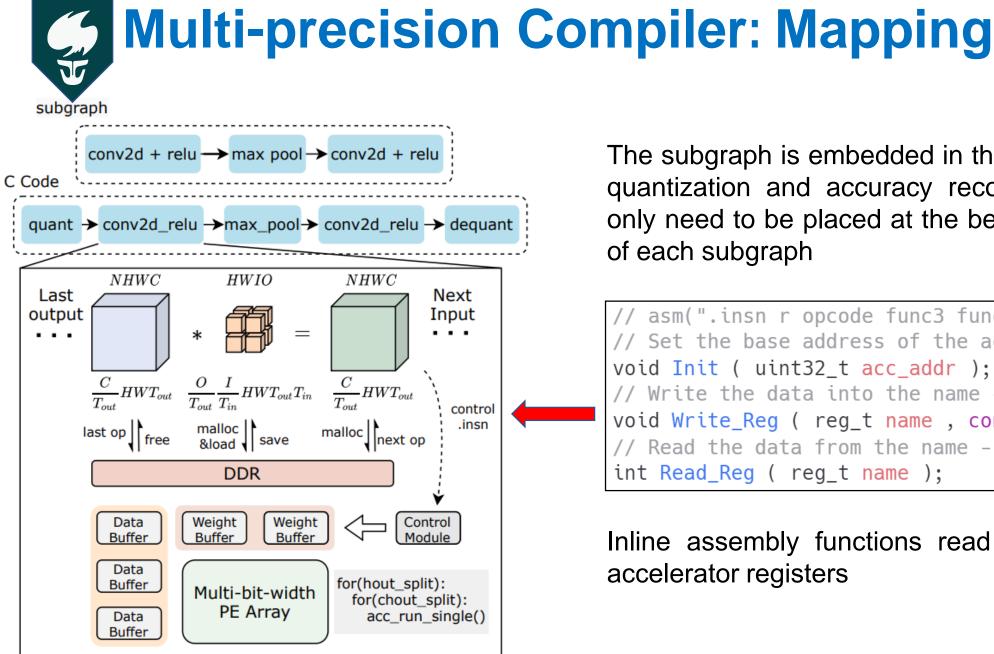
Bridge between multi-precision models and hardware

200

13

Multi-precision Compiler: Graph Transform w1 w2 \rightarrow relu \rightarrow max pool \rightarrow conv2d \rightarrow relu \rightarrow reshape \rightarrow reshape \rightarrow dense \rightarrow softmax **Original Graph Optimize the original graph**: Constant Layout_trans w2 w3 folding, data layout transformation, etc $conv2d \longrightarrow relu \longrightarrow flatten \longrightarrow dense \longrightarrow softmax$ conv2d -→ relu →max pool-Graph Optimization Annotate each operator: Annotate the NHWC w1 NHWC w2 w3 backend that the operator needs to map conv2d + relu -→ conv2d + relu → flatten → dense → max pool -→ softmax Graph Annotation Merge adjacent identical annotation NHWC w1, w2 w3 subgraph subgraph partition: operators and Form a $conv2d + relu \rightarrow max pool \rightarrow conv2d + relu \rightarrow flatten -$ → dense ➤ softmax computational subgraph of the same Merge & Partition backend default op acc-related op weights core-related op

Graph transformation stages



The subgraph is embedded in the graph, and the quantization and accuracy recovery operations only need to be placed at the beginning and end of each subgraph

asm(".insn r opcode func3 func7 rd rx1 rx2") Set the base address of the accelerator void Init (uint32_t acc_addr); // Write the data into the name - register void Write_Reg (reg_t name , const int data); // Read the data from the name - register int Read_Reg (reg_t name);

Inline assembly functions read and write to accelerator registers

Multi-Precision Operator Mapping Accelerator

Multi-precision System

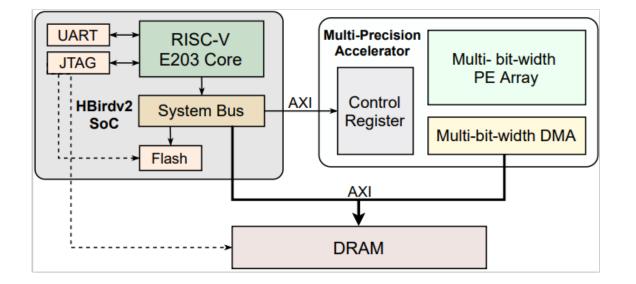
Complete operation system construction

and the state of t

2

Multi-precision System: Communication

RISC-V based Multi-precision Microprocessor



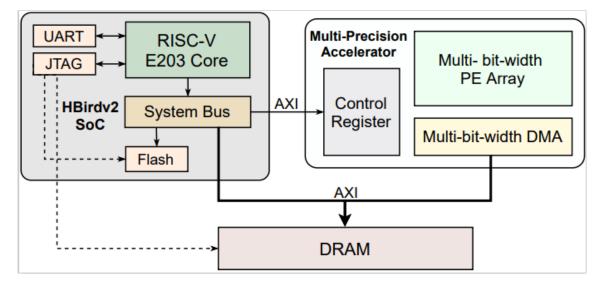
Communication: The accelerator is connected to the RISC-V core through the AXI-Lite bus, and the accelerator can also read and write data directly to the DRAM through AXI-Full

