

Date: January 16 – 19, 2023

Graph-Learning-Driven Path-Based Timing Analysis Results Predictor from Graph-Based Timing Analysis

Yuyang Ye¹, Tinghuan Chen², Yifan Gao¹, Hao Yan¹, Bei Yu², Longxing Shi¹

¹Southeast University ²The Chinese University of Hong Kong

Jan. 18, 2023

Introduction

STA plays an important role in the design flow for timing closure.

For achieving a tradeoff between efficiency and accuracy, STA is divided into two kinds:

• Graph-based Analysis (GBA) (fast but inaccurate)

• Path-based Analysis (PBA) (accurate but slow)

Molina ¹ and Kahng ² name **fast prediction of PBA results based on GBA results** as a solution to achieve runtime and accuracy tradeoff Kahng et al. ³ develop **two tree-based classification and regression models** to capture divergence in cell slew/delay in PBA and GBA timing mode

(a) From GBA to PBA; (b) Tree-based classification.

¹EDA vendors should improve the runtime performance of path-based timing analysis ²Machine learning applications in physical design: Recent results and directions ³Using machine learning to predict path-based slack from graph-based timing analysis

Motivation: Graph Learning for Timing Analysis

Graph learning methods are used to solve various EDA problems.

 Cells → Nodes
 Node features are researched in many problems
 Cell information is collected

Nets → Edges
 Edge features are not fully considered
 Net information is ignored

An edge-featured graph $\mathcal{G} = \{\mathcal{V}, \mathcal{E}, \mathbf{X}, \mathbf{H}\}$ is defined as an undirected graph consisting of:

- a node set $\mathcal{V} = \{v^{(1)}, v^{(2)}, \dots, v^{(n)}\}$, where $|\mathcal{V}| = N$. It denotes cell set on critical paths;
- an edge set \mathcal{E} , where $|\mathcal{E}| = M$. It denotes net set on critical paths;
- node features $X \in \mathbb{R}^{n \times k_x}$, where i^{th} row vector $x_i \in \mathbb{R}^{k_x}$ is the node features for the i^{th} node;
- edge features $H \in \mathbb{R}^{m \times k_h}$, where the row vector $h_p \in \mathbb{R}^{k_h}$ is the edge features for the p^{th} edge or the edge between i^{th} and j^{th} node.

Problem 1:

- Given a training set *P*_{train} which includes edge-featured graphs representing critical paths with GBA and PBA timing results in training cases
- Train a graph-learning based model based on P_{train}
- Given a test set P_{test} (where $P_{\text{test}} \cap P_{\text{train}} = \emptyset$) which includes edge-featured graphs representing critical paths with GBA results in testing cases.
- Generate their PBA timing results in *P*_{test} using the trained model based on given GBA timing results and timing path structure information without additional STA runtime.

Algorithms

Overall Flow

In our work, Problem 1 is divided into three tasks based on delay calculation progress: node embedding, cell slew and delay prediction, path arrive time calculation.

Cell Features and **Edge Features** are selected based on circuit knowledge and parameter-sweeping experiments, which can assist EdgeGAT.

Туре	Name	Description
Node	cell delay cell output slew cell input slew cell input slew type cell threshold voltage wst cell input slew cell drive strength cell functionality tot cell input cap tot cell load cap	delay of cell transition time of cell output pin transition time of cell input pin on path rise or fall threshold voltage of cell worst transition time of input pins drive strength of cell functionality of cell sum of cell input pin cap total load capacitance of cell
Edge	net delay net slew type net output slew net input slew tot net cap tot net res net input cap tot net load cap	delay of net rise or fall transition time of net output pin transition time of net input pin sum of net capacitance sum of net resistance capacitance of driver cell for net total capacitance of load cells

Task 1: Node Embedding

To predict the cell slew and delay accurately, **EdgeGAT layers** and **merge layer** in deep EdgeGAT are used to generate new node embedding *F*: { f_i , $\forall i \in V$ } for cells in circuit which is based on **node (cell) features** *X*: { x_i , $\forall i \in V$ }, **edge (net) features** *H*: { h_p , $\forall p \in \mathcal{E}$ }, and timing path structural information.

