PMU-Leaker:

Performance Monitor Unit-based Realization

of Cache Side-Channel Attacks

Pengfei Qiu'-2, Qiang Gao'!, Dongsheng Wang?, Yongqgiang Lyu?, Chunlu Wang', Chang
Liu?, Rihui Sun3, Gang Qu#

1Beijing University of Posts and Telecommunications

°Tsinghua University 3Harbin Institute of Technology

4University of Maryland, College Park

gangqu@umd.edu



" A
Self-Introduction

m Basic information
2015: B.S. degree from Harbin Institute of Technology
2020: Ph.D. degree from Tsinghua University
2022: Post doctor at Tsinghua University

Now: Associate professor at Beijing University of Posts
and Telecommunications

m Research interest Hardware security
Hardware vulnerability mining

Secure architecture design.



The Keystone of the Computer Security

/ Application Software

/ Supporting Software

4 System software . |nsecure
g Hardware % ™
. (dram, hard disk...) J
\_ (operating system, compiler...)

k (tools, databases...) /
\ (browser, calendar, calculator...) /

Attack &=




'__
Processor Vulnerabilities
s Main optimization objectives in traditional processor design

High Low power

performance consumption

VoltJockey. PortSmash. MemlJam,
CLKscrew~  VOLTpwn. RIDL. ZombicLoad, CTossTalk. PlatyPus.

Evict+Time CacheBleed Fallout. N etSp ectre FPVI. SCSB
T2015 T2017 T2019 TZOZI
l2014 l2016 l2018 l2020 lZOZZ

Meltdown. Spectre, V2,
PHT, BTB, RSB, V4,

ForeShadow. ForeShadow-
NG. TLBleed. Prime+Probe

Flush+Reload  Flush+Flush LVI. Medusa. Spectre BHI

PlunderVolt



=
Our Work

m Focus on the security of the processor's performance monitor unit
m PMU-Leaker

> Enable cache side channel attacks even when the timing instruction is unavailable
> PMU identifies whether a data-load operation hits cache or misses cache

Timing instruction Cache side
channel

b S X

Attacker

»
-

Victim

PMU



Outline



o 0000
Performance Monitor Unit (PMU)

(IA

>

hardware module

Measure various architectural and microarchitectural events
Instructions that are assigned to a port
Cache misses/hits at different levels
Mispredicted branches

~

L 4

Cache Hit * E E E >
TLB Hit * = =
) TRRIN
Machine Clear *
Processor




"
Utilizations of PMU
Branch

m Function prediction
. .. . analysis
> Performance analysis and optimization

PMU

> Reverse engineer black-box processors

| |
| |
° ° | | - .
> Infer keys of encryption algorithms - — e e
| |
innnni

) ;glster"_as‘ra_ble(R_AT) ............... ;P. ................... I
| :
innnni I [ Rename | [ Anocate | [ commit |E:> I
= = PM U I :D ReOrder Buffer :
| -:>I UUUU UUUQM I
- - I Integer Physical Vector Physical ]
| | | Register File Scheduler Register File I
- - I Port Port Port o Port | | Port | | Port || Port I
m - | |||| o | [ por l”H&HJ\éH”l““!
I I I I I I : EUs ‘:i;i o] [GeT pey :

| Execution Engine

~




o
Cache

m A high-speed storage media
> Between CPU cores and memory
> Reduce the time to access data from the main memory

m Feature
> Data access time when missing cache is higher than hitting cache

Main memory Hardware disk

Access speed becomes slower



" A
Cache Side-Channel Attack

m Based on the time difference between cache hits and misses

»Infer keys of encryption algorithms (e.g. AES, RSA, and ECC)

»Implement the transient execution attacks to leak secret data

Victim's /'
= b

aCcess

CPU

Timing measurements §-

&

Memory

Prime+Probe

Flush+Flush

Evict+Time

Flush+Reload



" o
Example of Cache Side-Channel Attack——Flush+Reload

m The first step
» Attacker procedure flushes data of the shared cache

Cache

/Attacker Procedure\ /Victim Procedure\

1. Flush cache

Shared B
cache

\_ / \_ .




