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INTRODUCTION
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“Quantum Circuit is an efficient and 

powerful method of describing 

quantum computation procedures.”
M. Nielsen and I. Chuang, 

“Quantum Computation and Quantum Information.”

Example) 3-Qubit Quantum Fourier Transform 

𝑄1

𝑄2

𝑄0 𝑯 𝑹𝟐 𝑹𝟑

𝑯 𝑹𝟐

𝑯

• Quantum circuit describes quantum computation procedures.

• It consists of quantum gates, which can be represented by unitary matrix.

What is Quantum Circuit?

𝑯 =
𝟏

𝟐

1 1
1 −1

𝑯𝑯† =
1 0
0 1

= 𝑰

• Hadamard Gate

• Unitary Matrix
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What is Quantum Circuit Simulation and Why it is difficult?

• Simulation plays a key role in verification of quantum computing.

• But it is heavily time-consuming.

2𝑁 × 2𝑁 Matrix

×
2𝑁 Size Vector

Quantum 

Computer

Classical 

Computer

|𝝍𝒊𝒏⟩𝑼𝑪𝒊𝒓𝒄𝒖𝒊𝒕

|𝝍𝒐𝒖𝒕𝟏⟩ |𝝍𝒐𝒖𝒕𝟐⟩

|𝝍𝒐𝒖𝒕𝟏⟩ == |𝝍𝒐𝒖𝒕𝟐⟩ ?
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Bump I/Os

Two different Simulation Methods

Schrödinger-Style Simulation Feynman-Style Simulation

𝝍𝒐𝒖𝒕 = 𝑪𝑵𝑶𝑻 × 𝑯⊗ 𝑰 × 𝟎𝟎

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

×
1

2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

×

1
0
0
0

=
1

2

1
0
0
1

𝑷𝒂𝒕𝒉𝟏: 𝑪𝑵𝑶𝑻 ⋅
1

2
𝟎𝟎 =

1

2
𝟎𝟎

𝑷𝒂𝒕𝒉𝟐: 𝑪𝑵𝑶𝑻 ⋅
1

2
𝟏𝟎 =

1

2
𝟏𝟏

𝝍𝒐𝒖𝒕 = 𝑷𝒂𝒕𝒉𝟏 + 𝑷𝒂𝒕𝒉𝟐 =
1

2
( 𝟎𝟎 + 𝟏𝟏 )

• Schrödinger-Style: Fast but exponentially increasing memory usage.

• Feynman-Style: Memory-efficient but its runtime depends on # of Paths.
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Hybrid Schrödinger-Feynman (HSF) Simulation

• HSF is a mixture of Schrodinger and Feynman Simulation.

• It can deal with circuits of smaller size.

𝐆 = 𝟎⟩ ⟨𝟎 ⊗ 𝐆𝟎𝟎
+ 𝟎⟩ ⟨𝟏 ⊗ 𝐆𝟎𝟏
+ 𝟏⟩ ⟨𝟎 ⊗ 𝐆𝟏𝟎
+|𝟏⟩ ⟨𝟏| ⊗ 𝐆𝟏𝟏

Gate Decomposition

𝑪𝑵𝑶𝑻 =
1 0
0 0

⊗ 𝑰 +
0 0
0 1

⊗𝑿

⟶𝑼𝟎𝟎 ⟶𝑼𝟏𝟏

Example)
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Motivation

• HSF does not do well when there are too many crossing gates.

• How can we reduce the the number of Crossing Gates?

1 Crossing Gates ⟶ 𝟐𝟏 Branches 𝑵 Crossing Gates ⟶ 𝟐𝑵 Branches 

+

+

…
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PROPOSED METHOD
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Overall Flow

1. Graph Partitioning

• Build Weighted-Graph

• Fidducia-Mattheyses Algorithm

2. Layered Simulation

• Layer Assignment

• DFS Order Simulation

3. Qubit Re-Ordering

• Fast Qubit SWAP Procedure
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1. Graph Partitioning - (1) Build Weighted-Graph

• Ignore single-qubit gates.

• 1) Qubit ⟶ Vertex, 2) # of two-qubit gates ⟶ Weight of edge.

Weighted

Graph
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1. Graph Partitoining – (2) FM Partitioning Initial Partitioning

1st Iteration

Final Partitioning

…

Gain of moving 𝑸𝟓 to the opposite partition

= σ(𝒖𝒏𝒄𝒖𝒕 𝒆𝒅𝒈𝒆𝒔) − σ(𝒄𝒖𝒕 𝒆𝒅𝒈𝒆𝒔)
= 𝟒 − 𝟎 = 𝟒
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Why FM Algorithm?

