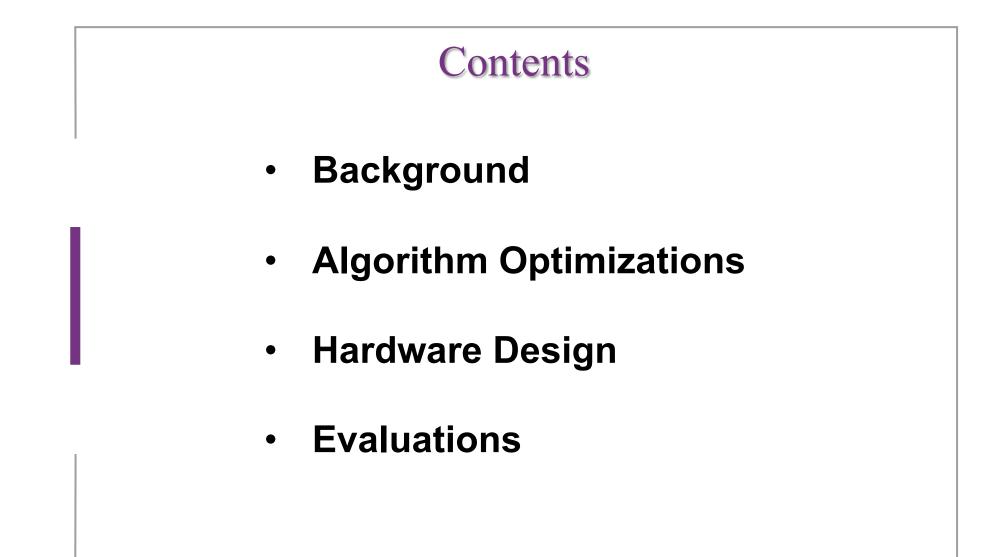
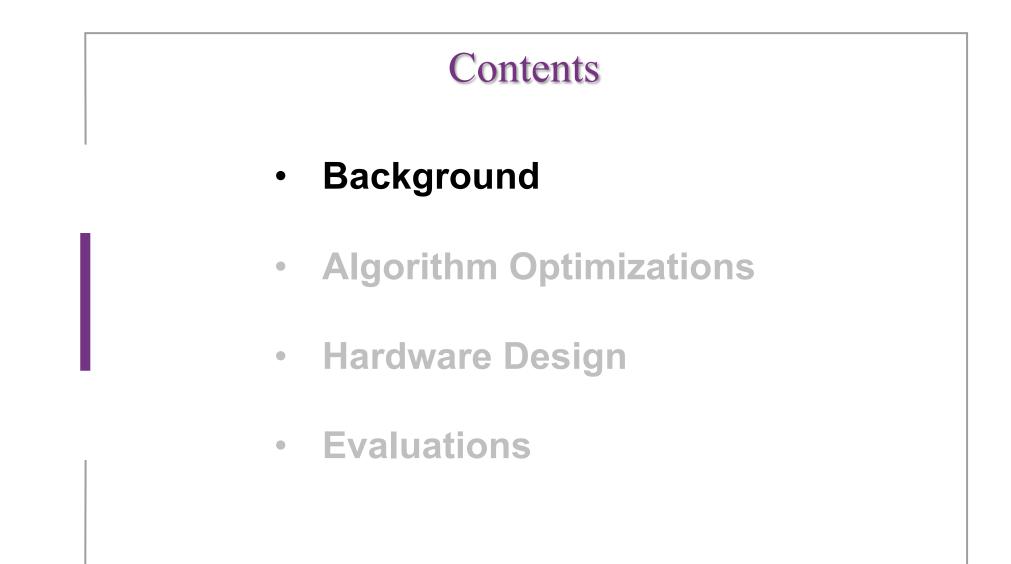