" o
Example of Cache Side-Channel Attack——Flush+Reload

m The second step
>Victim procedure access data of the shared cache

Cache

/Attacker Procedure\ /Victim Procedure\

1. Flush cache
H 2. Access cache

\_ / - /

Shared B
cache




" o
Example of Cache Side-Channel Attack——Flush+Reload

m The third step

> Attacker procedure reload data of the shared cache The smallest

data access time

/Victim Procedure\

Cache

/Attacker Procedug

1. Flush cache

Shared B
cache

2. Access cache

3. Reload cache

. / \_ /




Our Contributions

m The current cache side channel attacks

» Rely on the accurate timing instructions (e.g. rdtsc)

» Can be simply mitigated by disabling the accurate time measurements

Discover that PMU counters can reveal cache hits/misses

PMU-Leaker: replace time measurements to implement cache side-channel attacks

24 PMU events to realize Flush+Realod cache side channel in transient execution attacks
6 PMU events to realize the Prime+Probe cache side channel in speculating the key of a
victim AES performed in SGX

CPU _CLK THREAD UNHALTED.REF XCLK can measure instruction execution time



" -

Outline
(1) Background .

Performance Monitor Unit

Cache Side-Channel Attack

<:> ...... Conclusion .



"

Motivation

m The events monitored by PMU expose interactions between
Instructions and hardware resources

Speculate secret data

K

' Can the information
T Miss] leaked from PMU

—— Load request

—— Load response
—— Record cache behavior

<

PMU

— Read PMU value
L2 Miss replace the accurate

L3 Miss

time measurements
for cache side-
channel attacks?

Side Information




" o
Assumption and Threat Model

. Assumption

m PMU is enabled in the target processor

» Most processors use PMU as a performance profiling technology

m The attackers have a root privilege

. J

— Threat Model 2

m Attackers use PMU to implement cache side channel attack
> Infer keys of encryption algorithms performed in TEE

» Recover secret data of TEE with transient execution attacks

\_ J




" -

Overview of PMU-Leaker

Normal Memory

/
/
/

/
Secure Memoty

/
/

Attacker Procedure

. Update Cache

@ Initiate @ Up @ Re-access
Cache (Flush Load Access Cache (Reload

or Prime) Secret Data the Cache or Flush)

X

s N

______ \ \ \ o

L1D Cache LFB Other Micro-

architectural Units

Load Secret Data

Victim Procedure

R e e R

—— >

PMU

Processor




" -
Attack Target

Keys of encryption algorithms/secret data stored in TEE

-

m The root privilege is out of the Trusted Computing Base of TEE
m SGX is vulnerable to the cache side channel attacks

m Several transient execution attacks have been verified feasible to leak
data from SGX including Foreshadow, ZombielLoad, and Spectre




Case Study: Spectre Attack based on PMU-Leaker

B h
The secret rane
data is 'B'

Flush ﬂ 66 ﬁ

67<= (3) Re-access

probe_array

(1) Initiate Cache 68—

Cache Read PMU

misprediction

CYCLE_ACTIVITY.CYCLES L3 MISS

CYCLE_ACTIVITY.CYCLES L3_MISS

~

MU number
=

S O 0O R WD

(=

char buffer[buffer_size], temp;

char probe_array[256 * 4096];

int start, end;

flush(probe_array);

if (x < buffer_size)
temp = probe_array[buffer[x] * 4096];

for (i = @; i < 256; i++)
start=read_pmu (OFFCORE_REQUESTS.DEMAND_DATA_RD);
temp = probe_array[i * 4096];

end=read_pmu (OFFCORE_REQUESTS.DEMAND_DATA_RD);
J

Gadget




" -

Outline
(1) Background .

Performance Monitor Unit

Cache Side-Channel Attack

<:> ...... Conclusion .