EdgeGAT Layer (Transformer)

To achieve nonlinear transforming in the *d*-th EdgeGAT layer, two learnable matrices, $W_X^d \in \mathbb{R}^{K_X^d \times K_X^{d-1}}$, $W_H^d \in \mathbb{R}^{K_H^d \times K_H^{d-1}}$ and a hyper-parameter l^d , are used to transform the input node features $\{x_i^{d-1} \in \mathbb{R}^{K_X^{d-1}}, \forall i \in \mathcal{V}\}$ and edge features $\{h_p^{d-1} \in \mathbb{R}^{K_H^{d-1}}, \forall p \in \mathcal{E}\}$ into latent representations n_i^d and e_i^d :

Nonlinear Transformer:

$$\begin{split} \boldsymbol{n}_i^d &= ((1-l^d)\boldsymbol{I} + l^d \boldsymbol{W}_X^d) \cdot \boldsymbol{x}_i^{d-1} \\ \boldsymbol{e}_p^d &= ((1-l^d)\boldsymbol{I} + l^d \boldsymbol{W}_H^d) \cdot \boldsymbol{h}_p^{d-1} \end{split}$$

EdgeGAT Layer (Node Attention Aggregator)

The node attention aggregator accepts the transformed node and edge representations generated as inputs, n_i^d and e_i^d , and produces **aggregated node representations** g_i^d based on node attention coefficients α .

Node Attention Aggregator:

$$\alpha_{ij}^{d} = \frac{\exp\left(\text{LeakyReLU}\left((\boldsymbol{a}^{d})^{\top}\left[\boldsymbol{n}_{i}^{d}\|\boldsymbol{n}_{j}^{d}\|\boldsymbol{e}_{ij}^{d}\right]\right)\right)}{\sum_{k \in \mathcal{N}_{i}}\exp\left(\text{LeakyReLU}\left((\boldsymbol{a}^{d})^{\top}\left[\boldsymbol{n}_{i}^{d}\|\boldsymbol{n}_{k}^{d}\|\boldsymbol{e}_{ik}^{d}\right]\right)\right)}$$

$$\boldsymbol{g}_{i}^{d} = \sum_{j \in \mathcal{N}_{i}} \alpha_{ij} \boldsymbol{n}_{j}^{d}, \quad \forall i \in \mathcal{V}.$$

EdgeGAT Layer (Edge Attention Aggregator)

Different from node attention module, edge-attention module produces **aggregated edge representations** z_p^d based on edge attention coefficients β .

Edge Attention Aggregator:

$$egin{aligned} & extsf{B}_{pq}^{d} = rac{\exp\left(extsf{LeakyReLU}\left((m{b}^{d})^{ op}\left[m{e}_{p}^{d}\|m{e}_{q}^{d}\|m{n}_{pq}^{d}
ight]
ight)
ight)}{\sum_{k\in\mathcal{N}_{p}}\exp\left(extsf{LeakyReLU}\left((m{b}^{d})^{ op}\left[m{e}_{p}^{d}\|m{e}_{k}^{d}\|m{n}_{pk}^{d}
ight]
ight)
ight)} \ & z_{p}^{d} = \sum_{q\in\mathcal{N}_{p}}eta_{pq}m{e}_{q}^{d}, \quad orall p\in\mathcal{E}. \end{aligned}$$

EdgeGAT Layer (Encoder)

A non-linear transformation σ is performed to **encode the aggregated representations**. After encoding, we can get new node feature matrix X^d , edge feature matrix H^d , and edge-integrated feature matrix M^d .

Encoder:

$$\begin{aligned} \boldsymbol{x}_{i}^{d} &= \sigma(\boldsymbol{g}_{i}^{d} \| \boldsymbol{x}_{i}) \\ \boldsymbol{h}_{p}^{d} &= \sigma(\boldsymbol{z}_{i}^{d} \| \boldsymbol{h}_{i}) \\ \boldsymbol{m}_{i}^{d} &= \sigma\left(\sum_{j \in \mathcal{N}_{i}} \alpha_{ij}\left(\boldsymbol{n}_{j} \| \boldsymbol{e}_{ij}\right)\right) \end{aligned}$$

Merge Layer

We can get the final node embedding results F: { f_i , $\forall i \in \mathcal{V}$ } based on each edge-integrated feature matrix M^d : { m_i^d , $\forall i \in \mathcal{V}$ } in **merge layer**.