• Low Complexity

• Fast (Linear time-complexity)

• Easy to implement

• Balance Ratio

• Can control the partition balance

If balance ratio 𝒓 = 𝟎. 𝟑Example

𝒎𝒊𝒏
𝟓

𝟖
,
𝟑

𝟖
= 𝟎. 𝟑𝟕𝟓 > 𝟎. 𝟑 𝒎𝒊𝒏

𝟔

𝟖
,
𝟐

𝟖
= 𝟎. 𝟐𝟓 < 𝟎. 𝟑
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2. Layered Simulation - (1) Layer Assignment
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2. Layered Simulation - (2) DFS Order Simulation

⟶ |𝝍𝑨𝟏⟩

⟶ |𝜓𝐴2⟩

⟶ |𝜓𝐴3⟩

⟶ |𝜓𝐴4⟩

⟶ |𝝍𝑩𝟏⟩

⟶ |𝜓𝐵2⟩

⟶ |𝜓𝐵3⟩

⟶ |𝜓𝐵4⟩

|𝜓1⟩ = |𝜓𝐴1⟩ ⊗ |𝜓𝐵1⟩

|𝝍𝑭𝒊𝒏𝒂𝒍⟩ = |𝜓𝐴1⟩ ⊗ |𝜓𝐵1⟩
+ 𝜓𝐴2 ⊗ 𝜓𝐵2

+ 𝜓𝐴3 ⊗ 𝜓𝐵3

+ 𝜓𝐴4 ⊗ 𝜓𝐵4

=|𝜓𝐴𝑖⟩ ⊗ |𝜓𝐵𝑖⟩

=|𝝍𝒊⟩
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3. Qubit Re-Ordering – Why do we need SWAP? 

• We have to restore the initial qubit order.

• Our unsuccessful first approach was applying SWAP gates.

|𝝍𝑭𝒊𝒏𝒂𝒍⟩ = |𝑄7𝑄6𝑄3𝑄2𝑄5𝑄4𝑄1𝑄0⟩

|𝝍𝑭𝒊𝒏𝒂𝒍⟩ = |𝑄7𝑄6𝑄5𝑄4𝑄3𝑄2𝑄1𝑄0⟩

𝑺𝑾𝑨𝑷 =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Approach #1. Applying SWAP Gate

𝑄0

𝑄1

𝑄1

𝑄0

𝑺𝑾𝑨𝑷(𝑸𝟑, 𝑸𝟓)
𝑺𝑾𝑨𝑷(𝑸𝟐, 𝑸𝟒)



1717

3. Qubit Re-Ordering – Fast Qubit SWAP 
Approach #2. 

Fast SWAP with bit-masking

= 𝜶𝟎 00000000

+ 𝜶𝟖 00001000
+ 𝜶𝟗 00001001

+ 𝜶𝟑𝟐 00100000
+ 𝜶𝟑3 00100001

+ 𝜶𝟐𝟐𝟑 11011111

+ 𝜶𝟐𝟒𝟕 11110111

… 

… 

… 

… 

Exchange

Amplitudes

Exchange

Amplitudes

Example) SWAP(3, 5, |𝜓⟩)

𝑄7𝑄6𝑸𝟑𝑄2𝑸𝟓𝑄4𝑄1𝑄0

𝑰𝒅𝒙 = 0

𝑰𝒅𝒙 = 26 − 1

𝑰𝒅𝒙 = 1

Exchange

Amplitudes
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EXPERIMENTAL RESULTS
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Experimental Setup

• Benchmark
• Google Supremacy Circuits [1]

• Implementation
• Base: Decision-Diagram Simulator (DDSim) [2]

• C++, OpenMP

• Comparison
• Hybrid Schrodinger-Feynman Decision-Diagram Simulator (HSF-DDSim) [3]

[1] Google Random Circuit Samplings, https://github.com/sboixo/GRCS

[2] A. Zulehner and R. Wille, “Advanced Simulation of Quantum Computations”, 

IEEE Transactions on CAD, 2019 https://github.com/cda-tum/ddsim

[3] L. Burgholzer, H. Bauer and R. Wille, “Hybrid Schrodigner-Feynman Simulation of Quantum Circuits 

with Decision Diagrams”, International Conference on Quantum Computing and Engineering, 2021 

https://github.com/sboixo/GRCS
https://github.com/cda-tum/ddsim
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Experimental Results (1) Effectiveness of fast SWAP

• HSF with graph partitioning can bring a huge speed-up.

• The overhead of applying swap gates can make it disappear.

• Our fast SWAP procedure can be a solution for the problem.

* 𝑖𝑛𝑠𝑡_𝐴x𝐵_𝐶 means a circuit of 𝐴 ∗ 𝐵 qubits and 𝐶 depths
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Experimental Results (2) Comparison with HSF-DDSim

25-Qubit 30-Qubit

• FM partitioning makes fewer cuts than the half slicing.

• Our approach achieved runtime improvement up to 20X times.
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CONCLUSION
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Conclusion

• How can we consider noise in the partitioning approach?

• How about other benchmarks?

• Traditional HSF simulation uses simple half slicing.

• The number of crossing gates increases the simulation time exponentially.

• Partitioning approach can make fewer crossing gates than half slicing.

• This leads to significant speed-up of simulation.

Summary

Future Work
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