"

Experiment setup

DELL Inspiron 15-7560 laptop
> 15-7200U CPU: vulnerable to Spectre and ZombielLoad attack
» OS: Ubuntu 20.04.3
» Enable Intel SGX
> Kernel version: 4.4.283

Flush+Reload: recover secret data in the transient execution attacks

Prime+Probe: infer the key of an AES performed in SGX




o
Locate the vulnerable PMU events

Cache Missing Situation

for (i=0;i<1000; i++)
flush probe data

access( probe data) Il:
Cache Hitting Situation +

access( probe data)
for (i=0;i<1000; i++)

access( probe data)

Recovery mechanism

> |terate 1000 times for each PMU counter and each situation

> Calculate a threshold for each PMU counter

> Distinguishes whether the data access hits or misses cache by comparing
the increment of a PMU counter with the threshold



=B
Experiment Results

Average increment

Error rate (%)

PMU category PMU counters Event description Hit cache  Miss cache | Spectre  ZombieLoad
DEMAND DATA RD MISS  Demand data read requests that miss L2 cache 0 1 4.2 0
12_RQSTS L2_PF_MISS Hardware prefetcher requests that miss L2 cache 0 1 13.3 18
- ALL_DEMAND_DATA_RD* Demand data read requests to L2 cache 0 1 34.7 21.2
ALL_PF Hardware prefetcher requests that to L2 cache 0 1 2 0.8
REFERENCE Demand data read requests to last level cache 0 3 1 0
LONGEST_LAT_CACHE .
MISS Cache miss for references to the last level cache 0 1 0 0
CPU_CLK_
REF_XCLK Increments at the frequency of XCLK 1 3 2 0
THREAD UNHALTED
L1D_PEND_MISS PENDING* The number of outstanding L1D cache misses 0 337 19.4 0
OFFCORE_REQUESTS_ | DEMAND_DATA_RD Demand data read transactions in SQ to uncore 0 306 2.6 0
OUTSTANDING ALL_DATA_RD Cacheable data read transactions in SQ to uncore 0 448 43 0
OFFCORE_REQUESTS DEMAND_DATA_RD Demand data read requests sent to uncore 0 1 8.6 0
- ALL DATA RD Data read requests sent to uncore 0 2 2.5 1.3
L1D PEND MISS PENDING* The number of outstanding L1D cache misses 0 337 19.4 0
L1 _HIT* Retired load uops with L1 cache hit as data source 8 7 28.6 9.8
MEM_LOAD_ L1_MISS* Retired load uops with L1 cache miss as data source 0 1 32.1 12.1
UOPS_RETIRED L2_MISS Retired load uops with L2 cache miss as data source 0 1 2.9 0
L3_MISS Retired load uops with L3 cache miss as data source 0 1 0 0
MEM_LOAD_UOPS_ LOCAL_DRAM Retired l'oad uops where data sources missed L3 0 i 0 0
L3_MISS_RETIRED but serviced from local dram
DEMAND_DATA_RD* Demand data read requests that access L2 cache 0 1 32.9 20.6
ALL_PF Any MLC or L3 hardware prefetch accessing 1.2 0 1 6.2 0.9
L2_TRANS
- L2 _FILL L2 fill requests that access L2 cache 0 1 0 0
ALL_REQUESTS Transactions accessing L2 pipe 0 3 17.2 29.7
L2 LINES IN E L2 cache lines in E state filling L2 cache 0 1 1.3 0
L2_LINES_OUT DEMAND_CLEAN Clean L2 cache lines evicted by demand 0 1 2.7 1.5
Average 0.375 60.875 9.9125 4829

Throughput

> Spectre: 26.02 bps
> ZombielLoad:46.3 bps

Error rate

> Spectre: 9.9125%
> Zombieload: 4.829%

24 vulnerable events

> 6 events (marked with "* ") recover the AES's Key
> 24 events recover the secret data in the transient execution attacks




"

Experiment Results Analysis

Implement Spectre and ZombielLoad attacks

Efficiency

Recover the AES's key

Vulnerable PMU events are numerous

Severity

Using multiple PMU counters once a time can

Error rate reduce the error rate




W .
Countermeasures

— Hardware
m Disable the vulnerable PMU counters

m Authenticating the users

— Software
m Remove PMU from the TCB of TEE

> Provide a interface to enable/disable PMU through BIOS

> Otherwise, PMU can be enabled

> If clients need to use TEE, they should first disable the PMU

J




" -

Outline
(1) Background .

Performance Monitor Unit

Cache Side-Channel Attack

<:> ...... Conclusion .



Conclusion

« PMU-Leaker, a new kind of side channel attack

 Implement Spectre and ZombielLoad attacks

« Recover the AES's key

> 24 events implement transient execution attacks

6 events recover the AES's Key




Pengfei Qiu
Beijing University of Posts and Telecommunications

gpf@bupt.edu.cn



