
1

Pohang University of Science and Technology

Department of Electrical Engineering

CAD and SoC Design Lab.

Tel. +82-54-279-2883

Web. http://csdl.postech.ac.kr

CONTACT

Graph Partitioning Approach for
Fast Quantum Circuit Simulation

Jaekyung Im, Seokhyeong Kang

28th Asia and South Pacific Design Automation Conference

22

CONTENTS

1. INTRODUCTION

2. PROPOSED METHOD

3. EXPERIMENTAL RESULTS

4. CONCLUSION

3

INTRODUCTION

44

“Quantum Circuit is an efficient and

powerful method of describing

quantum computation procedures.”
M. Nielsen and I. Chuang,

“Quantum Computation and Quantum Information.”

Example) 3-Qubit Quantum Fourier Transform

𝑄1

𝑄2

𝑄0 𝑯 𝑹𝟐 𝑹𝟑

𝑯 𝑹𝟐

𝑯

• Quantum circuit describes quantum computation procedures.

• It consists of quantum gates, which can be represented by unitary matrix.

What is Quantum Circuit?

𝑯 =
𝟏

𝟐

1 1
1 −1

𝑯𝑯† =
1 0
0 1

= 𝑰

• Hadamard Gate

• Unitary Matrix

55

What is Quantum Circuit Simulation and Why it is difficult?

• Simulation plays a key role in verification of quantum computing.

• But it is heavily time-consuming.

2𝑁 × 2𝑁 Matrix

×
2𝑁 Size Vector

Quantum

Computer

Classical

Computer

|𝝍𝒊𝒏⟩𝑼𝑪𝒊𝒓𝒄𝒖𝒊𝒕

|𝝍𝒐𝒖𝒕𝟏⟩ |𝝍𝒐𝒖𝒕𝟐⟩

|𝝍𝒐𝒖𝒕𝟏⟩ == |𝝍𝒐𝒖𝒕𝟐⟩ ?

66

Bump I/Os

Two different Simulation Methods

Schrödinger-Style Simulation Feynman-Style Simulation

𝝍𝒐𝒖𝒕 = 𝑪𝑵𝑶𝑻 × 𝑯⊗ 𝑰 × 𝟎𝟎

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

×
1

2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

×

1
0
0
0

=
1

2

1
0
0
1

𝑷𝒂𝒕𝒉𝟏: 𝑪𝑵𝑶𝑻 ⋅
1

2
𝟎𝟎 =

1

2
𝟎𝟎

𝑷𝒂𝒕𝒉𝟐: 𝑪𝑵𝑶𝑻 ⋅
1

2
𝟏𝟎 =

1

2
𝟏𝟏

𝝍𝒐𝒖𝒕 = 𝑷𝒂𝒕𝒉𝟏 + 𝑷𝒂𝒕𝒉𝟐 =
1

2
(𝟎𝟎 + 𝟏𝟏)

• Schrödinger-Style: Fast but exponentially increasing memory usage.

• Feynman-Style: Memory-efficient but its runtime depends on # of Paths.

77

Hybrid Schrödinger-Feynman (HSF) Simulation

• HSF is a mixture of Schrodinger and Feynman Simulation.

• It can deal with circuits of smaller size.

𝐆 = 𝟎⟩ ⟨𝟎 ⊗ 𝐆𝟎𝟎
+ 𝟎⟩ ⟨𝟏 ⊗ 𝐆𝟎𝟏
+ 𝟏⟩ ⟨𝟎 ⊗ 𝐆𝟏𝟎
+|𝟏⟩ ⟨𝟏| ⊗ 𝐆𝟏𝟏

Gate Decomposition

𝑪𝑵𝑶𝑻 =
1 0
0 0

⊗ 𝑰 +
0 0
0 1

⊗𝑿

⟶𝑼𝟎𝟎 ⟶𝑼𝟏𝟏

Example)

88

Motivation

• HSF does not do well when there are too many crossing gates.

• How can we reduce the the number of Crossing Gates?

1 Crossing Gates ⟶ 𝟐𝟏 Branches 𝑵 Crossing Gates ⟶ 𝟐𝑵 Branches

+

+

…

9

PROPOSED METHOD

1010

Overall Flow

1. Graph Partitioning

• Build Weighted-Graph

• Fidducia-Mattheyses Algorithm

2. Layered Simulation

• Layer Assignment

• DFS Order Simulation

3. Qubit Re-Ordering

• Fast Qubit SWAP Procedure

1111

1. Graph Partitioning - (1) Build Weighted-Graph

• Ignore single-qubit gates.

• 1) Qubit ⟶ Vertex, 2) # of two-qubit gates ⟶ Weight of edge.

Weighted

Graph

1212

1. Graph Partitoining – (2) FM Partitioning Initial Partitioning

1st Iteration

Final Partitioning

…

Gain of moving 𝑸𝟓 to the opposite partition

= σ(𝒖𝒏𝒄𝒖𝒕 𝒆𝒅𝒈𝒆𝒔) − σ(𝒄𝒖𝒕 𝒆𝒅𝒈𝒆𝒔)
= 𝟒 − 𝟎 = 𝟒

1313

Why FM Algorithm?

