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• Graphs are widely-used in many real-world tasks.
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• Graph Neural Network (GNN) is a powerful tool to process graph data1.
• It consists of feature aggregation (FA) and feature transformation (FT).

GNN：
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Models Cora Citeseer Pubmed

SemiEmb 59.0% 59.6% 71.1%

LP 68.0% 45.3% 63.0%

Deep Walk 67.2% 43.2% 65.3%

ICA 75.1% 69.1% 73.9%

Planetoid 75.7% 64.7% 77.2%

GCN 81.5% 70.3% 79.0%
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[1] Kipf, Thomas and Max Welling. “Semi-Supervised Classification with Graph Convolutional Networks.” ArXiv abs/1609.02907 (2016): n. pag.
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• Graph Attention Networks (GAT) introduce attention mechanism to achieve
higher accuracy1

GAT:
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Models Cora Citeseer Pubmed

MLP 55.1% 46.5% 71.4%

Chebyshev 81.2% 69.8% 74.4%

GCN 81.5% 70.3% 79.0%

MoNet 81.7±0.5% — 78.8±0.3%

GCN-64 81.4%±0.5% 70.9±0.5% 79.0±0.3%

GAT 83.0±0.7% 72.5±0.7% 79.0±0.3%

𝜶𝟒𝟔

[1] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio’, P., & Bengio, Y. (2018). Graph Attention Networks. ArXiv, abs/1710.10903.
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• Existing GNN accelerators123 focus on GCN, and can not support GAT efficiently.
• Attention needs new operators: “softmax” calculation and “writing edge

data” dataflow do not appear in other GNNs.
• New attention operators break the pipeline between FA and FT and leads to

inefficient memory access.

other GNN dataflow

ℎ! 𝑐𝑜𝑒𝑓𝑓 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ×𝑊" 𝜮

extra modules ?

[1] Kiningham, Kevin et al. “GRIP: A Graph Neural Network Accelerator Architecture.” ArXiv abs/2007.13828 (2020): n. pag.
[2] Yan, Mingyu et al. “HyGCN: A GCN Accelerator with Hybrid Architecture.” 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA): 15-29.
[3] Liang, Shengwen et al. “EnGN: A High-Throughput and Energy-Efficient Accelerator for Large Graph Neural Networks.” IEEE Transactions on Computers 70 (2019): 1511-1525.

GAT dataflow
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• GAT has more edge-related computation.
• Use software-hardware co-design to reduce workload?

GCN-64
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• GAT acceleration with software-hardware co-design

new operator

edge-related
workload

inefficient
memory access
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• Neighbors can be tailoring in GAT
• The sum of largest 10% attention coefficients a destination node accounts

for 80% of the total.
• Our empirical tailoring function.
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• Neighbors can be tailoring in GAT
• GAT layer with our runtime tailoring algorithm.

decide how many nodes to keep

tailoring small ones by sorting

only aggregate the remaining nodes
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• Overall Architecture
• dense engine has a systolic array to compute transformation
• aggregation engine is a 4-stage pipeline: decode, fetch, sort, aggregate
• a LRU cache can be configured for different feature lengths
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• Sorting Unit
• sort “e list” with a throughput of one element per cycle
• pipelined binary sorting
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(a) Insertion units compare with registers (b) Update left and right indices

(c) Inserts one node into queue (d) Pipeline steps, next cycle starts. 
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• Experiment Setup
• Datasets: CORA, CITESEER, PUBMED, ARXIV, REDDIT
• GAT Model: layer=2/3, hidden=8/64/256, head=2/3/8
• Hardware:

• Xilinx Alveo U200 FPGA
• 4096+2048+64=6208 DSPs. On-chip RAM consumption is 32.5MB, 8MB
used by attention coefficient chunks, 2MB used by ping-pong buffer in
dense computing kernel, 2.5MB used by ping-pong buffer in node engines,
and 20MB used as feature cache.

• CPU, GPU baselines:
• Framework: DGL
• CPU： two 16-core Intel Xeon Gold 6226R CPU
• GPU：Nvidia RTX 2080 GPU, RTX 3090, Tesla V100S with CUDA 11.6
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• End-to-end results:
• 3.8× speedup and 4.98× energy efficiency compared to GPU baseline
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• Tailoring algorithm evaluation
• up to 86% node aggregation workload can be tailored
• incurring only slight accuracy loss
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