Device Module	Start Address	End Address
Debug Module	0x0000_0000	0x0000_0FFF
UART Serial Port	0x1001_3000	0x1001_3FFF
DRAM Module	$0x4000_{-}0000$	0x4FFF_FFFF
Acc Control Register	$0x5000_{-}0000$	0x5000_FFFF

The physical addresses of the microprocessor peripherals are as above

Multi-precision System: Instruction

RISC-V based Multi-precision Microprocessor



Custom Instruction: CL_RG, LD_RG, and ST_RG represent cleaning, loading, and storing data, respectively

31:25	24:20	19:15	14	13	12	11:7	6:0
func7	rs2	rs1	xd	xs1	xs2	rd	opcode
CL_RG	00000	00000	0	0	0	00000	CUSTOM-0
LD_RG	00000	rs1	1	1	0	rd	CUSTOM-0
ST_RG	rs2	rs1	0	1	1	00000	CUSTOM-0

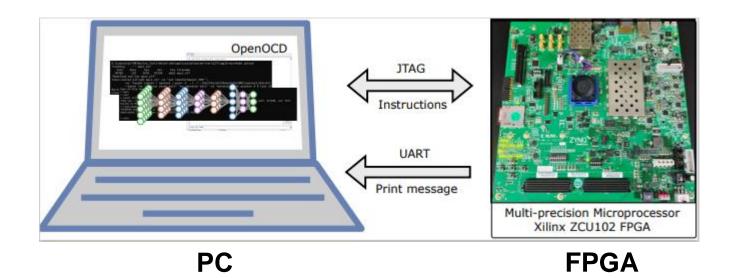
Experiment Results

ALL THE THE THE PARTY OF

-

Mar and and

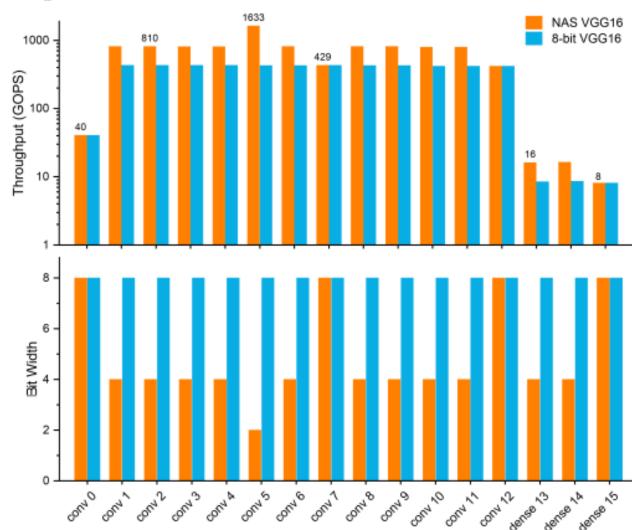
Experiment Results: Experiment Setup



	Precision	Accuracy (Top-1)	Weight (Ratio)
VGG16	float	71.9%	513MB
	8-bit	71.3%	128MB(25.0%)
	multi	70.9%	70MB(13.6%)

The loss of NAS-VGG16 accuracy is only within 1.0%

Experiment Results: Throughput



NAS VGG16 VS 8-bit VGG16

Lower bit-width: Compared with 8-bit model, NAS-VGG16 allows lower bit-width Higher throughput: For the multi-precision operators, the accelerator could reach 1633 GOPS for 2-bit in conv5, 810 GOPS for 4-bit in conv2 and 429 GOPS for 8-bit in conv7

Throughput and bit-width of the NAS-based VGG16 and 8bit VGG16 model at conv2d and dense layers

