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Capacitance Extraction

Problem:

The EDA flow includes logic synthesis, physical design,
sign off and so on. Parasitic extraction is a part of sign off
analysis. Parasitic extraction includes resistance extraction
and capacitance extraction.

In this report, we are going to discuss capacitance
extraction.
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Capacitance Extraction

Capacitor:

The capacitor is a kind of circuit elements commonly used in
electric or electronic equipment. It is usually composed of two

conductors insulated from each other. When charged, the two |
surfaces of the conductors facing each other carry equal and 2] -
opposite charges: Q and —Q, respectively. The electric potential //
on the two conductors are ¢; and ¢, respectively. /
The capacitance of the capacitor is denoted by C:
c=—21—. 7
b1-P2 ) I

A parallel plate capacitor



Capacitance Extraction

Motivation of Capacitance Extraction:

The motivation of capacitance extraction is to compute
signal delay in integrated circuit.

For a signal wire in an integrated circuit, to compute its : : : : :
signal delay from one side to another side, a discretization is ; ; ; ; —
adopted to approximate the wire with an RC tree. ' ' ' ' '

Let X (t) be the voltage on all nodes. Then the voltage can be

solved by following equation: . . .
. o—\N T VVYV I VVTVVV 1 MN _L'\N\l O
X(t) = AX(t) + B, I I I I I

where A and B are two matrices that depend on the resistance
and capacitance of this RC tree.

(a) Trace of length L.

(b) Distributed RC tree.



Capacitance Extraction

Integrated Circuit:

For IC design, the requirement of fast and accurate

capacitance extraction is becoming more and more urgent.

With the feature size of integrated circuit scaling down,
the coupling capacitance of interconnect wires is making

more and more significant impact on circuit performance.
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Capacitance Extraction

Two Key Parts:

To obtain a good trade-off between accuracy and
efficiency. A complete capacitance extraction tool
includes mainly two important parts that are field
solver and pattern match.

Field Solver:

Field solver 1s an accurate and general method
for calculating the capacitance parameters through
simulating the electrostatic field among conductors.

Pattern Match:

Pattern match is a procedure which use the
pattern capacitance library as a lookup tables or a
training dataset to train some empirical formulas.

The capacitance of a given conductor structure
are obtained either to use some empirical formulas
or to search from a lookup table ( “pattern library™).
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Field Solver

Sevaral Field Solver Methods:

There are mainly several capacitance extraction
methods which are the finite difference method
(FDM), the finite element method (FEM), the
boundary element method (BEM) and the floating
random walk (FRW) method.

Table 1: Features of different Field Solver.

= FDM or FEM BEM FRW
Equation form differential integral integral
Discretization domain boundary -
Matrix large and sparse | small and dense -
Parallelism bad bad good
Convergence rate rapid rapid slow
Main error source | discretization | discretization |random
Adaptability to

complex structure good bad bad




Field Solver

Domain Discretization Method:

The FEM and the FDM are classified as the
domain discretization method. It usually produces a
sparse matrix with large order. In 3-D capacitance
extraction, because the order of the matrix increase
rapidly, the speed of this method is limited.
However, the domain discretization method is well
established, thus this method is used by some
software.

Table 1: Features of different Field Solver.

= FDM or FEM BEM FRW
Equation form differential integral integral
Discretization domain boundary -
Matrix large and sparse | small and dense -
Parallelism bad bad good
Convergence rate rapid rapid slow
Main error source | discretization | discretization |random
Adaptability to

complex structure good bad bad




Field Solver

Floating Random Walk Method:

The floating random walk algorithm for
capacitance extraction, presented as a 2-D version,
was proposed in 1992. Table 1: Features of different Field Solver.

The random walk method is advantageous in

. - i - FDM or FEM BEM FRW
parallelism over the traditional methods. Thus, this Fauation f Jifferential Tm— - ooral
method has attracted a lot of attention recently. qualion rorm Seentia mtegra mtegra

Discretization domain boundary -
Matrix large and sparse | small and dense -
Parallelism bad bad good
Convergence rate rapid rapid slow
Main error source | discretization | discretization |random
Adaptability to

complex structure good bad bad




Field Solver

Boundary Element Method (BEM) :

The boundary element method only needs to
discretize the boundary, thus the matrix order
produced by the BEM is smaller than that produced
by the FDM. However, the matrix obtained by the
BEM is not sparse and a lot of time is spent on
calculating the matrix elements.

Table 1: Features of different Field Solver.

