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Executive Summary

* Neuromorphic hardware can reduce the energy consumption of machine learning
o An attractive solution for embedded/edge devices where power is limited

* On-chip learning or online learning is a step-forward in the development of
neuromorphic hardware

o Enables a system to learn from a constant stream of data

« ECHELON: A tile-based neuromorphic hardware with on-chip learning capabilities

o Each tile consists of
= Neural Processing Units (NPUs)
= On-chip Learning Units (OLUs)
= Special Function Units (SFUs)
o Tiles interconnected using Network-on-Chip (NoC)

. Co-dDelsign: Develop hardware and software architecture for a given machine learning
mode

e Evaluation: FPGA based implementation and co-design evaluation using 8 machine
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pre-synaptic

Introduction (I): Neuromorphic Computing

* Powerful computation capability compared to ANN

o Spatiotemporal information encoding

* Dynamics of an SNN is complicated compared to ANNs
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Introduction (I): Neuromorphic Computing

* Spiking Neurons
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Introduction (I): Neuromorphic Computing

* SNN vs. ANN for Convolutional Neural Networks (CNNs)

o Communication between layer facilitated using spikes (compared to tensors in ANNs)
o Computational units are (leaky) integrate and fire (LIF) neurons (compared to sigmoid activations in
ANNs)
* Many of recent works focuses on SNN inference
o Train SNN
o Deploy trained synaptic weights to a neuromorphic hardware such as DYNAPs, Tianji, TrueNorth, etc.
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Introduction (I): Neuromorphic Computing

* Neuromorphic platform
o Many-core hardware

o Cores interconnected using a shared interconnect

* Each neuromorphic core
o Neuron circuitry
o Synapse circuitry

o Interface to communicate spikes on the shared interconnect
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Introduction (II): On-chip Learning

e STDP: On-chip Learning
o Spike timing dependent plasticity (STDP)
o A form of Hebbian Learning

* STDP Operation

o Long-term Potentiation (LTP)

» |ncrease of synaptic weight when a pre-synaptic spike arrives before a post-synaptic spike
o Long-term Depression (LTD)

= Decrease of synaptic weight when a pre-synaptic spike arrives after a post-synaptic spike
o Use a spike window to evaluate LTP or LTD
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Introduction (II): On-chip Learning

e STDP Dynamics: Exponential STDP Model

o Calculate time delta between pre and post spike
At = Ipost — Ipre

o Evaluate weight increment and decrement
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o Apply the weight change

Whew = Wora + f+ a(Awy + Aw_)
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Introduction (II): On-chip Learning

* On-chip Learning hardware

o ROLLS
= Short-term plasticity (STP)
= Long-term plasticity (LTP)
o Loihi
= STDP

o ROLLS cannot support large models while Loihi cannot support arbitrary model architectures

o Our Objective: Design a many-core neuromorphic hardware supporting STDP-enabled convolutional
neural networks (CNNs)
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Introduction (III): STDP-Enabled CNNs

* Convolutional Neural Network (CNN)
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Introduction (III): STDP-Enabled CNNs

* Irregular CNN Architectures
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Introduction (III): STDP-Enabled CNNs

e STDP-Enabled CNNs

o Learning in the convolution layers

o When a new image is presented, neurons of a convolutional layer compete and one which fire earlier
triggers STDP and learn the input pattern

Kheradpisheh et al., STDP-based spiking deep convolutional neural networks for object recognition,
Neural Networks 2017
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ECHELON: Tiled Hardware Supporting STDP-Enabled CNN

* ECHELON

o Tiled neuromorphic hardware

o Tiles interconnected using Network-on-Chip (NoC)

* ECHELON Tile

o Neural Processing Unit (NPU)
= Convolution and dense layers
o Special Function Unit (SFU)

» Pooling, concatenation, batch normalization

o On-chip Learning Unit (OLU)
= STDP learning

Tile
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ECHELON Tile Architecture

e STDP Learning is sensitive to spike timing
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ECHELON Tile Architecture

* Use segmented bus for interconnecting tile components
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Intra-Tile Interconnect

* Segmented Bus
o A bus lane is partitioned to allow concurrent connections
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Intra-Tile Interconnect

* Segmentation Switches
o Three-way switch

Direction C

Direction A i Direction B

Control
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Intra-Tile Interconnect

* Parallel Segmented Bus

coordination
and control
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ECHELON Tile Component: NPU

* uBrains design
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Varshika et al. “Design of Many-Core Big Little uBrains for Energy-Efficient Embedded Neuromorphic Computing”, DATE 2022

<21

S Distributed,
Intelligent, and
Scalable COmputing
aaD]]S]@ a



ECHELON Tile Component: NPU

* uBrains design
o 3 layers of neurons with full connectivity between layers and recurrent connections within layer
o Layer 1: 256 neurons ]
o Layer 2: 64 neurons

o Layer 3: 16 neurons —
AER in

AER out

Design specification

336 neurons layer 2 (12) layer 1 (11) layer O (10)
O (256) (64) (16)

o 38K synaptic connections (feedforward and recurrent)
o 40nm CMOS technology (2.82mm2 including pads)
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ECHELON Tile Component: NPU

J. Stujit et al. “uBrain: An event-driven and fully synthesizable

* Handwritten Digit Recognition architecture for spiking neural networks”, Frontiers in