Merge Layer:

$$f_i = \|_{d=1}^D(\boldsymbol{m}_i^d), \quad \forall i \in \mathcal{V}.$$

Then, a multilayer perceptron module (*MLP*) is used to predict the cell slew and delay in PBA mode. The minimizing Mean-Squared Error (MSE) between the predicted and the PBA result is taken as the loss function.

$$\mathcal{L}_{\text{slew}}(\boldsymbol{\theta} \mid \boldsymbol{F}, S_{\text{r}}^{\text{PBA}}) = \frac{1}{N} \sum_{i \in \mathcal{V}} (S_{i}^{\text{PBA}} - S_{\text{r}_i}^{\text{PBA}})^{2}.$$

$$\mathcal{L}_{\text{delay}}(\boldsymbol{\phi} \mid \{\boldsymbol{F}, S_{\text{cell}}^{\text{PBA}}\}, D_{\text{r}}^{\text{PBA}}) = \frac{1}{N} \sum_{i \in \mathcal{V}} (D_{i}^{\text{PBA}} - D_{r_{-i}}^{\text{PBA}})^{2}.$$

 $\mathcal{L}_{tot}(\boldsymbol{\theta}, \boldsymbol{\phi} \mid \{\boldsymbol{F}, S_{cell}^{PBA}\}, S_{r}^{PBA}, D_{r}^{PBA}) = \mathcal{L}_{slew} + \mathcal{L}_{delay}.$

Task 3: Calculation

PBA arrival time of a critical path AT_{CP}^{PBA} is estimated by the predicted PBA cell delay D_{cell}^{PBA} and GBA wire delay D_{wire}^{GBA} .

Predict Cell Delay using Our Work	Collect Net Delay From GBA Results						
Data	Point	Trans	Incr	Path			
Representation	U0_reg/CP	0.00000	0.00000	0.00000			
	netA	0.00042	0.00012	0.00012			
Node Embedding	U0_reg/Q	0.02015	0.05688	0.05688			
Tack 1	U1/Z	0.03045	0.02473	0.08161			
Idsk 1	U2/Z	0.01066	0.02080	0.10241			
Predicting Cell Slew and Delay Task 2	Data arrival t	ime		0.10241			

Algorithm 1 summarizes the overall training process of PBA cell slew/delay predictor. We leverage a parallel training scheme by partitioning critical paths over multi-GPUs.

Algorithm 1 Training Methodology.

- **Input:** Edge-featured graph: $\mathcal{G} = \{\mathcal{V}, \mathcal{E}, \mathbf{X}, \mathbf{H}\}$; Node feature matrix: \mathbf{X} : $\{\mathbf{x}_i, \forall i \in \mathcal{V}\}$; Edge feature matrix: \mathbf{H} : $\{\mathbf{h}_p, \forall p \in \mathcal{E}\}$; Real PBA cell slew S_r^{PBA} and delay D_r^{PBA} ; Search depth D=100; Parameters in the LeakyReLU nonlinear function. **Output:** Trainable parameters \mathbf{W} : $\{\mathbf{W}_v^d \text{ and } \mathbf{W}_H^d, \forall d \in \{1, ..., D\}\}$ in EdgeGAT lay-
- **Output:** Trainable parameters W: $\{W_X^u \text{ and } W_H^u, \forall d \in \{1, ..., D\}\}$ in EdgeGA1 layers; θ and ϕ in *MLP*
- 1: for $i \in \mathcal{V}$ do
- 2: $f_i \leftarrow \parallel_{d=1}^D (\boldsymbol{m}_i^d);$ 3: $S_i^{\text{PBA}} \leftarrow MLP(\boldsymbol{\theta} \mid \boldsymbol{F});$ 4: $D_i^{\text{PBA}} \leftarrow MLP(\boldsymbol{\phi} \mid \boldsymbol{F}, S_i^{\text{PBA}});$

Node embeddingPredicting cell slewPredicting cell delay

- 5: **end for**
- 6: Compute \mathcal{L}_{tot} ;
- 7: Minimize \mathcal{L}_{tot} via Adam and update all parameters W

Experimental Results

- Training Device: a Linux machine with 32 cores and 4 NVIDIA Tesla V100 GPUs in parallel with 128GB memory.
- PBAGBA Device: a 72-core 2.6GHz Linux machine with 1024 GB memory
- Benchmarks: 18 open-source circuits with TSMC28nm

	Benchmark	#Cells	#Nets	#FFs	#CPs
	PCI_BRIDGE	1234	1598	310	456
	DMA	10215	10898	1956	1475
	B19	33785	34399	3420	5093
	SALSA	52895	57737	7836	9648
	RocketCore	90859	93812	16784	12475
Train	VGA_LCD	56194	56194 56279		8761
паш	ECG	84127	85058	14,018	13189
	TATE	184601	185379	31,409	27931
	JPEG	219064	231934	37,642	36489
	NETCARD	316137	317974	87,317	46713
	LEON3MP	341000	341263	108,724	50716
	Total	1390111	1075068	326470	212766
	WB_DMA	40962	40664	718	9619
	LDPC	39377	42018	2048	7613
	DES_PERT	48289	48523	2983	10976
Test	AES-128	113168	90905	10686	24973
	TV_CORE	207414	189262	40681	33706
	NOVA	141990	139224	30494	39341
	OPENGFX	219064	231934	37,642	47831
	Total	810264	782530	125252	221890