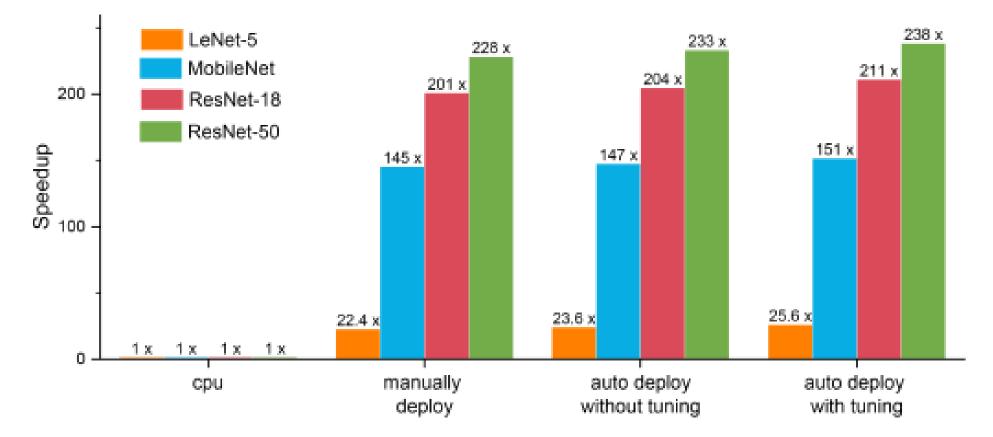
Experiment Results: Throughput

	Device	Network	Accuracy ¹ (Top-1)	Input Precision	Weight Precision	LUTs (Ratio)	DSP (Ratio)	Freq. (MHz)	Through. (GOPS)
[12]	XC7Z045	VGG16	66.96%	8	8	182.6K(84%)	780(87%)	150	188
[13]	XC7Z045	VGG16	68.02%	16	16	183K(84%)	780(89%)	150	137
[14]	VX690t	VGG16	66.52%	16	16	-	-	150	203.9
[15]	GX1150	VGG16	-	16	8	161K(14%)	1518(100%)	150	645.25
[16]	VX690t	VGG16	-	16	8	3E5(81%)	2833(78%)	150	354
ours	ZCU102	VGG16	71.3%	8	8	142.3K(51.9%)	1373(54.5%)	214	295.23
ours	ZCU102	NAS-VGG16	70.9%	multi	multi	141.8K(51.7%)	1373(54.5%)	214	494.10
ours	ZCU102	single conv op	-	8	8	142.3K(51.9%)	1373(54.5%)	214	429.25
ours	ZCU102	single conv op	-	4	4	142.3K(51.9%)	1373(54.5%)	214	810.54
ours	ZCU102	single conv op	-	2	2	142.3K(51.9%)	1373(54.5%)	214	1633.07

¹ The dataset using ImageNet.

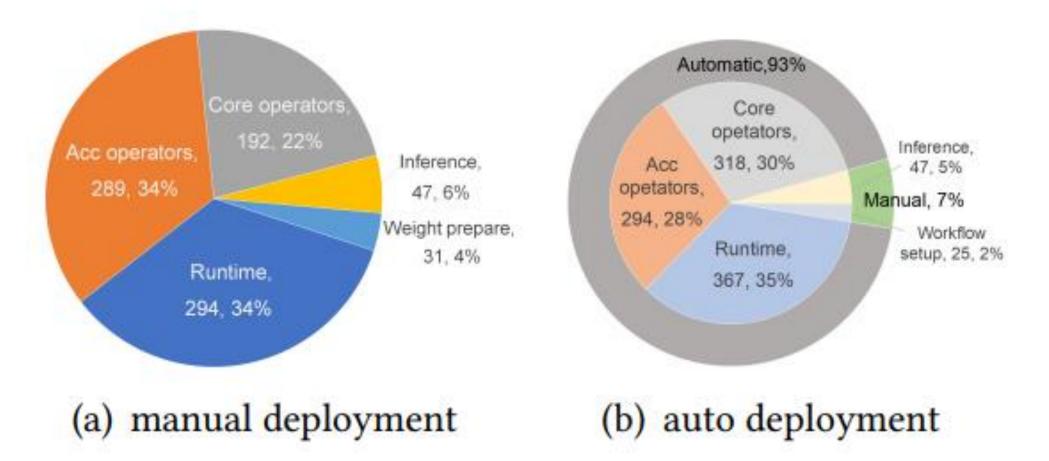
We also compare our results with prior specialized FPGA accelerators and the comparison table is shown in table

Experiment Results: Latency



Deployment of NAS multi-precision optimization models for some models with non-accelerator operators: LeNet-5, MobileNetv1, ResNet-18 and ResNet-50

Experiment Results: Agility



Line-of code comparison for MobileNet

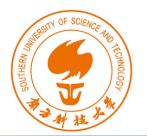
In Contraction

State of the state

We proposed an **agile hardware/software co-design** microprocessor featured with automatic NAS-based optimized models deployment.

- We implemented the heterogeneous architecture using **BSC** accelerator controlled by custom **RISC-V** instructions, which exhibits high flexibility and decent performance for various CNN models.
- 3 We also developed our compiler with custom FPGA backend integration to automate DL workloads mapping with both graph-level and operator-level optimizations.

ASP-DAC 2023



......

Thank You!

27