- FDM or FEM BEM FRW
Equation form differential integral integral
Discretization domain boundary -
Matrix large and sparse | small and dense -
Parallelism bad bad good
Convergence rate rapid rapid slow
Main error source | discretization | discretization |random
Adaptability to

complex structure good bad bad

[1] X. Cal, K. Nabors, and J. White. 1995. Efficient Galerkin techniques for multipole-accelerated capacitance extraction of 3-D structures with multiple

dielectrics. In Proceedings of the Conference on Advanced Research in VLSI. 200-211.

[2] W. Chai, D. Jiao, and C.-K. Koh. 2009. A direct integral-equation solver of linear complexity for large-scale 3-D capacitance and impedance extraction. In

Proceedings of Design Automation Conference. 752—-757
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Field Solver

Galerkin Boundary Element (GBEM) Method:

We focus on the matrix order reduction and study the boundary partition strategy.

1. For this purpose, we use some mathematical theorems and physical approximation to obtain an error
analysis. The error analysis can provide a guidance of boundary partition strategy. Thus, the boundary
partition strategy is rarely influenced subjectively.

2. Due to the fitness, this boundary partition strategy can largely reduce the number of boundary elements
and ensure sufficient accuracy.

3. On the other hand, we will also propose our suggestion on the calculation of the matrix elements.

11



Field Solver

Problem Statement:

dielectric 3

net 1
dielectric 2

dielectric interface
net 0

pa dielectric 1 out boundary

normal

vector

Figure 1: A cross section of 3-D capacitance extraction problem with
multi-dielectrics

In each dielectric region (2, the electric potential u,
satisfies the Laplace equation:

Vzua =01in Q,
U, = 1 on the main net

ug = 0 on other nets and the Dirichlet boundary

ou
a—a = 0 on the Neumann boundary.
n

Let g, and gy, be the normal electric field intensity on the

boundaries of 2, and 2, respectively. On the dielectric
interface I,; of two dielectric regions 2, and 2, the
compatibility equation holds:

€aqa = —€pqp

Ug = Up.

Using Green’s identity, we have following equation

o(X)uq(x) + / q (x,y)uq(y)dy = / u”(x,y)qa(y)dy,
Q. a0,
where
% (X - Y T’ly> % 1

and o(x) satisfies o(x) = % for almost all x € 9Q),.
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Galerkin Method

Single Dielectric Case:

First, we discuss the single dielectric case with the Dirichlet
boundary condition:

u = 0 on the dielectric boundary .

Let dmcd represent the boundary of the main conductor(mcd) [ ]
. Then, the basic theory of electromagnetism tells us that

/ u”(x,y)q(y)dy = fo(x),
Q2

dielectric 3

where

net 1
dielectric 2

1 if x is on dmced

fb (x) - { et 0 dielectric interface

O OtheI'WISC. .| dielectric 1 - out boundary

normal

1
4rr|x -y

U (x,y) =

vector

Figure 1: A cross section of 3-D capacitance extraction problem with
multi-dielectrics
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Galerkin Method

Single Dielectric Case:

To solve g, we need to partition the boundary to finite pieces. We
suppose dQ = [ J; I; and use g; to approximate g(x) when x € I,
then we get following equation:

> (/I u* (x, y)dy) qj = fo(x).

j J

Integrating both sides over I;, we get

;(/L‘/I;u*(x,y)dydx) qj:/fiﬁ}(x)dx' (3)

This is the Garlerkin method discussed in [2]. Once we have solved
this equation, the electric charge on the boundary adcdj. of the k-th
conductor (cdy) is given by

Q=D eqjlljl (4)

chacdk

where ¢ is the dielectric constant. Let

partition of a conductor boundary

/ u' (x,y)q(y)dy = fo(x),
Q)

14



Galerkin Method

Boundary Partition Strategy:

b |I|/f” ( )y,

The order of the Matrix A is equal to the number of the boundary elements. Thus we want to reduce the
number of boundary elements.

An intuitive way is to use nonuniform partition. For example, the size of the boundary elements on the
main conduct should be small and the size of the boundary elements on the dielectric boundary can be

large.

Nonuniform partition lead to less boundary elements. We need theorems to ensure that this partition
scheme can. lead to high accuracy. . | | | _

uniform partition nonuniform partition 15



Galerkin Method

Error Estimation:

Proposition 1. Let Q, be the electric charge on the conductor k. Let Q;, be the electric charge on the conductor k
obtained by Galerkin method. The projection g,,, is given by

1
Prmq = Z 1) q(x)dxxi;.
. — I
then there is a constant C such that / ’
1Qk — Qi | < Cllg = Pmqllr2(00)-

If the tangential derivative of g on the boundary exists, we further have

/ 0
0k — Q4| < Csup Iy sup S (x)).
J

. 0T
erJ

Since the capacitance of the main conductor is given by C; = @, and the
coupling capacitance between the main conductor and the conductor k is
given by C, = —Qj, we can obtain the error estimation of each

capacitance.