Benchmark	Cell Slew/Delay Prediction Accuracy (R ² score)								
	MLP	GCNII ¹	GraphSage ²	GAT ³	EGNN ⁴	Deep EdgeGAT			
WB_DMA	0.795/0.761	0.875/0.861	0.881/0.846	0.883/0.876	0.915/0.907	0.996/0.971			
LDPC	0.762/0.732	0.842/0.832	0.865/0.814	0.877/0.871	0.921/0.916	0.991/0.987			
DES_PERT	0.766/0.727	0.896/0.887	0.847/0.826	0.906/0.900	0.963/0.960	0.989/0.987			
AES-128	0.731/0.712	0.801/0.792	0.821/0.810	0.856/0.816	0.938/0.921	0.977/0.970			
TV_CORE	0.756/0.717	0.838/0.817	0.847/0.837	0.856/0.844	0.957/0.944	0.982/0.979			
NOVA	0.725/0.718	0.826/0.812	0.824/0.818	0.864/0.855	0.905/0.871	0.974/0.971			
OPENGFX	0.699/0.681	0.819/0.802	0.809/0.798	0.834/0.816	0.862/0.840	0.982/0.974			
Average	0.748/0.721	0.843/0.829	0.842/0.821	0.868/0.854	0.923/0.909	0.984/0.977			

• Ours outperforms GCNII by 0.142/0.147, GraphSage by 0.141/0.156, GAT by 0.116/0.123 and EGNN by 0.062/0.069.

¹Simple and deep graph convolutional networks ²Inductive representation learning on large graphs ³Graph attention networks ⁴Exploiting edge features for graph neural networks

	Path Delay Prediction Accuracy: R ² score / MAE(ps)				Runtime(s)						
Benchmark	STA Tool	(PrimeTime)	Prior Work		Ours		PBA		Ours		Comparison
	PBA	GBA	CART ¹	D=25	D=50	D=100	Full	GBA	Predictor	Total	Speedup
WB_DMA	1.000/0.00	0.549/64.91	0.732/21.34	0.881/10.74	0.928/3.23	0.998/0.89	276.7	12.1	1.197	13.297	20.81 ×
PCI_BRIDGE	1.000/0.00	0.471/89.23	0.694/41.01	0.896/14.65	0.901/9.51	0.993/1.46	365.9	15.3	0.798	16.098	22.73 ×
DES_PERT	1.000/0.00	0.452/50.84	0.702/37.86	0.891/25.17	0.931/10.92	0.997/1.02	386.3	16.4	1.614	18.014	21.44 imes
AES-256	1.000/0.00	0.393/130.92	0.511/80.75	0.702/22.94	0.822/9.37	0.977/3.94	593.7	31.2	2.731	33.931	17.50 ×
TV_CORE	1.000/0.00	0.424/91.27	0.651/57.93	0.825/29.36	0.897/19.34	0.984/6.81	614.6	22.1	2.410	24.51	25.08×
NOVA	1.000/0.00	0.419/88.64	0.673/36.59	0.839/23.83	0.904/14.37	0.983/4.11	1133.8	30.5	4.276	34.776	32.60×
OPENGFX	1.000/0.00	0.378/267.91	0.571/147.03	0.793/53.74	0.851/27.89	0.987/5.84	1185.4	36.3	4.432	40.732	29.10 ×
Average	1.000/0.00	0.441/111.96	0.647/60.36	0.832/25.78	0.891/13.52	0.988/3.44	642.3	23.4	2.494	25.894	24.80×

- According to the R² scores, the accuracy of our work reaches 0.832, 0.891, and 0.988 on average when *D*=25,50 and 100. And the average maximum absolute error of our results is just 3.44ps.
- the average runtime of our workflow to get accurate PBA timing results costs 25.894s, which achieves 24.80× speedup compared with PrimeTime.

¹Using machine learning to predict path-based slack from graph-based timing analysis

Conclusion

- Using GBA results to predict PBA makes a tradeoff between accuracy and runtime.
- Our predictor has the potential to substantially predict PBA timing results accurately. According to the R² scores, the accuracy of our work reaches 0.988 on average with maximum error reaching 6.81 ps.
- Our work accelerates PBA timing results which achieves an average 24.80× speedup faster than PBA using the commercial STA tool.

THANK YOU!