Department of Electronic Engineering, Tsinghua University

NTGAT: A Graph Attention Network Accelerator with Runtime Node Tailoring

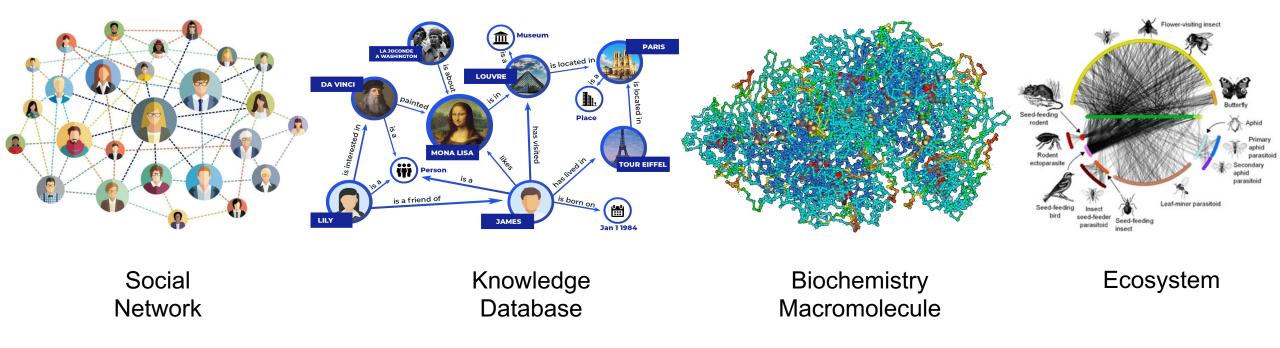
Wentao Hou*, <u>Kai Zhong*</u>, Shulin Zeng, Guohao Dai, Huazhong Yang, Yu Wang Department of Electronic Engineering, BNRist, Tsinghua University, Beijing, China





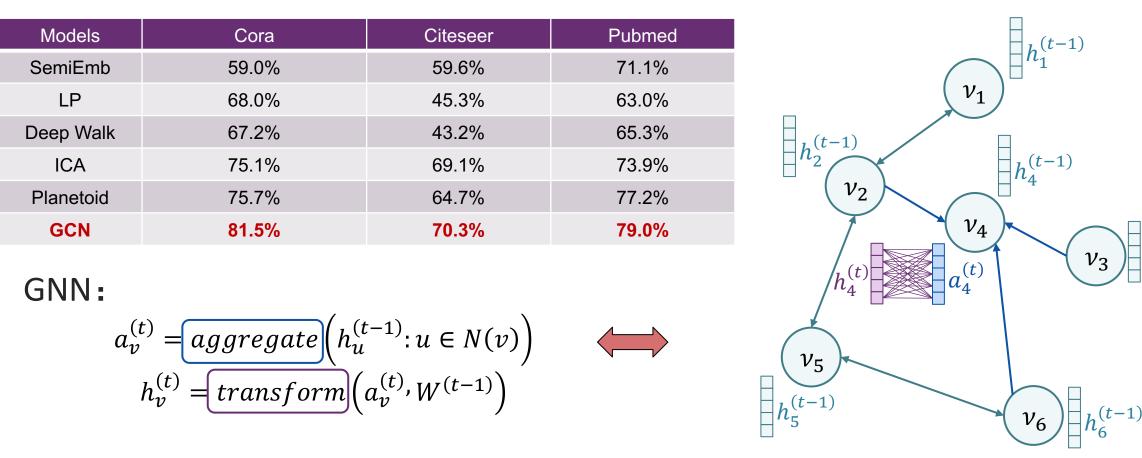
Background

• Graphs are widely-used in many real-world tasks.



