
Pai-Yu Tan and Cheng-Wen Wu

Department of Electrical Engineering, NTHU, Hsinchu, Taiwan

Presenter: Pai-Yu Tan

A Low-Bitwidth Integer-STBP Algorithm for Efficient
Training and Inference of Spiking Neural Network

Outline

• Introduction & Motivation

• SNN & STBP algorithm

• Proposed Low-Bitwidth Integer-STBP Algorithm

• Experimental Results

• Conclusion and Future Work

2023/4/23 2

Introduction & Motivation

• Spiking neural network (SNN) enables energy-efficient neuromorphic
hardware.

• Inference-only devices cannot adapt to diverse environment.

− Need to train on end-point devices with local dataset.

• Training requires high-performance computing power.

− Not suitable for edge devices with constrained power budgets.

• A low-bitwidth Integer-STBP algorithm is proposed.

− Training with only integer operations.

− Adjustable bitwidth settings for cost-performance trade-off.

2023/4/23 3

Train in cloud:

• Privacy

• Adaptability

Train on edge:

• Privacy

• Adaptability

• Power

Integer-STBP

• Integer-only

• Power

2023/4/23

Spiking Neural Network (SNN)

(spikes)

LIF

LIF

LIF

LIF

LIF

LIF

LIF

Input

Input

[SNN]

MAC𝑠𝑡,𝑙−1 𝑤𝑠
𝑡,𝑙

𝑤𝑙

𝐿𝐼𝐹

𝜃𝑙

𝑠𝑡,𝑙

𝑣𝑡,𝑙

𝑣𝑡−1,𝑙 𝑠𝑡−1,𝑙

[Data Flow] [Equations]

MAC

LIF

• 𝑤𝑠
𝑡,𝑙 = σ𝑖=1

𝑀𝑙−1
𝑠𝑖

𝑡,𝑙−1𝑤𝑖
𝑙

• 𝑣𝑡,𝑙 = 𝑣𝑡−1,𝑙 − 𝑠𝑡−1,𝑙𝜃𝑙 + 𝑤𝑠
𝑡,𝑙

• 𝑠𝑡,𝑙 = ቊ
1 , if 𝑣𝑡,𝑙 ≥ 𝜃𝑙

0 , otherwise

LIF

reset[LIF model]

w0

w1

w2

t

θ

vl

sl

sl-1

(weights

)

(spikes)

(membrane

potential)
(firing

threshold)

4

(leaky integrate-and-fire)

5

Spatio-Temporal Back-Propagation (STBP)

Forward

Backward

Update

Forward

Backward

Update

Forward

Backward

Update

iterations

6

Spatio-Temporal Back-Propagation (STBP)

l=0, t=0 l=1, t=0 l=2, t=0

l=0, t=1 l=1, t=1 l=2, t=1

l=0, t=2 l=1, t=2 l=2, t=2

spatial domain (l)

L
O

SS

L
ab

el
s

te
m

p
o
ra

l
d
o
m

a
in

 (
t)

Forward

Backward

Update

Forward

Backward

Update

Forward

Backward

Update

iterations

72023/4/23

Spatio-Temporal Back-Propagation (STBP)

l=0, t=0 l=1, t=0 l=2, t=0

l=0, t=1 l=1, t=1 l=2, t=1

l=0, t=2 l=1, t=2 l=2, t=2

spatial domain (l)

L
O

SS

L
ab

el
s

te
m

p
o
ra

l
d
o
m

a
in

 (
t)

Forward

Backward

Update

Forward

Backward

Update

Forward

Backward

Update

iterations

𝑀𝐴𝐶𝑠𝑡,𝑙−1 𝑤𝑠
𝑡,𝑙

𝑤𝑙

𝐿𝐼𝐹

𝜃𝑙

𝑠𝑡,𝑙

𝑣𝑡,𝑙

𝑣𝑡−1,𝑙 𝑠𝑡−1,𝑙

□: function

○: operand

𝑀𝐴𝐶′𝛿𝑡,𝑙 Δ𝑣𝑡,𝑙

Δ𝑤𝑡,𝑙

𝐿𝐼𝐹′

Δ𝜃𝑡,𝑙

𝛿𝑡,𝑙+1

𝑠𝑡−1,𝑙

𝑈𝑤 𝑈𝜃

Forward

Backward

Update

[Data Flow]

Δ𝑣𝑡+1,𝑙

High-Precision STBP Algorithm

• Operands are floating-point numbers.

