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g Introduction: Edge Computing

1. Edge computing vs cloud computing ?

‘ < .) 2. How to deploy?
@ 1/

Deep learning framework Hardware devices
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g Introduction: NAS Quantization
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Branch scores turn discrete selection into differential
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Advantages of NAS quantization:
achieve a well trade-off between
network performance and hardware
efficiency




Introduction: Main Challenge
Limitations of Existing Approach

————————————————————————————————————————————

New operator introduced
&+ by operator fusion optimization
potential benefit: 1.5x speedup
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Require significant manual tuning
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Introduction: TVM
TVM: End to End Deep Learning Compiler

O®F
High-Level Differentiable IR

Optimization

Tensor Expression and Optimization Search Space

< £\ Edge Cloud .
Q i l FPGA  FPGA ASIC Device Fleet

TVM provide performance portability to deep learning
workloads across diverse hardware back-ends
7



[ NAS Multi-Precision Model |
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g Introduction: Main Contribution

Engineering intensive: The model inference
stll has to be completed with manual
deployment to achieve the full utilization of
hardware

Few frameworks: There are however few
frameworks developed supporting model
deployment with mixed precision guantization

on embedded devices @

The main contribution of the
proposed work:

« Agile hardware/software co-design topology

«  Multi-precision accelerator

« TVM stack with multi-precision guantization
support and custom RISC-V instructions



Introqluction: Overall Flowchart
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g Multi-precision Accelerator: Quantization

Multi-precision Model
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Out-chip Memory
Multi-bit-width DMA
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Hardware architecture of multi-precision accelerator
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Multi-precision Accelerator: Architecture

Multi-bit-width PE use BSC method
that supports 8, 4, 2-bit multiplication
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gMulti-precision Compiler: Graph Transform
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Optimize the original graph: Constant
folding, data layout transformation, etc

Annotate each operator: Annotate the
backend that the operator needs to map

Merge adjacent identical annotation

operators and partition: Form a
computational subgraph of the same
backend




g Multi-precision Compiler: Mapping

subgraph
§ conv2d + relu —> max pool > conv2d + relu : The subgraph is embedded in the graph, and the
CCode S \ quantization and accuracy recovery operations
| quant » conv2d_relu —»max_pool» conv2d_relu —» dequant : Only need to be placed at the beginning and end
------ of each subgraph
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RISC-V based Multi-precision Microprocessor

-
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gl\/lulti-precision System: Communication

Communication: The accelerator is connected
to the RISC-V core through the AXI-Lite bus,
and the accelerator can also read and write
data directly to the DRAM through AXI-Full

Device Module Start Address End Address
Debug Module 0x0000_0000  0x0000_ OFFF
UART Serial Port 0x1001 3000 0x1001 3FFF
DRAM Module 0x4000 0000 Ox4FFF FFFF

Acc Control Register  0x5000_0000 0x5000_FFFF

The physical addresses of the microprocessor
peripherals are as above



gMulti-precision System: Instruction

RISC-V based Multi-precision Microprocessor
Custom Instruction: CL_RG, LD RG, and ST_RG

'd ™ . . .
RISC-V (Multi-Precision ) represent cleaning, loading, and storing data,
E203 Core Accelerator | Multi- bit-width respectively
o I PE Array
' EHBIrd 2 AXI Control
| goc | SystemBus Register — 31:25  24:20 19:15 14 13 12 117 6:0
S | Fli‘sh Multi-bit-width DMA func? rs2 rsl | xd | xs1 | xs2 rd opcode
. A g CL_RG | 00000 | 00000 | 0 | 0 | 0 | 00000 | CUSTOM-0
' AX] LD RG [ 00000 | rsI | 1| 1 | 0 | rd | CUSTOM-0
. v STRG | rs2 | rst [0 ] T | 1 |00000 | CUSTOM-0
 iaGESCETEELEEE . DRAM