Background

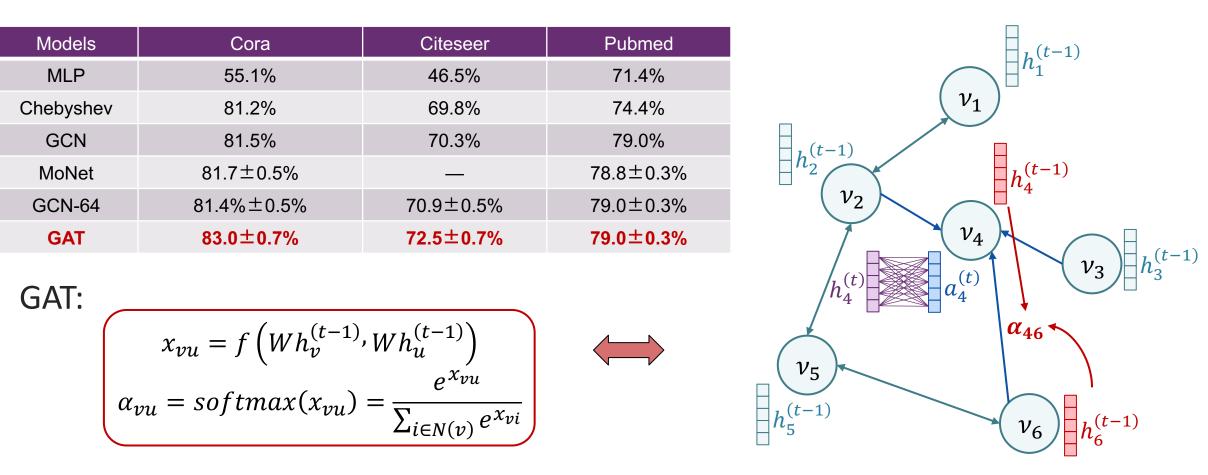
- Graph Neural Network (GNN) is a powerful tool to process graph data¹.
 - It consists of feature aggregation (FA) and feature transformation (FT).



[1] Kipf, Thomas and Max Welling. "Semi-Supervised Classification with Graph Convolutional Networks." ArXiv abs/1609.02907 (2016): n. pag.

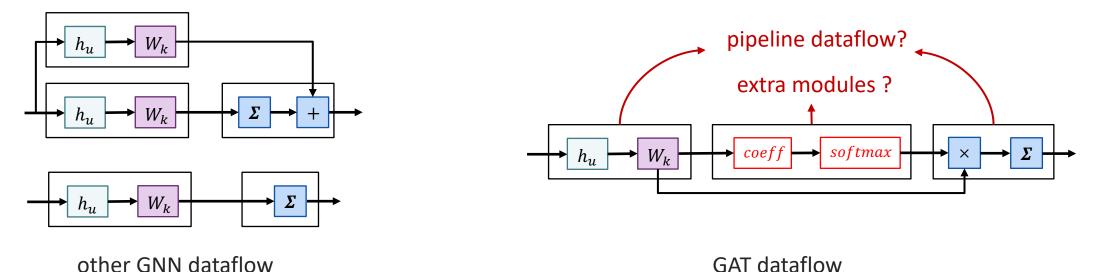
Background

 Graph Attention Networks (GAT) introduce attention mechanism to achieve higher accuracy¹



[1] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio', P., & Bengio, Y. (2018). Graph Attention Networks. ArXiv, abs/1710.10903.

- Existing GNN accelerators¹²³ focus on GCN, and can not support GAT efficiently.
 - Attention needs new operators: "softmax" calculation and "writing edge data" dataflow do not appear in other GNNs.
 - New attention operators break the pipeline between FA and FT and leads to inefficient memory access.



[1] Kiningham, Kevin et al. "GRIP: A Graph Neural Network Accelerator Architecture." ArXiv abs/2007.13828 (2020): n. pag.

[2] Yan, Mingyu et al. "HyGCN: A GCN Accelerator with Hybrid Architecture." 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA): 15-29.
[3] Liang, Shengwen et al. "EnGN: A High-Throughput and Energy-Efficient Accelerator for Large Graph Neural Networks." IEEE Transactions on Computers 70 (2019): 1511-1525.

- GAT has more edge-related computation.
 - Use software-hardware co-design to reduce workload?