• Functions require floating-point
operations.

• STBP requires high-precision
numbers and operations.

2023/4/23 8

𝑀𝐴𝐶𝑠𝑡,𝑙−1 𝑤𝑠
𝑡,𝑙

𝑤𝑙

𝐿𝐼𝐹

𝜃𝑙

𝑠𝑡,𝑙

𝑣𝑡,𝑙

𝑣𝑡−1,𝑙 𝑠𝑡−1,𝑙

□: function

○: operand

𝑀𝐴𝐶′𝛿𝑡,𝑙 Δ𝑣𝑡,𝑙

Δ𝑤𝑡,𝑙

𝐿𝐼𝐹′

Δ𝜃𝑡,𝑙

𝛿𝑡,𝑙+1

𝑠𝑡−1,𝑙

𝑈𝑤 𝑈𝜃

Forward

Backward

Update

[Data Flow]

Δ𝑣𝑡+1,𝑙

• An initialization method for integer weights (𝑤) and firing thresholds (𝜃)

• Forward, backward, and update computations with only integer operations

• Spike encoding and decoding schemes for effective integer training

• Loss function and gradient with only integer operations

Proposed Integer-STBP Algorithm

2023/4/23 9

All with only integer numbers and operations

𝑤 and 𝜃
initialization

Spike

encoding

Forward

computation

Spike

decoding

Loss

function and

gradient

Backward

computation

Update

computation

102023/4/23

Overview of Integer-Based Data Flow

• Operands are with different bitwidths.

• 𝑤 and 𝜃 are with two different bitwidths.

− High-bitwidth (𝑘Δ𝑤 , 𝑘Δ𝜃) for stable
training.

− Low-bitwidth (𝑘𝑤 , 𝑘𝜃) for efficient
computation.

• Functions are with integer operations.

− Addition, subtraction, multiplication, bit-
shift.

operand 𝑤 𝜃 𝑣 Δ𝑣 other

bitwidth 𝑘𝑤 𝑘Δ𝑤 𝑘𝜃 𝑘Δ𝜃 𝑘𝑣 𝑘Δ𝑣 𝑘
𝑀𝐴𝐶𝑠𝑡,𝑙−1 𝑤𝑠

𝑡,𝑙

𝑤𝑙

𝐿𝐼𝐹

𝜃𝑙

𝑠𝑡,𝑙

𝑣𝑡,𝑙

𝑣𝑡−1,𝑙 𝑠𝑡−1,𝑙

□: function

○: operand

[]: bitwidth

𝑀𝐴𝐶′𝛿𝑡,𝑙 Δ𝑣𝑡,𝑙

Δ𝑤𝑡,𝑙

𝐿𝐼𝐹′

Δ𝜃𝑡,𝑙

𝛿𝑡,𝑙+1

𝑠𝑡−1,𝑙

𝑈𝑤 𝑈𝜃

Forward

Backward

Update

𝑘𝑣

𝑘 11

𝑘Δ𝑤

𝑄𝑤 𝑄𝜃

𝑘𝑤

𝑘Δ𝜃

𝑘𝜃

𝑄𝑤 𝑄𝜃

𝑘 𝑘

𝑘 𝑘

𝑘Δ𝑣

Δ𝑣𝑡+1,𝑙

• 𝑄𝑤 and Q𝜃 convert low to high bitwidth
forms for 𝑤 and 𝜃

− Take left-most bits

• 𝑀𝐴𝐶 and 𝐿𝐼𝐹 compute with ෥𝑤 and ෨𝜃.

− ෥𝑤 and ෨𝜃 for efficient computation.

• 𝐿𝐼𝐹 ensures 𝑣 ∈ [−2𝑘𝑣−1 − 1, 2𝑘𝑣−1 − 1].

11

Integer-Based Forward Computation

𝑀𝐴𝐶

𝑘Δ𝑤

𝑠𝑡,𝑙−1 𝑤𝑠
𝑡,𝑙

𝑤𝑙

𝐿𝐼𝐹

𝜃𝑙

𝑠𝑡,𝑙

𝑣𝑡,𝑙

𝑣𝑡−1,𝑙 𝑠𝑡−1,𝑙

𝑘𝑣

𝑘 11

𝑄𝑤 𝑄𝜃

𝑘𝑤

𝑘Δ𝜃

𝑘𝜃

□: function

○: operand

[]: bitwidth

𝜽

High-bitwidth form Low-bitwidth form

𝒘 𝑘Δ𝑤 bits 𝑘𝑤 bits
𝑄𝑤

𝑘Δ𝜃 bits 𝑘𝜃 bits
𝑄𝜃

stable training efficient computation

෩𝜽

෥𝒘

122023/4/23

Integer-Based Backward Computation

• 𝑀𝐴𝐶′ and 𝐿𝐼𝐹′ compute with ෥𝑤 and ෨𝜃.

