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Qubits
 Qubits: building block of quantum computers
 Qubits can be at 0 or 1 or both simultaneously (i.e., superposition)
 Mathematically, single qubit can be described by a two-dimensional 

column vector 
𝛼𝛼
𝛽𝛽 .

 |𝛼𝛼|2 and |𝛽𝛽|2 represents the probability of getting a 0 and 1 
(hence, |𝛼𝛼|2 + |𝛽𝛽|2 = 1)
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Quantum Gates
 Quantum gates: realized with (control) pulses (RF pulse, Laser pulse 

etc.)
 Realized gates (so far): 1-qubit and 2-qubit
 Quantum gates are mathematically represented using matrices.

 Example; NOT (X) gate → 0 1
1 0 & Hadamard (H) gate → 1

2
1 1
1 −1

5

0

1

X 0 = 0 1
1 0

1
0 = 0

1 = 10

1

𝑁𝑁𝑁𝑁𝑁𝑁 (𝑋𝑋)

Physical representation

0 1

Mathematical 
representation

Circuit representation

X M



Quantum Noise
 Quantum noises/errors impedes quantum computers 

reliability/performance;
 Coherence errors: qubits retain its state for a short period 

of time
 Gate errors: gate operations are erroneous
 Measurement errors: measured value are often 

erroneous
 Crosstalk errors: Parallel execution of multiple gates on 

different qubits hinders each other's performance
 High gate count → more gate error
 Deeper circuit → large execution time → more decoherence 

error
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Quantum Neural Network
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Classical 
computer

Quantum
computer

QNN with new
set of parameters

Measured outputs

A classical optimizer 
(gradient-based/gradient-
free) updates the trainable  
parameters (𝜃𝜃1 − 𝜃𝜃16) to 

generate a desired output 
distribution.



Quantum Neural Network
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Angle Encoding

Amplitude Encoding

Basis Encoding

NEQR

…

Pauli X Basis

Pauli Y Basis

Pauli Z Basis

…

Encoding Techniques Example of few 4-qubit PQCs [1]

Measurement

Sukin Sim et al. "Expressibility and entangling capability of parameterized quantum circuits for 
hybrid quantum‐classical algorithms." Advanced Quantum Technologies 2, no. 12 (2019)
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Quantum Circuit Compilation
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CX and CZ gate 
decomposition on 
Rigetti and IBM 

devices, 
respectively.

Different quantum 
hardware can 

have different set 
of basis gates.



Circuit Depth (after compilation)

12

Sukin Sim et al. "Expressibility and entangling capability of parameterized quantum circuits for 
hybrid quantum‐classical algorithms." Advanced Quantum Technologies 2, no. 12 (2019)



Circuit Gate-count (after compilation)
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Sukin Sim et al. "Expressibility and entangling capability of parameterized quantum circuits for 
hybrid quantum‐classical algorithms." Advanced Quantum Technologies 2, no. 12 (2019)
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QNN adaptability challenges?

 Noise adaptability
 Near-term quantum devices have a limited number of qubits and 

suffer from various errors.
 Noises build up quickly as a circuit is scaled up.
 Thus, a deep QNN may perform poorly on an actual hardware 

compared to a shallower network.
 Hardware adaptability

 Different quantum hardware may exhibit varying degrees of noise 
and may support a completely different set of basis gates.

 As a result, porting a QNN designed for one piece of hardware to 
another is problematic.
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Overview
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In traditional knowledge distillation, a pre-trained large DNN is 
used as a guide to train a smaller DNN without sacrificing much 
performance.

We avoid this costly training technique by employing 
approximate synthesis to mimic the pre-trained QNN behavior.



Approximate Synthesis

 An 𝑛𝑛-qubit quantum circuit can be represented by a unitary 
matrix 𝑈𝑈 of size 2𝑛𝑛 × 2𝑛𝑛.

 Idea is to find a new circuit with a different set of gates with 
unitary matrix representation (𝑉𝑉). 

 A synthesis algorithm tries to minimize the distance between 
𝑈𝑈 and 𝑉𝑉 (||𝑈𝑈−𝑉𝑉||) using some metric.

 We use the following metric as cost function:

𝑑𝑑 = 1 −
𝑁𝑁𝑇𝑇(𝑈𝑈−1𝑉𝑉)

dim(𝑈𝑈)
 Dual annealing optimizer is used to minimize the distance 𝑑𝑑.
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Approximate Synthesis
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Circuit 6 [1]

Circuit 2 [1]

[1] Sukin Sim et al. "Expressibility and entangling capability of parameterized quantum circuits for 
hybrid quantum‐classical algorithms." Advanced Quantum Technologies 2, no. 12 (2019)
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Results
 Datasets: 6 (3-class Classification) 

 Created from MNIST and Fashion-MNIST
 Latent dimension: 8 (reduced using convolutional 

autoencoder)
 Qubits in QNN: 4
 Approximated 2-layer C6 PQC’s with 6-layer C2 and C9 

PQC’s (Noiseless simulations).
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Results

23

Also approximated 7-layer C15 PQC with 2 & 4-layer of 
the same PQC. (Noisy simulations).
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Conclusion

 We introduced knowledge distillation in QNNs using 
approximate synthesis to compress a pre-trained QNN.

 Approximation error can degrade the performance of QNNs 
which can be compensated by training for a few epochs.

 Conducted comprehensive numerical analysis on multiple 
datasets with and without noise to evaluate the efficacy of 
the proposed method.

 Through empirical analysis, we demonstrate ≈71.4% 
reduction in circuit layers, and still achieve ≈16.2% better 
accuracy under noise.
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