16




Galerkin Method

Partition Strategy:

If we want the error to be less that ¢, we need to partition
the boundary such that

aq
1l sup |~ ()] < ¢
xEIj T

c

|Ij| < 2 :
SuprIj |E(x)|

If x is far away from the main conductor, then we can regard
the main conductor as a point charge. Thus we have

for some constant C.

dq
15— ()] < PR
Let d,j be the distance from /; to the main conductor. Form

formulas above, we should partition the boundary such that |I;|
IS propotional to (d,}.)3 when d,j Is large.

10k — Oyl < Csup (
J

aq
1| sup a—(x)

XEI]'

T

17
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Galerkin Method

Partition Strategy:

Now, we propose our strategy of partition. Let p1, po, p3 are
parameters which can be chosen for different cases.

If the distance between the boundary and the main conductor is
less than py, then we partition it to rectangles {I;} such that

11| < po.

If the distance of the boundary is larger than p;, then we partition
it to rectangles {I;} such that

1] < p3 s pa x (dg, /p1)°,

where d I; 1s the distance between I; and the main conductor. Due
to the electric field shielding effect, if the outer normal vector of
the boundary points to the main conductor, we set p3 = 1 else we
set p3 to be larger than 1.

18




Galerkin Method

Multi-Dielectric Case:

For the multi-dielectric case, we have

o (x)ta(x) + fa 4 () - fa ) a()dy

hold for x in region £2,. We partition the boundary to be the union
of I;. Taking integral over I; on both side and approximating g, (y)
and u, (y) on each element with constant, we then obtain

1

_fuadx+2(f/ q*(x,y)dydx) Uy Je
2 J1, — \JI, JIi ’
:Z(//u*(x,y)dydx) a,j-

19




Fast Calculation of Matrix Elements

Numerical Integral:

The Galerkin method brings us both a benefit and a trouble. The benefit is that the number
of boundary elements is reduced. The trouble is that the matrix elements are complicated.
Because most of the run time of any kind of boundary element methods is spent on computing
matrix elements. It is crucial to compute matrix elements as fast as we can.

The matrix elements include two kind of integrals

A= [ [ wpdyax and = [ [ g i
Ii Ij Ii Ij

A fast algorithm of the calculation of A; ; is given by [1].

[1]. Jitesh Jain, Cheng-Kok Koh, and Venkataramanan Balakrishnan. 2006. Exact and Numerically Stable Closed-Form Expressions for
Potential Coefficients of Rectangular Conductors. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II:
EXPRESS BRIEFS 53, 6 (JUNE 2006), 200-211.
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Fast Calculation of Matrix Elements

Numerical Integral:

To handle the integral, we need some notations. If f(x) is a
function, we denote

Dy (xy, xg) f(x) = f(xu) — f(xq)
and
Dxla' e :xn (xlu’ x].d’ R xnu’ xnd)
=Dix, (X1, X1q) Dy, x, (X205 X2ds * * * s Xnus Xnd)-

Let n(1;) and n(I;) be the normal vector of I; and I; respectively. We
are going to consider several situations by discussing the directions
of n(l;) and n(I;).

21



Fast Calculation of Matrix Elements

Numerical Integral:
If 7i(I;) is parallel to 7i(I;), we suppose I; and I; satisfies
Ii = {(x1,x2,x3) : X719 < X1 < X1y, Xog < X2 < Xy}
Ii = {(y1,¥2,Y3) : Y14 < Y1 < Y1 Yoqg < Y2 < You}-

If b = x3 — y3 = 0, then by the formular of ¢*(x, y) we have

Qi,jZO.
If b = x3 —y3 # 0, we have

Yiu You (x — vy,
Qi,j —f / f f il y3> dyzdyidxzdx;
X1d Xod Yid Yod 4r|x — y|

Xou You
=Dx1,y1 (X1u> X1d> —Y1u> —Y2d) f

Xa2d —Yad

1 b\/(Xg + y2)2 + (X1 + y1)2 + b2
41 (x2 +12)? + b2

dedyz.
For any function G, we have

Xu Yu
f / G(x + y)dydx(Let Ox =xy — x40y =y — yd.)
Xd Yy

d
3y 3y

=f uG(u+xy+yg)du + SyG(u+ x4 +yy)du (8)

0

Sx

Sy+dx
+f (dy + dx —u)G(u + x4 +yy)du.

Sx

using (8), we can calculate Q; ;.