18






Experiment Results: Experiment Setup

: JTAG [

§ \:S §§E & § | E Instructions ":”'v :l‘i-Lm E = ’F 4:.
UART z J“ d 4,\
< l :“-5“.‘ 1 = :" B O |
Print message . 2 = O
E Multi-precision Microprocessor
Xilinx ZCU102 FPGA
PC FPGA
Precision Accuracy (Top-1) Weight (Ratio)
float 71.9% 513MB
VGG16 8-bit 71.3% 128MB(25.0%)
multi 70.9% 70MB(13.6%)

The loss of NAS-VGG16 accuracy is only within 1.0%
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Experiment Results: Throughput

B NAS VGG16
1000 - B0 B bt WEGIE
429

=k
[ =1
=]

18

Throughput (GOFPS)

_
o
i

L]

_qnqhqmq@qbﬂﬁ:-ruﬂ%@..p.@{;.{s.@-.{:.
& FEEEEE S S S S

NAS VGG16 VS 8-bit VGG16

Lower bit-width: Compared
with 8-bit model, NAS-VGG16
allows lower bit-width

Higher throughput: For the
multi-precision operators, the
accelerator could reach 1633
GOPS for 2-bit in convb, 810
GOPS for 4-bit in conv2 and
429 GOPS for 8-bit in conv7

Throughput and bit-width of the NAS-based VGG16 and 8-

bit VGG16 model at conv2d and dense layers

21



gExperiment Results: Throughput

Device Network Accuracy’ Input Weight LUTs DSP Freq. Through.
(Top-1) Precision Precision (Ratio) (Ratio) (MHz) (GOPS)
[12] XC7£045 VGGle 66.96% 8 8 182.6K(84%) 780(87%) 150 188
[13] XC7Z045 VGG16 68.02% 16 16 183K (84%) 780(89%) 150 137
[14] VX690t VGG16 66.52% 16 16 - . 150 203.9
[15] GX1150 VGG16 - 16 8 161K(14%)  1518(100%) 150 645.25
[16] VX690t VGG16 - 16 8 3E5(81%) 2833(78%) 150 354
ours | ZCU102 VGG16 71.3% 8 8 142.3K(51.9%) 1373(54.5%) 214 295.23
ours | ZCU102 NAS-VGG16 70.9% multi multi 141.8K(51.7%) 1373(54.5%) 214 494.10
ours | ZCU102 single conv op - 8 8 142.3K(51.9%) 1373(54.5%) 214 429.25
ours | ZCU102 single conv op - 4 4 142.3K(51.9%) 1373(54.5%) 214 810.54
ours | ZCU102 single conv op - 2 2 142.3K(51.9%) 1373(54.5%) 214 1633.07

! The dataset using ImageNet.

We also compare our results with prior specialized FPGA accelerators and the

comparison table is shown in table
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Experiment Results: Latency

B LeNet-5
B MahileNet

004 @ ResNet-18
I ResNet-50

manually auto deploy aufo deploy
deploy without tuning with tuning

Deployment of NAS multi-precision optimization models for some models with
non-accelerator operators: LeNet-5, MobileNetv1, ResNet-18 and ResNet-50
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Experiment Results: Agility

Care operators,

Acc operators 192 2_2?/"»_____ farencs: '"3'?9?
289, 34% |l 47, 6% Manual, 7%
Weight prepare, Workfiow
31, 4% setup, 25, 2%
(a) manual deployment (b) auto deployment

Line-of code comparison for MobileNet
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gConclusmn

1

We proposed an agile hardware/software co-design
microprocessor featured with automatic NAS-based optimized
models deployment.

We implemented the heterogeneous architecture using BSC
accelerator controlled by custom RISC-V instructions, which
exhibits high flexibility and decent performance for various CNN
models.

We also developed our compiler with custom FPGA backend
iIntegration to automate DL workloads mapping with both graph-
level and operator-level optimizations.
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