GCN-64

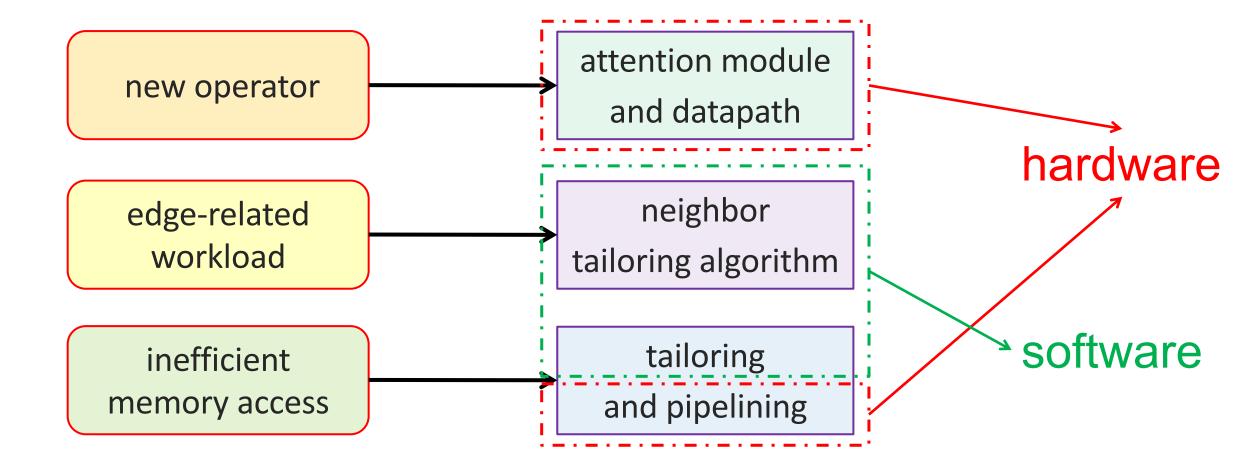
$$a_{v}^{(t)} = aggregate\left(h_{u}^{(t-1)}: u \in N(v)\right) \qquad Sumering CAT-8 \times 8$$

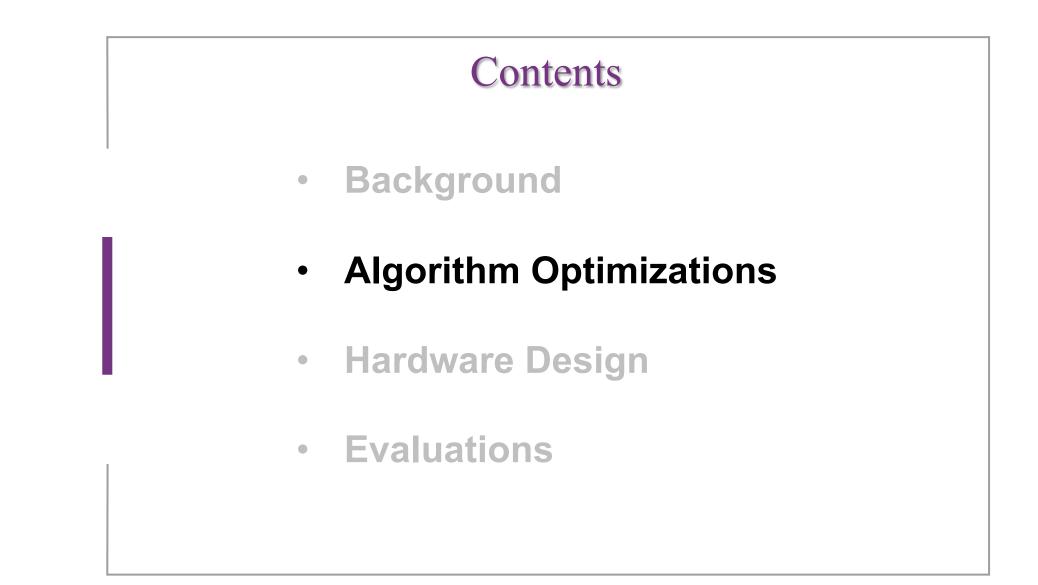
$$x_{vu} = f\left(Wh_{v}^{(t-1)}, Wh_{u}^{(t-1)}\right)$$

$$h_{v}^{(t)} = transform\left(a_{v}^{(t)}, W^{(t-1)}\right) \qquad \alpha_{vu} = softmax(x_{vu}) = \frac{e^{x_{vu}}}{\sum_{i \in N(v)} e^{x_{vi}}}$$

agg	trasf	agg	trasf	Coeff	Softmax
64×2 <i>e</i>	$64^2 \times n$	64×2 <i>e</i>	$64^2 \times n$	8×2 <i>e</i>	8×2 <i>e</i>

• GAT acceleration with software-hardware co-design





Algorithm Optimizations

- Neighbors can be tailoring in GAT
 - The sum of largest 10% attention coefficients a destination node accounts for 80% of the total.
 - Our empirical tailoring function.