− ෥𝑤 and ෨𝜃 for efficient computation.

• A look-up table-based method
computes 𝛿𝑡,𝑙+1/ ෨𝜃𝑙 in 𝐿𝐼𝐹′ function.

− 𝑥 ÷ 𝑦 = 𝑥 ×
1

𝑦
= 𝑥 ×

2𝑘

𝑦
÷ 2𝑘

−
2𝑘

𝑦
by a look-up table, i.e., 𝐿𝑈𝑇 𝑦 =

2𝑘

𝑦
.

− ÷ 2𝑘 by the bit-shift operation, i.e., ≫ 𝑘.

− Division → LUT + multiply + bit-shift

𝑠𝑡,𝑙−1

𝑤𝑙 𝜃𝑙

𝑠𝑡,𝑙

𝑀𝐴𝐶′𝛿𝑡,𝑙 Δ𝑣𝑡,𝑙

Δ𝑤𝑡,𝑙

𝐿𝐼𝐹′

Δ𝜃𝑡,𝑙

𝛿𝑡,𝑙+1

𝑠𝑡−1,𝑙

11

𝑘𝑤

𝑘Δ𝑤

𝑘𝜃

𝑘Δ𝜃

𝑄𝑤 𝑄𝜃

𝑘 𝑘

𝑘 𝑘

𝑘Δ𝑣

Δ𝑣𝑡+1,𝑙

□: function

○: operand

[]: bitwidth

132023/4/23

Integer-Based Update Computation

• 𝑈𝑤 and 𝑈𝜃 compute with 𝑤 and 𝜃.

− High-bitwidth 𝑤 and 𝜃 for stable training.

• Learning rate is set to 2𝜂

− × 2𝜂 by bit-shift operation, i.e., ≪ 𝜂

• A value boundary (𝛼) limits the range of
Δ𝑤 and Δ𝜃 for each update.

− Low-bitwidth SNN is very sensitive to
the variations after updating 𝑤 and 𝜃.

𝑤𝑙 𝜃𝑙

Δ𝑤𝑡,𝑙 Δ𝜃𝑡,𝑙

𝑈𝑤 𝑈𝜃

𝑘 𝑘

□: function

○: operand

[]: bitwidth

𝑘Δ𝑤 𝑘Δ𝜃

Initialization Method for Integer w and θ

• Modify Xavier initialization method to get initial integer 𝑤

− Generate 𝑤 from the uniform distribution 𝑈 −𝐼, +𝐼 .

• A constant (𝛽) limits the range of 𝑈 −𝐼, +𝐼 , i.e., minimum 𝐼 = 𝛽 × 2𝑘Δ𝑤−𝑘𝑤.

− By setting 𝛽 > 1, the low-bitwidth form (෥𝑤) avoids being all-zero.

• When using minimum 𝐼, firing activity will be higher than expected.

− Scale up 𝜃 accordingly.

2023/4/23 14

Distribution of 𝑤

−1 +10

-1 0 +1

-1 0 +1

−1 +10

𝑄𝑤 function Distribution of ෥𝑤

Case 1:

𝐼 < 2𝑘Δ𝑤−𝑘𝑤

Case 2:

𝐼 > 2𝑘Δ𝑤−𝑘𝑤

→ be reduced

to all-zero.

→ Avoid by

enlarging 𝐼.

Overall Training Implementation

• Spike encoding: spike-rate encoding

• Spike decoding: last-τ-tick decoding

− Count the number of spikes in the last τ ticks

• Loss function: sum squared error (SSE)

− Only integer operations for forward and backward.

• Enlarge input loss gradient by a constant 𝛾

− To avoid gradient vanishing after 𝛿𝑙+1/ ෨𝜃𝑙.

• Optimizer: mini-batch gradient descent

− No momentum optimizer, dropout, L2 regularization.