Neuroscience 2021

pBrain Frenkel et al. Park et al. Cho et al. Chen et al. Moradi etal. Davies et al.
(2018) (2019) (2019) (2018) (2017) (2018)
MNIST accuracy (%) 91.7 (16 x 16) 91.4 (16 x 16) 97.83 91.6 (16 x 16) 97.9 - 96.4
Neuron/Synapses used for MNIST 7417k 10/2.5k 410/199k 2048/149k 1546/666k - 10/7840
VDD (V) 1.1 0.55-1.1 0.8 0.7 0.525-0.9 1.3-1.8 0.5-1.25
Energy/Prediction (nJ) 308 15 @ 75 MHz, 236.5 - 1700 - 85,52*
54 @ 1.3 MHz
Technology (nm) 40 28 FDSOI 65 40 10 FinFET 180 14 FinFET
Physical neurons cores/total neurons 336/336 1/256 410/410 2048/2048 4096/4096 1024/1024 128/131072
Power 73 pW 35-447 uW 23.6 mw 46.6 MW (2.3 94 mw 400 pW @ 10 110mw
uW * 4096 Hz average
neurons) firing rate
Area (mm?) 2.68 (1.42 core only) 0.086* 10.08 2.56 1.7 43.79 60
Synaptic resolution # bits 4 4 =10 2/3 7 2 (analog) 1-9
Clock frequency Event-driven 75 MHz 20 MHz Global Async. 105 MHz Event-driven Event-driven
Locally sync
110 MHz
(neurons)
Fully synthesizable Yes Yes Yes Yes Yes No (Analog Yes
Mixed Signal
design)
Supported algorithm SNN feed-forward, recurrent ~ SNN online SNN on-line SNN SNN/BNN SNN SNN, online-
learning, learning feed-forward, online- feed-forward, learning,
feed-forward recurrent learning, feed recurrent feed-forward,
forward, recurrent
recurrent
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Intelligent, and
<23 Scalable COmputing

DII]S]@



ECHELON Tile Component: NPU

e uBrain Scaling

uBrain Normalized
Configuration Static Power Area
256-64-16 1X 1X
1024-256-16 9.9X 7.8X
4096-1024-16 280.2X 222.1X
16384-4096-16 4943.0X 3920.1X
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ECHELON Tile Component: NPU

 Digital design
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ECHELON Tile Component: SFU

 Carefully configuring the layers and synaptic connections, uBrain can be used for
implementing pooling, concatenation, and other custom operations
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ECHELON Tile Component: OLU

e STDP Unit and interfacing with weight memory

Time "\

Counter

pre-set
I I
S P Time register]
pre-spike : : |
—— |  spike register
L 1 1

pre-time

post-time post-set
T T T
Time register (—
1 1 L

. — post-spike
time-diff Slplke register (_

from

Decoder l

old-wt neuron addr

index
AW i data
weight >

Weight
Memory

new-weight

Distributed,

V4 Intelligent, and
| Scalable COmputing
) @880 La

<27



ECHELON Tile Component: OLU

® Ti m i N g C h ara Cte ri St i CS operation-level data-level
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ECHELON System Software

* SNN partitioning to sub-networks
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ECHELON System Software

* Clustered SNN graph

o Nodes (called actors) are clusters

o A single cluster maps on to a crossbar of the hardware in its
entirety

o Edges represent inter-cluster communications

o Number (called token) on an edge represent spike rate between
clusters

o Initial tokens represent spikes from previous iterations of the
application

initial
tokens
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ECHELON System Software

* Tile-allocation: A greedy strategy to allocate actors to

tiles
o Load-balancing to distribute actors evenly on tiles

* Actor-ordering: Time-division multiple access (TDMA)
scheme to allocate time slices to actors mapped to the

same tile
o Apply Max-Plus Algebra formulation on resource-aware SDFG

* Actor execution: Self-timed execution to execute actors
o Exact firing times of actors from design-time analysis are
discarded retaining only the order
= Static-order schedule
o At run-time, ready actors are fired using the static-order schedule
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Co-Design Using ECHELON

e Start with initial configuration

* Add tile components
o Explore cost-tradeoff

 Add more tiles
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e Evaluation

* Conclusion
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Evaluation: Area and Power

* Xilinx Virtex-7 FPGA
» 8-bit weight precision
* 10MHz frequency

128 x 128 256 X 64 X 16
neurons synapses learn.units LUTs |neurons synapses learn. units LUTs
NPU/SFU 256 16,384 - 17,750 336 17,408 - 23987 Area
OLU - - 128 14,075 - - 320 18,970
2x1 4x2x2
Static Total | Static Total Power

NPU/SFU 0.242W 0.253W | 0.242W 0.252W
NPU/SFU + OLU | 0.242W 0.253W | 0.242W 0.351W
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Evaluation: Co-Design

e Evaluated Models

Models Params./Acc.| Models Params./Acc.| Models Params./Acc.

Models Params./Acc.

DenseNet 6.9M, 75.0% |EdgeNext 1.3M, 79.4% | EffNetb0 3.9M, 77.1%

ResNet 23.5M, 76.0% |Inception 21.8M, 77.9% |SqueezeNet 0.7M, 57.5%

EffNetV2 20.1M, 78.7%

MobileNet 3.2M, 70.4%

* Co-design Results
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* Conclusion
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Conclusions

* Neuromorphic hardware can reduce the energy consumption of machine learning
o An attractive solution for embedded/edge devices where power is limited

* On-chip learning or online learning is a step-forward in the development of
neuromorphic hardware
o Enables a system to learn from a constant stream of data

« ECHELON: A tile-based neuromorphic hardware with on-chip learning capabilities

o Each tile consists of
= Neural Processing Units (NPUs)
= On-chip Learning Units (OLUs)
= Special Function Units (SFUs)
o Tiles interconnected using Network-on-Chip (NoC)

. Co-dDelsign: Develop hardware and software architecture for a given machine learning
mode

e Evaluation: FPGA based implementation and co-design evaluation using 8 machine
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