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Motivation – Outlier detection

• Outlier detection or anomaly detection task is an essential and everlasting 
problem which have been widely researched across different application 
domains. 
• In recent years, the development of machine learning and representation 

learning leads to a surge of interest in the outlier detection field.
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Motivation - HDC

• Meanwhile, as an emerging machine learning method and a 
promising computing paradigm, Hyperdimensional computing (HDC) 
has become noticeable according to its smaller model size, less 
computational cost and acceptable accuracy compared with deep 
neural networks (DNNs). 
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HDC Background - Preliminary

• In HDC domain, hyper-vectors (HVs) are the general computing 
symbols.

• In general, HVs have bipolar elements in {-1, 1} and dimension D = 
10000, and arbitrary two random generated HVs are close to 
orthogonal.
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HDC Background - Operations

• HDC utilizes three critical operations for representing and integrating 
information, named bundling, binding and perturbation.

• In the meantime, HDC measures the distance between HVs for 
revealing the correlation based on distance metric 𝛅. To be specific, 
here we use cosine distance as an example:
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HDC Background – Model Implementation

• Three main processes are required to establish a general HDC model, 
named the encoding, the training, and the inference process.
• A general pipeline of a HDC model shows as following:
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HDC-based Outlier Detection

• Targeting at the outlier detection task, we develop and propose two 
HDC based approaches for outlier detection, which are named HDAD 
and ODHD respectively. 
• To be specific, HDAD [1] detects anomalies based on reconstruction 

errors, while ODHD [2] utilizes a one-class classification strategy to
filter out outliers.
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HDAD - Methodology

• HDAD contains three key phases: 
1) Pattern encoding, where we encode training samples into HVs for the 

pattern learning purpose;
2) Pattern decoding, where we decode the HVs and reconstruct them to the 

original samples; 
3) Reconstruction error check, where we check the reconstruction error 

between original and reconstructed sample.
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HDAD – Methodology

• For HDAD training, we use a set of random generated base HVs (item memory) to encode all the 
training samples into HVs and aggregate them to one reference HV: RV. This RV represents all the 
normal samples (like normal pattern of data samples) in the training set.
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• For HDAD inference, we first encode the query sample T into HV TV and bundle it with RV as TV’, 
where TV’ = (TV + RV). And we decode sample T’ from this TV’ and we

𝑇% = {TV% ∗
𝑏&
𝐷
, TV′ ∗ 𝑏'/𝐷,… , TV′ ∗ 𝑏(/𝐷}

• For the purpose of anomaly detection, HDAD computes the reconstruction error between the 
original data sample and reconstructed data and utilizes a predefined threshold to filter out the 
anomalies.



HDAD - Experiment Result

• For the metrics of reconstruction error, we use MSE (mean squared error), MAE (mean absolute 
error) between the T and T’ and the SIM (cosine similarity) between the HVs encoded T and T’ . 

• We evaluate the performance of HDAD through an autonomous driving dataset from the AEGIS 
Project [1], which contains variant continuous sensor readings during the driving trip. 

MSE MAE SIM

[1] Kaiser, Christian, Alexander Stocker, and Andreas Festl. "Automotive CAN bus data: An example dataset from the 
AEGIS Big Data Project." Zenodo (2019).
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ODHD - Methodology

• ODHD based on a semi-supervised learning approach, which first encodes 
all the training samples into HVs and establishes a one-class HV only using 
samples from the positive class. This one-class HV represents the 
abstracted pattern of the positive class samples.



ODHD - Methodology

• Then ODHD measures the similarity between all the unlabeled encoded 
HVs in the inference set with the one-class HV, if the similarity lower than a 
predefined threshold, the sample is detected as an outlier.



ODHD - Experiment Setup

• We compare the performance of ODHD with other widely employed 
machine learning algorithms including one-class SVM (OCSVM), 
isolation forest and auto-encoder across 6 real datasets under the 
accuracy, average precision, f1-score and ROC-AUC metrics. 
• According to our experimental result, ODHD can outperform all the 

baseline methods on every dataset for every metric.
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Future work & Conclusions

• Outlier detection aims to detect abnormal values that deviate from 
other observations in a dataset, or an observation that diverges from 
an overall pattern on a sample. 
• Based on the proposed HDC based outlier detection method, the 

promising results we showed open a new viable alternative to 
traditional learning algorithms for outlier detection. 
• Our future work will consider the implementation of HDC in not only 

accuracy but also reliability perspectives, which will lead to a HDC 
model with both effectiveness and robustness in the outlier detection 
task.
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Thank you!
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