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Introduction & Motivation

• Spiking neural network (SNN) enables energy-efficient neuromorphic 
hardware.

• Inference-only devices cannot adapt to diverse environment.

− Need to train on end-point devices with local dataset.

• Training requires high-performance computing power.

− Not suitable for edge devices with constrained power budgets.

• A low-bitwidth Integer-STBP algorithm is proposed.

− Training with only integer operations.

− Adjustable bitwidth settings for cost-performance trade-off.
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Train in cloud:

• Privacy

• Adaptability 

Train on edge:

• Privacy

• Adaptability

• Power 

Integer-STBP

• Integer-only

• Power
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Spiking Neural Network (SNN)
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(leaky integrate-and-fire)



5

Spatio-Temporal Back-Propagation (STBP)
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Spatio-Temporal Back-Propagation (STBP)
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Spatio-Temporal Back-Propagation (STBP)
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High-Precision STBP Algorithm

• Operands are floating-point numbers.

• Functions require floating-point 
operations.

• STBP requires high-precision 
numbers and operations.
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• An initialization method for integer weights (𝑤) and firing thresholds (𝜃)

• Forward, backward, and update computations with only integer operations

• Spike encoding and decoding schemes for effective integer training

• Loss function and gradient with only integer operations

Proposed Integer-STBP Algorithm
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Overview of Integer-Based Data Flow

• Operands are with different bitwidths.

• 𝑤 and 𝜃 are with two different bitwidths.

− High-bitwidth (𝑘Δ𝑤 , 𝑘Δ𝜃) for stable 
training.

− Low-bitwidth (𝑘𝑤 , 𝑘𝜃) for efficient 
computation.

• Functions are with integer operations.

− Addition, subtraction, multiplication, bit-
shift.
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• 𝑄𝑤 and Q𝜃 convert low to high bitwidth
forms for 𝑤 and 𝜃

− Take left-most bits

• 𝑀𝐴𝐶 and 𝐿𝐼𝐹 compute with 𝑤 and ෨𝜃.

− 𝑤 and ෨𝜃 for efficient computation.

• 𝐿𝐼𝐹 ensures 𝑣 ∈ [−2𝑘𝑣−1 − 1, 2𝑘𝑣−1 − 1].
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Integer-Based Forward Computation
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Integer-Based Backward Computation

• 𝑀𝐴𝐶′ and 𝐿𝐼𝐹′ compute with 𝑤 and ෨𝜃.

− 𝑤 and ෨𝜃 for efficient computation.

• A look-up table-based method 
computes 𝛿𝑡,𝑙+1/ ෨𝜃𝑙 in 𝐿𝐼𝐹′ function.
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Integer-Based Update Computation

• 𝑈𝑤 and 𝑈𝜃 compute with 𝑤 and 𝜃.

− High-bitwidth 𝑤 and 𝜃 for stable training.

• Learning rate is set to 2𝜂

− × 2𝜂 by bit-shift operation, i.e., ≪ 𝜂

• A value boundary (𝛼) limits the range of 
Δ𝑤 and Δ𝜃 for each update.

− Low-bitwidth SNN is very sensitive to 
the variations after updating 𝑤 and 𝜃.
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Initialization Method for Integer w and θ

• Modify Xavier initialization method to get initial integer 𝑤

− Generate 𝑤 from the uniform distribution 𝑈 −𝐼, +𝐼 .

• A constant (𝛽) limits the range of 𝑈 −𝐼, +𝐼 , i.e., minimum 𝐼 = 𝛽 × 2𝑘Δ𝑤−𝑘𝑤.

− By setting 𝛽 > 1, the low-bitwidth form (𝑤) avoids being all-zero.

• When using minimum 𝐼, firing activity will be higher than expected.

− Scale up 𝜃 accordingly.
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Overall Training Implementation

• Spike encoding: spike-rate encoding

• Spike decoding: last-τ-tick decoding

− Count the number of spikes in the last τ ticks

• Loss function: sum squared error (SSE)

− Only integer operations for forward and backward.

• Enlarge input loss gradient by a constant 𝛾

− To avoid gradient vanishing after 𝛿𝑙+1/ ෨𝜃𝑙.

