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Motivation — Outlier detection

e Outlier detection or anomaly detection task is an essential and everlasting

problem which have been widely researched across different application
domains.

* In recent years, the development of machine learning and representation
learning leads to a surge of interest in the outlier detection field.
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Motivation - HDC

* Meanwhile, as an emerging machine learning method and a
promising computing paradigm, Hyperdimensional computing (HDC)
has become noticeable according to its smaller model size, less
computational cost and acceptable accuracy compared with deep
neural networks (DNNs).
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HDC Background - Preliminary

* In HDC domain, hyper-vectors (HVs) are the general computing
symbols.

H = (hy,ha, ..., hg)

* In general, HVs have bipolar elements in {-1, 1} and dimension D =
10000, and arbitrary two random generated HVs are close to
orthogonal.



HDC Background - Operations

* HDC utilizes three critical operations for representing and integrating
information, named bundling, binding and perturbation.

Hx+Hy: <hx1+hyl,hx2+hy2 ..... hxd+hyd>

Hy = Hy = (hx1 * hy1, hxo = by, . ., hyd * hyd>
p'(H) = (hg.h1,ha, ... ha_y)

* In the meantime, HDC measures the distance between HVs for
revealing the correlation based on distance metric 8. To be specific,

here we use cosine distance as an example:
e H;H_g; Z;il hXi.hyi
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HDC Background — Model Implementation

* Three main processes are required to establish a general HDC model,
named the encoding, the training, and the inference process.

* A general pipeline of a HDC model shows as following:
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HDC-based Outlier Detection

* Targeting at the outlier detection task, we develop and propose two
HDC based approaches for outlier detection, which are named HDAD
and ODHD respectively.

* To be specific, HDAD [1] detects anomalies based on reconstruction
errors, while ODHD [2] utilizes a one-class classification strategy to
filter out outliers.

[1] Ruixuan Wang, Fanxin Kong, Hasshi Sudler, and Xun Jiao. "Brief Industry Paper: HDAD: Hyperdimensional Computing-based Anomaly
Detection for Automotive Sensor Attacks." 2021 IEEE 27th RTAS. |EEE, 2021.
[2] Ruixuan Wang, Xun Jiao, and Sharon Hu. "ODHD: one-class brain-inspired hyperdimensional computing for outlier detection."

Proceedings of the 59th ACM/IEEE Design Automation Conference. 2022. |
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HDAD - Methodology

* HDAD contains three key phases:

1) Pattern encoding, where we encode training samples into HVs for the
pattern learning purpose;

2) Pattern decoding, where we decode the HVs and reconstruct them to the
original samples;

3) Reconstruction error check, where we check the reconstruction error
between original and reconstructed sample.
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HDAD — Methodology

* For HDAD training, we use a set of random generated base HVs (item memory) to encode all the
training samples into HVs and aggregate them to one reference HV: RV. This RV represents all the
normal samples (like normal pattern of data san;\nlples) in the training set.

RV — z HVl
=0

* For HDAD inference, we first encode the query sample T into HV TV and bundle it with RV as TV/,
where TV’ = (TV + RV). And we decode sample T’ from this TV’ and we

b
T' = {TV' « Bl,TV’ xby/D, ..., TV' x b, /D}
* For the purpose of anomaly detection, HDAD computes the reconstruction error between the

original data sample and reconstructed data and utilizes a predefined threshold to filter out the
anomalies.



HDAD - Experiment Result

* For the metrics of reconstruction error, we use MSE (mean squared error), MAE (mean absolute
error) between the T and T’ and the SIM (cosine similarity) between the HVs encoded Tand T’ .

* We evaluate the performance of HDAD through an autonomous driving dataset from the AEGIS
Project [1], which contains variant continuous sensor readings during the driving trip.
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[1] Kaiser, Christian, Alexander Stocker, and Andreas Festl. "Automotive CAN bus data: An example dataset from the L

AEGIS Big Data Project." Zenodo (2019).
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ODHD - Methodology

* ODHD based on a semi-supervised learning approach, which first encodes
all the training samples into HVs and establishes a one-class HV only using
samples from the positive class. This one-class HV represents the
abstracted pattern of the positive class samples.

Seed HVs generation
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ODHD - Methodology

* Then ODHD measures the similarity between all the unlabeled encoded
HVs in the inference set with the one-class HV, if the similarity lower than a
predefined threshold, the sample is detected as an outlier.

I
h
. . 1 I'
S = {Sim,, ..., Simy} :i l <R :i 1 <R
1] I
n H
1 E: Hoc += H, E: Outlier
Threshold R " :

i Threshold Calculation I Fine-Tunning Ei Outlier Detection E
1 || [ |
y IT'= {HF1 HFN} W Hy Hoc | Hq Hoc E
i i l T 1 l :
s : _— :
h
E 5 ; ) i ) E
I " [ '
i 1 : 1 i 1 :
E ii Sim, ' Sim, E
i i
i i
i i
] 1
1 1
| |
L .



ODHD - Experiment Setup

 We compare the performance of ODHD with other widely employed
machine learning algorithms including one-class SVM (OCSVM),
isolation forest and auto-encoder across 6 real datasets under the

accuracy, average precision, f1-score and ROC-AUC metrics.

e According to our experimental result, ODHD can outperform all the
baseline methods on every dataset for every metric.
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Future work & Conclusions

e Qutlier detection aims to detect abnormal values that deviate from
other observations in a dataset, or an observation that diverges from
an overall pattern on a sample.

* Based on the proposed HDC based outlier detection method, the
promising results we showed open a new viable alternative to
traditional learning algorithms for outlier detection.

e Our future work will consider the implementation of HDC in not only
accuracy but also reliability perspectives, which will lead to a HDC
model with both effectiveness and robustness in the outlier detection
task.
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