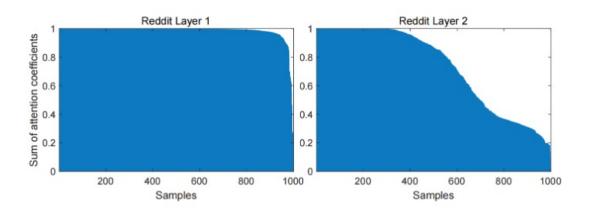
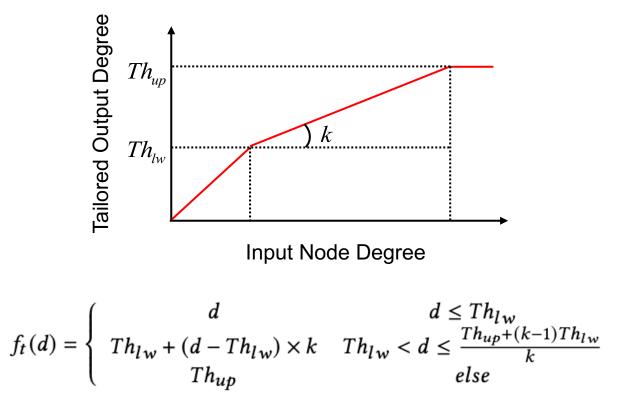
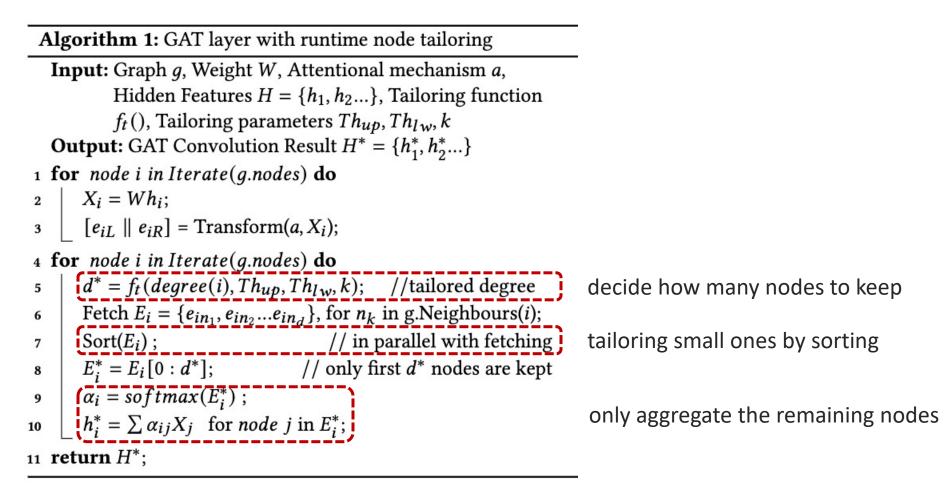
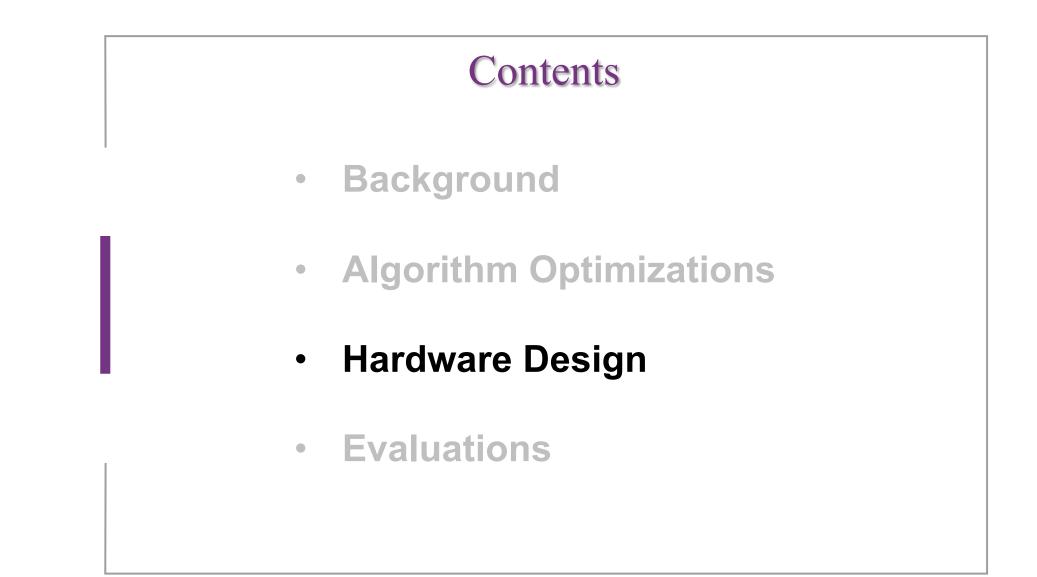


