

EO-Shield: A Multi-function Protection Scheme against Side Channel and Focused Ion Beam Attacks

Ya Gao, Qizhi Zhang, Haocheng Ma, Jiaji He, Yiqiang Zhao

School of Microelectronics, Tianjin University

- Ya Gao, School of Microelectronics, Tianjin University
- PhD student in Microelectronics and Solid State Electronics
- Research interest: hardware security and machine learning

Outline

Motivation

- EO-shield Protection System Design
- The Effect of EO-shield
- Conclusion

Motivation

Side channel analysis (SCA) attack

- SCA attacks try to extract sensitive information from the chip by collecting and analyzing the physical parameters (EM/power/timing) of the chip
- EM SCA requires no direct connections to the chips and can obtain local EM information with high signal-tonoise-ratio (SNR)

Motivation

Correlation Electromagnetic Attack (CEMA)

- CEMA is a common side-channel attack method that uses Pearson's correlation as a statistical method to recover sensitive information
 - Select the middle value
 - Collect the EM traces
 - Calculate the hypothetical EM information leakage matrix
 - Correlation analysis

correlation electromagnetic attack

$$r_{i,j} = \frac{\sum_{d=1}^{D} (h_{d,i} - \overline{h}_i) \cdot (t_{d,j} - \overline{t}_j)}{\sqrt{\sum_{d=1}^{D} (h_{d,i} - \overline{h}_i)^2 \cdot (t_{d,j} - \overline{t}_j)^2}}$$

correlation electromagnetic attack with protection scheme

Motivation

Focused ion beam (FIB) attack

- Invasive attacks are the most effective and thorough means of physical attacks available
- Focused ion beam (FIB) attack is the most investigated invasive attack
- Active shield based solutions are so far the most common countermeasures

reverse engineering

create probe pad

locate the target wire

extract target information

Typical FIB attack process

Active shield-based protection solutions

https://www.chinapcbcopy.com/ic-unlock-service/ https://www.ce.cit.tum.de/en/eisec/research/invasive-attacks/ Design principles for tamper-resistant smartcard processors How microprobing can attack encrypted memory

Active Shield

This Work

- A multi-function protection scheme, namely EO-shield, to against both invasive and non-invasive attacks
 - EM side channel attack:

An information leakage obfuscation module to implement EM noise injection (NI)

FIB attack:

An active shield with random Hamiltonian topology to protect key modules of the circuit

 The effectiveness of EO-shield is successfully validated through simulation

Random Active Shield Design and Implementation

- Active shield features:
 - utilize the top metal layer of the chip
 - require a high level of complexity
- Among typical topologies, the random Hamiltonian topology has the most random structure and is the most difficult to hack
- Based on our shield generation software, we produce active shields with random Hamiltonian topology based on the Artificial Fish-Swarm Random Hamiltonian algorithm (AFSRHA)

parallel topology	Hilbert curve
Peano curve	Random Hamiltonian 🗸

Typical topologies of active shields

Random Active Shield Design and Implementation

 L and W are normalized into grid points by wire_width and wire_space

L, $W \ge 8 \times (wire_width + wire_space)$

- A square formed by four adjacent grid points is defined as a *fish*
- A fish is randomly selected and merged with an adjacent fish to generate a *loop C*
- Iterate this process until all the fish are contained in loop C

	•••	•••	•••	•••	•••	21	22	23		25		22	23		25
	•••	•••	•••	•••	•••				19 	20		17	C	19	20
N	•••	•••	•••	•••	•••								13		15
	•••	•••	•••	•••	•••	6			9 		 6 			 	
	•••	•••	 L	•••	•••	[1]		 3 		 5 L					 5
	21		23	14	25		22	23	14	25		Π	Π		
		17	(2	20		17			20					
			13	14				13	Ш	15					
	6	[7]		9	10	6		 	 						
	[1]		3	4	5			 	4						

The execution process of AFSRHA algorithm

Random Active Shield Design and Implementation

• For a narrow, elongated shield area:

The shield area is the gap between the dense power strips on the top layer

- L and W do not satisfy the equation:
 - L, W \ge 8 × (wire_width+wire_space)
- Random parallel shield topology:

Randomly select the offset in the x-direction and y-direction during the generation process

Information Leakage Obfuscation Module Design and Noise Signal Generation

- The linear feedback shift register (LFSR) :
 - Based on a Primitive Polynomial

 $X^{15} + x + 1$

- Generate a random signal (*lfsr_out[9]*) sent to the active shield
- Generate two random signals (*lfsr_out[3]* and (*lfsr_out[13]*) to select one type of ROs

Information Leakage Obfuscation Module Design and Noise Signal Generation

- RO generator circuit:
 - Include four RO oscillation circuits with 3, 5, 7 and
 9 inverters respectively
 - Generate oscillation signals with four types of time delays
- MUX module:
 - According to the clock edge of the signal *clk_chip* to select whether to output *lfsr_out[9]* or *RO_out*
- Signal comparison module:
 - Compare *lfsr_out[9]* with *A_out* to achieve realtime monitoring of invasive attacks

Information Leakage Obfuscation Module Design and Noise Signal Generation

- Frequency divider:
 - Divide the high frequency *clk* to *clk_chip*

Suppose t_{clk_chip} contains n t_{clk} , the generated pseudo-random number signal remains constant during the t_{clk_chip} is $1/2^n$

The Effect of EO-shield

EM Simulation

- AES_NIST:
 - AES is designed in the light of NIST standard, which includes128-bit plaintext and key
 - Use 180 nm CMOS technology
 - Die size of the total chip occupies *1140µm×840µm*
 - The clock frequency is 25 MHz
 - 1000 random plaintext inputs
- EMSim:
 - Our Electromagnetic emanation simulation tool at layout-level

(a) Chip layout

ut (b) EM map of the chip surface Unprotected AES

(a) The active shield

ield (b) EM map of the chip surface Protected AES

The Effect of EO-shield

CEMA attack

• Target the SubByte operation in the first S-Box

Conclusion

• Overhead Evaluation:

Circuits Unprotected Metrics AES (25Mhz)		Protected AES (250Mhz/200Mhz/166Mhz)	Increase Percentage				
Area (μm^2)	288195	293227	1.75%				
Power (w)	1.51e – 2	1.62e - 2/1.618e - 2/1.6e - 2	9.74%/7.15%/5.96%				

• Signal Perturbation:

The time perturbation of the protected circuit due to effects such as parasitic resistance and parasitic capacitance caused by the information leakage obfuscation module can be neglected

• Process Antenna Effect (PAE):

The Process Antenna Effect (PAE) caused by long wire mesh can be eliminated by using jumpers, adding normally closed transmission gates (NC) or diode cells

Conclusion

- A multi-function protection scheme called *EO-shield* is proposed for the first time to combat both invasive and non-invasive attacks
- The core idea is to combine an active shield with an *information leakage obfuscation module* to mitigate non-invasive attacks by sending current stimuli to the *active shield* in a noise injection method
- Through simulation experiments, the correlation between EM emanations and processing data is also reduced to achieve *a SNR lower than 1*. The security of the proposed EO-shield scheme is finally proved

<u>gaoyaya@tju.edu.cn</u>