22



Fast Calculation of Matrix Elements

Numerical Integral:

If 11(1;) is orthogonal to n(Ij), we suppose I; and I; satisfies
Ii = {(x1,x2,x3) : X1 < X1 < X1y X390 < X3 < X34}
Ii ={(y1. 92, y3) : Y1q < Y1 < Y1 Y2qd < Y2 < You}-
Then

Qi,j :ng,xl,yl (56311: -563d9 X1us X1d, _y1U> _yld)

QZu
[ gt G+ o+ un? o 23
y

2d

— \/(xl +11)% + yg + xgdyz.

Thus, we can calculate Q; ; by using numerical integrals.

We used the Romberg quadrature formula to calculate each numerical
integral in our program.

—  n(l;)
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Experimental Result

We implemented our Galerkin projection boundary element
method (GBEM) in C++ programming language, and performed all
the experiments on Linux workstation with Intel(R) Xeon(R) Gold
5218 server with CPU at 2.3 GHz.

Single Dielectric Case:

We use the test case in [1]. We provide the capacitance obtained
using different methods in [1] carried out on a Sun Ultra Enterprise
450 server. GBEM needs 74 boundary elements to obtain similar
results. The errors are less that 5%.

Table 1: Capacitance calculated with different methods (in unit of
10718 F).

Method | Cyy |Error1(%)| Cay |Error2(%)| Time(s)|Mem(MB)
Raphael |232.2 0 181.5 0 - -

GIMEI 230 0.94 [180.6 0.5 2.8 3.5
FastCap | 226 2.7 176 3 24.37 22
OMM 221 4.86 |176.4| 2.81 4.98 5.1

GBEM 222 4.4 178 1.93 0.06 7.19

[1]. W. Yu and X. Wang. 2014. Advanced Field-Solver Techniques for RC Extraction. Springer, New York
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Experimental Result

Multiple Dielectric Case:

We provide the capacitance obtain using different methods carried out
on a Sun Ultra Enterprise 450 server. “Panels” and “Cap.” are the
number of boundary elements and the capacitance.

For the QMM method, the number of boundary elements of a
conductor ranges from 2277 to 2575 for capacitance computation.
However, from Table 4, we can see that the number of boundary
elements of a conductor in our GBEM only ranges from 217 to 316.

Table 4: Panels, times and memory for computing each ca-

5 Table 2: The digonal entries of the capacitance matrices cal-
pacitance (in unit of 107> F).

culated with different methods (in unit of 10~1° F).

T T 20 L 1 ethod Co T C TG T Cor TG T e T [N E)
ane

Time(s) | 0.251 | 0.422 | 0.394 | 0.402 | 0.375 | 0371 | 037 011)\/11)1\1/\14 0066882 1?? 11'567 12421 ggg gg;} 51821 32570
Mem(MB) | 8.13 | 8.375 | 8.38 | 847 | 817 | 8.6 | 8.28 (%BEM : : o 11 : : : g
Cap. 0.691 | 1.306 | 1.598 | 1.542 | 2.544 | 2.539 0.691[1.306]1.598]1.542|2.544(2.539]| 2.2 :

[1]. W. Yu and X. Wang. 2014. Advanced Field-Solver Techniques for RC Extraction. Springer, New York
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Experimental Result

Multiple Dielectric Case:

Recently, there are a lot of progress on the floating random walk (FRW) solver for capacitance. One

of efficient and effectiveness algorithms is RWCap(R) in [1].

The RWCap are carried out on a Linux server with Intel Xeon E5620 8-core CPU of 2.40 GHz. Our
test cases are the typical 180-nm and 45-nm technology available from [1].

Table 3: Comparison of RWCap(R) and GBEM (in unit of 1071° F).

RWCap(R) GBEM

Case Cself Cer | Time(s) | Walks Csetr | Dis.(%) | C¢ | Dis(%) | Time(s) | Speedup | Panels
1 18.4 6.41 4.82 61k 18.7 1.6 6.28 2.03 3.48 1.39 1920
2 19.51 5.47 1.52 56k 19.5 0.05 5.5 0.55 2.61 0.58 1624
3 7.28 2.69 2.10 46k 7.13 2.06 2.65 1.49 1.77 1.19 1624
4 3.65 1.67 4.93 51k 3.62 0.82 1.63 2.4 0.538 9.16 1066
5 3.95 1.36 1.47 44k 3.92 0.76 1.40 2.94 1.89 0.78 1922
6 1.44 0.517 3.31 51k 1.46 1.39 0.494 4.45 0.674 4.91 1270

The experimental results in Table 3 show that our GBEM speed up runtime about 3.00% than

RWCap(R).

[1]. W. Yu, H. Zhuang, C. Zhang, G. Hu, and Z. Liu. 2013. RWCap: A floating random walk solver for 3-D capacitance extraction of very-
large-scale integration interconnects. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32, 3 (2013), 353-366 26
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