Figure 2: Sampling results of Reddit dataset in descending order. The vertical coordinates are the sum of largest 10% attention coefficients of each sampled node.

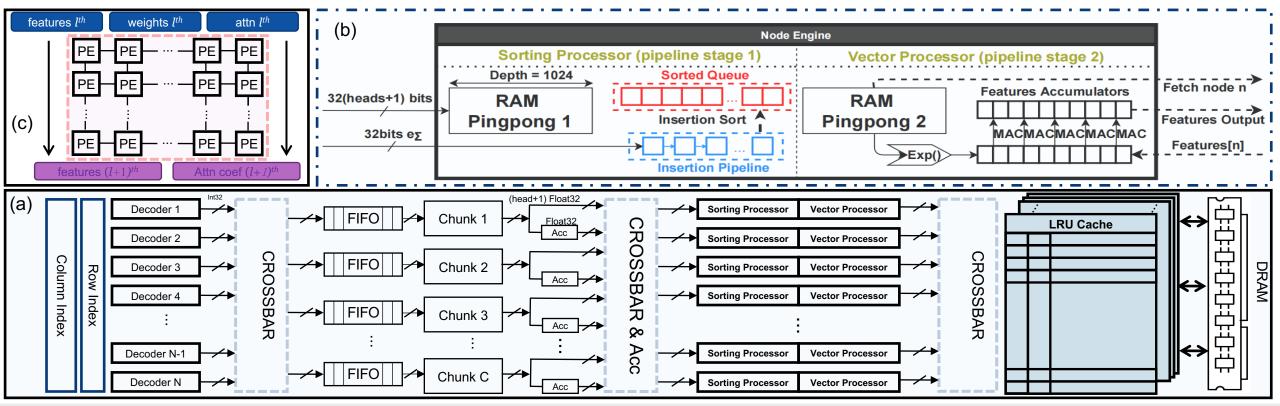


- Neighbors can be tailoring in GAT
 - GAT layer with our runtime tailoring algorithm.