• Low Complexity

• Fast (Linear time-complexity)

• Easy to implement

• Balance Ratio

• Can control the partition balance

If balance ratio 𝒓 = 𝟎. 𝟑Example

𝒎𝒊𝒏
𝟓

𝟖
,
𝟑

𝟖
= 𝟎. 𝟑𝟕𝟓 > 𝟎. 𝟑 𝒎𝒊𝒏

𝟔

𝟖
,
𝟐

𝟖
= 𝟎. 𝟐𝟓 < 𝟎. 𝟑

1414

2. Layered Simulation - (1) Layer Assignment

1515

2. Layered Simulation - (2) DFS Order Simulation

⟶ |𝝍𝑨𝟏⟩

⟶ |𝜓𝐴2⟩

⟶ |𝜓𝐴3⟩

⟶ |𝜓𝐴4⟩

⟶ |𝝍𝑩𝟏⟩

⟶ |𝜓𝐵2⟩

⟶ |𝜓𝐵3⟩

⟶ |𝜓𝐵4⟩

|𝜓1⟩ = |𝜓𝐴1⟩ ⊗ |𝜓𝐵1⟩

|𝝍𝑭𝒊𝒏𝒂𝒍⟩ = |𝜓𝐴1⟩ ⊗ |𝜓𝐵1⟩
+ 𝜓𝐴2 ⊗ 𝜓𝐵2

+ 𝜓𝐴3 ⊗ 𝜓𝐵3

+ 𝜓𝐴4 ⊗ 𝜓𝐵4

=|𝜓𝐴𝑖⟩ ⊗ |𝜓𝐵𝑖⟩

=|𝝍𝒊⟩

1616

3. Qubit Re-Ordering – Why do we need SWAP?

• We have to restore the initial qubit order.

• Our unsuccessful first approach was applying SWAP gates.

|𝝍𝑭𝒊𝒏𝒂𝒍⟩ = |𝑄7𝑄6𝑄3𝑄2𝑄5𝑄4𝑄1𝑄0⟩

|𝝍𝑭𝒊𝒏𝒂𝒍⟩ = |𝑄7𝑄6𝑄5𝑄4𝑄3𝑄2𝑄1𝑄0⟩

𝑺𝑾𝑨𝑷 =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Approach #1. Applying SWAP Gate

𝑄0

𝑄1

𝑄1

𝑄0

𝑺𝑾𝑨𝑷(𝑸𝟑, 𝑸𝟓)
𝑺𝑾𝑨𝑷(𝑸𝟐, 𝑸𝟒)

1717

3. Qubit Re-Ordering – Fast Qubit SWAP
Approach #2.

Fast SWAP with bit-masking

= 𝜶𝟎 00000000

+ 𝜶𝟖 00001000
+ 𝜶𝟗 00001001

+ 𝜶𝟑𝟐 00100000
+ 𝜶𝟑3 00100001

+ 𝜶𝟐𝟐𝟑 11011111

+ 𝜶𝟐𝟒𝟕 11110111

…

…

…

…

Exchange

Amplitudes

Exchange

Amplitudes

Example) SWAP(3, 5, |𝜓⟩)

𝑄7𝑄6𝑸𝟑𝑄2𝑸𝟓𝑄4𝑄1𝑄0

𝑰𝒅𝒙 = 0

𝑰𝒅𝒙 = 26 − 1

𝑰𝒅𝒙 = 1

Exchange

Amplitudes

18

EXPERIMENTAL RESULTS

1919

Experimental Setup

• Benchmark
• Google Supremacy Circuits [1]

• Implementation
• Base: Decision-Diagram Simulator (DDSim) [2]

• C++, OpenMP

• Comparison
• Hybrid Schrodinger-Feynman Decision-Diagram Simulator (HSF-DDSim) [3]

[1] Google Random Circuit Samplings, https://github.com/sboixo/GRCS

[2] A. Zulehner and R. Wille, “Advanced Simulation of Quantum Computations”,

IEEE Transactions on CAD, 2019 https://github.com/cda-tum/ddsim

[3] L. Burgholzer, H. Bauer and R. Wille, “Hybrid Schrodigner-Feynman Simulation of Quantum Circuits

with Decision Diagrams”, International Conference on Quantum Computing and Engineering, 2021

https://github.com/sboixo/GRCS
https://github.com/cda-tum/ddsim

2020

Experimental Results (1) Effectiveness of fast SWAP

• HSF with graph partitioning can bring a huge speed-up.

• The overhead of applying swap gates can make it disappear.

• Our fast SWAP procedure can be a solution for the problem.

* 𝑖𝑛𝑠𝑡_𝐴x𝐵_𝐶 means a circuit of 𝐴 ∗ 𝐵 qubits and 𝐶 depths

2121

Experimental Results (2) Comparison with HSF-DDSim

25-Qubit 30-Qubit

• FM partitioning makes fewer cuts than the half slicing.

• Our approach achieved runtime improvement up to 20X times.

22

CONCLUSION

2323

Conclusion

• How can we consider noise in the partitioning approach?

• How about other benchmarks?

• Traditional HSF simulation uses simple half slicing.

• The number of crossing gates increases the simulation time exponentially.

• Partitioning approach can make fewer crossing gates than half slicing.

• This leads to significant speed-up of simulation.

Summary

Future Work

24

THANK YOU

