A Low-Bitwidth Integer-STBP Algorithm for Efficient Training and Inference of Spiking Neural Network

Pai-Yu Tan and Cheng-Wen Wu

Department of Electrical Engineering, NTHU, Hsinchu, Taiwan

Presenter: Pai-Yu Tan

- Introduction & Motivation
- SNN & STBP algorithm
- Proposed Low-Bitwidth Integer-STBP Algorithm
- Experimental Results
- Conclusion and Future Work

Introduction & Motivation

- Spiking neural network (SNN) enables energy-efficient neuromorphic hardware.
- Inference-only devices cannot adapt to diverse environment.
 - Need to train on end-point devices with local dataset.
- Training requires high-performance computing power.
 - Not suitable for edge devices with constrained power budgets.
- A low-bitwidth Integer-STBP algorithm is proposed.
 - Training with only integer operations.
 - Adjustable bitwidth settings for cost-performance trade-off.

Spiking Neural Network (SNN)

Spatio-Temporal Back-Propagation (STBP)

Spatio-Temporal Back-Propagation (STBP)

Spatio-Temporal Back-Propagation (STBP)

High-Precision STBP Algorithm

- Operands are floating-point numbers.
- Functions require floating-point operations.
- STBP requires high-precision numbers and operations.

Proposed Integer-STBP Algorithm

- An initialization method for integer weights (w) and firing thresholds (θ)
- Forward, backward, and update computations with only integer operations
- Spike encoding and decoding schemes for effective integer training
- Loss function and gradient with only integer operations

Overview of Integer-Based Data Flow

• Operands are with different bitwidths.

operand	W		θ		v	Δv	other
bitwidth	k _w	$k_{\Delta w}$	$k_{ heta}$	$k_{\Delta\theta}$	k _v	$k_{\Delta v}$	k

- w and θ are with two different bitwidths.
 - High-bitwidth $(k_{\Delta w}, k_{\Delta \theta})$ for stable training.
 - Low-bitwidth (k_w, k_θ) for efficient computation.
- Functions are with integer operations.
 - Addition, subtraction, multiplication, bitshift.

Integer-Based Forward Computation

- Q_w and Q_θ convert low to high bitwidth forms for w and θ
 - Take left-most bits

- MAC and LIF compute with w̃ and θ̃.
 w̃ and θ̃ for efficient computation.
- *LIF* ensures $v \in [-2^{k_v-1} 1, 2^{k_v-1} 1]$.

Integer-Based Backward Computation

- MAC' and LIF' compute with w̃ and θ̃.
 w̃ and θ̃ for efficient computation.
- A look-up table-based method computes $\delta^{t,l+1}/\tilde{\theta}^{l}$ in *LIF*' function.

$$-x \div y = x \times \frac{1}{y} = x \times \frac{2^{k}}{y} \div 2^{k}$$
$$-\frac{2^{k}}{y} \text{ by a look-up table, i.e., } LUT(y) = \frac{2^{k}}{y}.$$
$$- \div 2^{k} \text{ by the bit-shift operation, i.e., } > k.$$

- Division \rightarrow LUT + multiply + bit-shift

Integer-Based Update Computation

- Uw and Uθ compute with w and θ.
 High-bitwidth w and θ for stable training.
- Learning rate is set to 2^{η} - $\times 2^{\eta}$ by bit-shift operation, i.e., $\ll \eta$
- A value boundary (α) limits the range of Δw and $\Delta \theta$ for each update.
 - Low-bitwidth SNN is very sensitive to the variations after updating w and θ .

Initialization Method for Integer w and θ

- Modify Xavier initialization method to get initial integer w
 - Generate w from the uniform distribution U(-I, +I).
- A constant (β) limits the range of U(−I, +I), i.e., minimum I = β × 2^{k_{Δw}-k_w}.
 By setting β > 1, the low-bitwidth form (ŵ) avoids being all-zero.
- When using minimum *I*, firing activity will be higher than expected.
 - Scale up θ accordingly.

Overall Training Implementation

- Spike encoding: spike-rate encoding
- Spike decoding: last-*τ*-tick decoding
 - Count the number of spikes in the last $\boldsymbol{\tau}$ ticks
- Loss function: sum squared error (SSE)
 Only integer operations for forward and backward.
- Enlarge input loss gradient by a constant γ – To avoid gradient vanishing after $\delta^{l+1}/\tilde{\theta}^{l}$.
- Optimizer: mini-batch gradient descent
 No momentum optimizer, dropout, L2 regularization.

Spike-Rate Encoding

- 154 ----- 0 1 1 0 1
- (value) (in spikes)

Last-*T*-Tick Decoding

Experimental Setup

- We use the network similar to that of the original STBP work.
 - Average pooling layer is merged into the preceding layer by a stride of 2.

	Network Structure				
in prev. work	Encoding-96C3-256C3-AP2-384C3-AP2-384C3-256C3-1024FC-1020FC-Decoding				
in this work	Encoding-96C3-256C3S2-384C3S2-384C3-256C3-1024FC-1020FC-Decoding				

- Evaluate on CIFAR10 dataset (50,000 training data and 10,000 testing data)
- Hyper-parameter settings if not specify:

batch size	total time steps	initialization constant (β)	Last- τ -tick decoding (τ)	θ for encoding neurons
100	8	1.5	5	256

Evaluation of Bitwidths of k_w , k_θ , k_v

- k_w, k_θ , and k_v can be significantly reduced with negligible accuracy degradation.
 - $-k_w, k_{\theta}, k_{v} = 2, 10, 8$ bits.
 - $-k_{\Delta w}, k_{\Delta \theta}, k_{\Delta v} \ge 16$ bits.
- Low-bitwidth firing threshold (θ) cannot control the firing activity.
- Note: bitwidth setting should follows $k_{\Delta w} k_w = k_{\Delta \theta} k_{\theta}$
 - Ensure $\Delta w, \Delta \theta$ affect equally to w, θ

Evaluation of Bitwidths of $k_{\Delta w}$, $k_{\Delta \theta}$, $k_{\Delta v}$

- If $k_{\Delta v}$ is too small \rightarrow gradient vanishing after $\delta/\tilde{\theta}$
 - Least $k_{\Delta v} = 6 \ bits$
- When $k_{\Delta w}$, $k_{\Delta \theta}$ become close to k_w , $k_{\theta} \rightarrow w$, θ update variations become large - Least $k_{\Delta w} = 7 \text{ bits}$, $k_{\Delta \theta} = 13 \text{ bits} (k_{\Delta w} - k_w = k_{\Delta \theta} - k_{\theta} = 5 \text{ bits})$
- Limited precision acts as a type of regularization.

Comparison to Previous STBP Methods

- Accuracy: original floating-point < proposed integer < improved floating-point.
- Proposed low-bitwidth model achieves comparable accuracy.

Conclusion and Future Work

- An Integer-STBP algorithm is proposed for fully-integer training.
 - Training without floating-point operations.
- An extremely low-bitwidth integer model achieves comparable accuracy with the floating-point model.
 - Be more energy-efficient with negligible accuracy loss.
- Future work
 - Evaluating proposed approaches on larger SNNs and dataset.

THANKS FOR YOUR ATTENTION

Q&A