• Optimizer: mini-batch gradient descent

− No momentum optimizer, dropout, L2 regularization.
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Experimental Setup

• We use the network similar to that of the original STBP work.

− Average pooling layer is merged into the preceding layer by a stride of 2.

• Evaluate on CIFAR10 dataset (50,000 training data and 10,000 testing data)

• Hyper-parameter settings if not specify:
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Network Structure

in prev. work Encoding–96C3–256C3–AP2–384C3–AP2–384C3–256C3–1024FC–1020FC–Decoding

in this work Encoding–96C3–256C3S2–384C3S2–384C3–256C3–1024FC–1020FC–Decoding 

batch size
total time 

steps

initialization 

constant (𝛽)

Last-τ-tick

decoding (𝜏)

𝜃 for 

encoding 

neurons

100 8 1.5 5 256



Evaluation of Bitwidths of 𝒌𝒘, 𝒌𝜽, 𝒌𝒗

• 𝑘𝑤, 𝑘𝜃, and 𝑘𝑣 can be 
significantly reduced with 
negligible accuracy degradation.

− 𝑘𝑤, 𝑘𝜃, 𝑘𝑣 = 2, 10, 8 bits.

− 𝑘Δ𝑤, 𝑘Δ𝜃, 𝑘Δ𝑣 ≥ 16 bits.

• Low-bitwidth firing threshold (𝜃) 
cannot control the firing activity.

• Note: bitwidth setting should 
follows 𝑘Δ𝑤 − 𝑘𝑤 = 𝑘Δ𝜃 − 𝑘𝜃

− Ensure Δ𝑤, Δ𝜃 affect equally to 
𝑤, 𝜃
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𝒌𝒘, 𝒌𝜽, 𝒌𝒗 ↓↓↓
𝐄𝐫𝐫𝐨𝐫 ↑↑↑

𝒌𝒘 = 𝟐
𝒌𝒗 = 𝟖
𝒌𝜽 ↑
𝐄𝐫𝐫𝐨𝐫 ↓↓↓

𝒌𝒘, 𝒌𝜽, 𝒌𝒗 ↓↓↓
𝐄𝐫𝐫𝐨𝐫 ↑

13.43% 14.99%



Evaluation of Bitwidths of 𝒌𝚫𝒘, 𝒌𝚫𝜽, 𝒌𝚫𝒗

• If 𝑘Δ𝑣 is too small → gradient vanishing after 𝛿/ ෨𝜃

− Least 𝑘Δ𝑣 = 6 𝑏𝑖𝑡𝑠

• When 𝑘Δ𝑤 , 𝑘Δ𝜃 become close to 𝑘𝑤 , 𝑘𝜃 → 𝑤, 𝜃 update variations become large

− Least 𝑘Δ𝑤 = 7 𝑏𝑖𝑡𝑠, 𝑘Δ𝜃 = 13 𝑏𝑖𝑡𝑠 (𝑘Δ𝑤 − 𝑘𝑤 = 𝑘Δ𝜃 − 𝑘𝜃 = 5 𝑏𝑖𝑡𝑠)

• Limited precision acts as a type of regularization.
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𝒌𝒘 = 𝟐
𝒌𝜽 = 𝟖
𝒌𝒗 = 𝟖
𝒌𝚫𝒘 = 𝟏𝟔
𝒌𝚫𝜽 = 𝟐𝟐

𝒌𝒘 = 𝟐
𝒌𝜽 = 𝟖
𝒌𝒗 = 𝟖
𝒌𝚫𝒗 = 𝟖

fail fail

14.97% 16.16%

15.58% 18.75%

Better than 

high-bitwidth

model (13.43%)

13.24%



Comparison to Previous STBP Methods

• Accuracy: original floating-point < proposed integer < improved floating-point.

• Proposed low-bitwidth model achieves comparable accuracy.
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Conclusion and Future Work

• An Integer-STBP algorithm is proposed for fully-integer 
training.

− Training without floating-point operations.

• An extremely low-bitwidth integer model achieves 
comparable accuracy with the floating-point model.

− Be more energy-efficient with negligible accuracy loss.

• Future work

− Evaluating proposed approaches on larger SNNs and dataset.
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