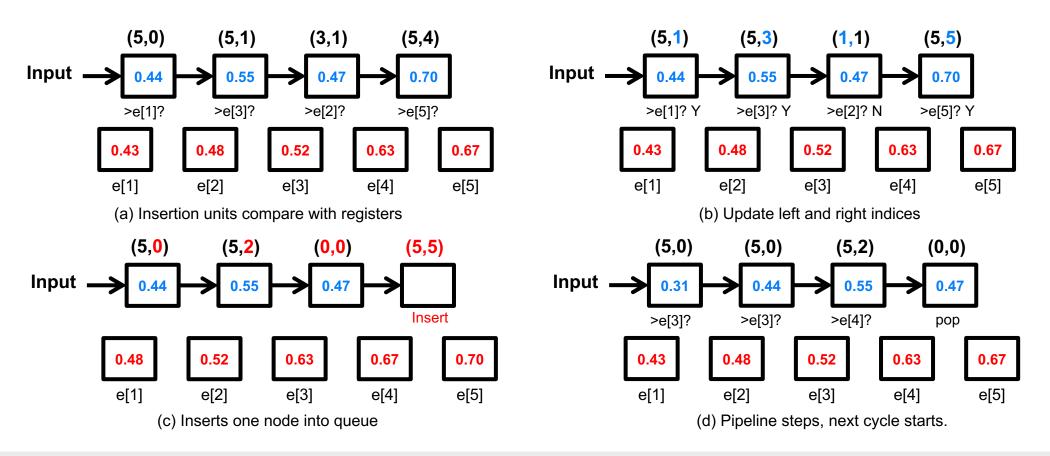


- Overall Architecture
 - dense engine has a systolic array to compute transformation
 - aggregation engine is a 4-stage pipeline: decode, fetch, sort, aggregate
 - a LRU cache can be configured for different feature lengths

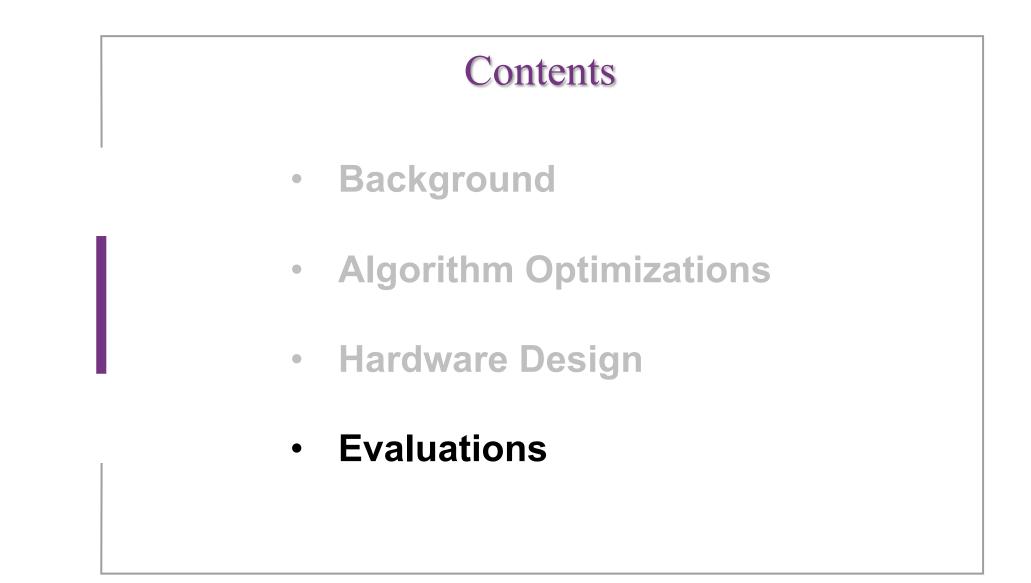


Hardware Design

- Sorting Unit
 - sort "e list" with a throughput of one element per cycle
 - pipelined binary sorting



16



- Experiment Setup
 - Datasets: CORA, CITESEER, PUBMED, ARXIV, REDDIT
 - GAT Model: layer=2/3, hidden=8/64/256, head=2/3/8
 - Hardware:
 - Xilinx Alveo U200 FPGA
 - 4096+2048+64=6208 DSPs. On-chip RAM consumption is 32.5MB, 8MB used by attention coefficient chunks, 2MB used by ping-pong buffer in dense computing kernel, 2.5MB used by ping-pong buffer in node engines, and 20MB used as feature cache.
 - CPU, GPU baselines:
 - Framework: DGL
 - CPU: two 16-core Intel Xeon Gold 6226R CPU
 - GPU: Nvidia RTX 2080 GPU, RTX 3090, Tesla V100S with CUDA 11.6

Evaluations

• End-to-end results:

• <u> $3.8 \times$ speedup and $4.98 \times$ energy efficiency</u> compared to GPU baseline

Table 5: Inference time of different platforms. NTGAT-B denotes hardware baseline without algorithm. NTGAT-T denotes NTGAT plus tailoring. NTGAT-S denotes NTGAT plus tailoring after scaling resources.