2023/4/23 15

0 1 0 1 0 1

0 1 1 0 1 2

Last-τ-Tick Decoding

(τ=3)

(out spikes) (value)

102 0 1 0 1 0

154 0 1 1 0 1

Spike-Rate Encoding

(in spikes)(value)

Experimental Setup

• We use the network similar to that of the original STBP work.

− Average pooling layer is merged into the preceding layer by a stride of 2.

• Evaluate on CIFAR10 dataset (50,000 training data and 10,000 testing data)

• Hyper-parameter settings if not specify:

2023/4/23 16

Network Structure

in prev. work Encoding–96C3–256C3–AP2–384C3–AP2–384C3–256C3–1024FC–1020FC–Decoding

in this work Encoding–96C3–256C3S2–384C3S2–384C3–256C3–1024FC–1020FC–Decoding

batch size
total time

steps

initialization

constant (𝛽)

Last-τ-tick

decoding (𝜏)

𝜃 for

encoding

neurons

100 8 1.5 5 256

Evaluation of Bitwidths of 𝒌𝒘, 𝒌𝜽, 𝒌𝒗

• 𝑘𝑤, 𝑘𝜃, and 𝑘𝑣 can be
significantly reduced with
negligible accuracy degradation.

− 𝑘𝑤, 𝑘𝜃, 𝑘𝑣 = 2, 10, 8 bits.

− 𝑘Δ𝑤, 𝑘Δ𝜃, 𝑘Δ𝑣 ≥ 16 bits.

• Low-bitwidth firing threshold (𝜃)
cannot control the firing activity.

• Note: bitwidth setting should
follows 𝑘Δ𝑤 − 𝑘𝑤 = 𝑘Δ𝜃 − 𝑘𝜃

− Ensure Δ𝑤, Δ𝜃 affect equally to
𝑤, 𝜃

2023/4/23 17

𝒌𝒘, 𝒌𝜽, 𝒌𝒗 ↓↓↓
𝐄𝐫𝐫𝐨𝐫 ↑↑↑

𝒌𝒘 = 𝟐
𝒌𝒗 = 𝟖
𝒌𝜽 ↑
𝐄𝐫𝐫𝐨𝐫 ↓↓↓

𝒌𝒘, 𝒌𝜽, 𝒌𝒗 ↓↓↓
𝐄𝐫𝐫𝐨𝐫 ↑

13.43% 14.99%

Evaluation of Bitwidths of 𝒌𝚫𝒘, 𝒌𝚫𝜽, 𝒌𝚫𝒗

• If 𝑘Δ𝑣 is too small → gradient vanishing after 𝛿/ ෨𝜃

− Least 𝑘Δ𝑣 = 6 𝑏𝑖𝑡𝑠

• When 𝑘Δ𝑤 , 𝑘Δ𝜃 become close to 𝑘𝑤 , 𝑘𝜃 → 𝑤, 𝜃 update variations become large

− Least 𝑘Δ𝑤 = 7 𝑏𝑖𝑡𝑠, 𝑘Δ𝜃 = 13 𝑏𝑖𝑡𝑠 (𝑘Δ𝑤 − 𝑘𝑤 = 𝑘Δ𝜃 − 𝑘𝜃 = 5 𝑏𝑖𝑡𝑠)

• Limited precision acts as a type of regularization.

2023/4/23 18

𝒌𝒘 = 𝟐
𝒌𝜽 = 𝟖
𝒌𝒗 = 𝟖
𝒌𝚫𝒘 = 𝟏𝟔
𝒌𝚫𝜽 = 𝟐𝟐

𝒌𝒘 = 𝟐
𝒌𝜽 = 𝟖
𝒌𝒗 = 𝟖
𝒌𝚫𝒗 = 𝟖

fail fail

14.97% 16.16%

15.58% 18.75%

Better than

high-bitwidth

model (13.43%)

13.24%

Comparison to Previous STBP Methods

• Accuracy: original floating-point < proposed integer < improved floating-point.

• Proposed low-bitwidth model achieves comparable accuracy.

2023/4/23 19

(32b floating-point)

(32b floating-point)

(integer)

Conclusion and Future Work

• An Integer-STBP algorithm is proposed for fully-integer
training.

− Training without floating-point operations.

• An extremely low-bitwidth integer model achieves
comparable accuracy with the floating-point model.

− Be more energy-efficient with negligible accuracy loss.

• Future work

− Evaluating proposed approaches on larger SNNs and dataset.

2023/4/23 20

THANKS FOR YOUR ATTENTION

Q&A

2023/4/23 21