Platform	CPU	RTX 2080	Tesla V100S	RTX 3090	NTGAT-B	NTGAT-T	NTGAT-S
Bandwidth	/	448 GB/s	1134 GB/s	936GB/s	77 GB/s	77 GB/s	308 GB/s
FP32 Operation	/	10.6 TFLOPS	15.7 TFLOPS	35.6 TFLOPS	1.8624 TFLOPS	1.8624 TFLOPS	12.3648 TFLOPS
Frequency	2.9 GHz	1.515 GHz	1.245 GHz	1.40 GHz	300 MHz	300 MHz	1.2 GHz
Cora	39.85 ms	2.123 ms	2.256 ms	2.580 ms	0.559 ms	0.559 ms	0.0885 ms
Citeseer	19.24 ms	2.115 ms	2.207 ms	2.516 ms	1.465 ms	1.465 ms	0.205 ms
Pubmed	19.92 ms	2.162 ms	2.230 ms	2.976 ms	2.097 ms	2.096 ms	0.391 ms
ogbn-arxiv	1.452 s	0.200 s	0.136 s	0.111 s	0.262 s	0.257 s	0.0406 s
Reddit	0.257 s	OoM	0.198 s	0.150 s	0.424 s	0.176 s	0.0423 s

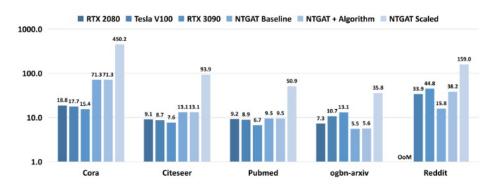


Figure 6: Speedup comparing to CPU baseline.

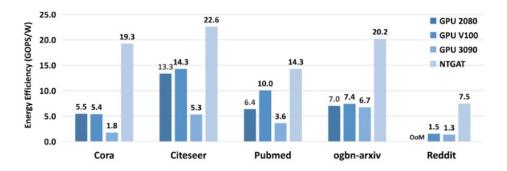


Figure 7: Energy efficiency of different platforms.

- Tailoring algorithm evaluation
 - up to 86% node aggregation workload can be tailored
 - incurring only slight accuracy loss

Table 2: Original accuracy, accuracy of node tailoring algorithm experiment, and accuracy loss

	Cora	Citeseer	Pubmed	ogbn-arxiv	Reddit
Original	81.90%	69.92%	77.24%	73.19%	94.45%
Ours	81.85%	69.86%	77.18%	73.00%	94.29%
Loss	-0.32%	-0.06%	-0.06%	-0.19%	-0.15%

Table 3: Nodes tailored. ogbn-arxiv includes two layers.

	Cora	Citeseer	Pubmed	ogbn-arxiv	Reddit
Total	13264	12555	108368	2484941	114848857
Tailored	536	1949	3973	370120/232418	<u>99320583</u>
(%)	4.04	15.52	3.67	14.89/9.35	86.45

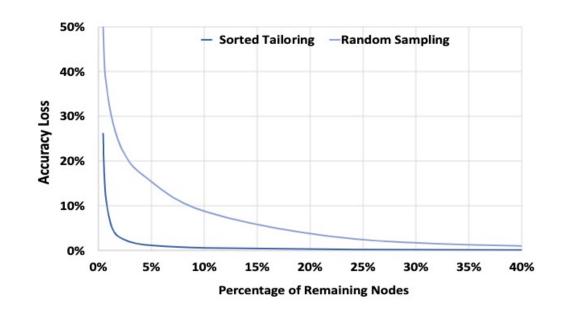


Figure 5: The accuracy loss when using sorted node tailoring or random neighbor sampling during inference.

Thanks!

Kai Zhong

zhongk19@mails.tsinghua.edu.cn