Data-Driven Approaches for Process Simulation and Optical Proximity Correction

Hao-Chiang Shao¹, Chia-Wen Lin², and <u>Shao-Yun Fang³</u>

 ¹ National Chung Hsing University (NCHU), Taichung, Taiwan
² National Tsing Hua University (NTHU), Hsinchu, Taiwan
³ National Taiwan University of Science and Technology (NTUST), Taipei, Taiwan

Introduction

IC Fabrication Process

Photolithography

 Use photomask and photoresist to define where some material will be present or absent

Optical Effect

- Ideal lithography: light passes through features by a straight path
- Real lithography: light behaves like waves when feature size is close to wavelength

Lithography Simulation

- Lithography simulation generates simulated wafer patterns in the layout design stage
 - Require high accuracy
 - Computationally expensive and time-consuming

Optical Proximity Correction (OPC)

- One of the most effective and widely adopted RETs
- Model-based OPC is usually adopted and also time-consuming

.....

Electronic Design Automatic

Data-driven Approaches

• Machine learning-based approaches are recently popular

- Fast inference time (greatly speed up lithography simulation and OPC)
- Could handle unseen patterns
- Require huge data for model training

• In this talk

- Data-driven approaches are reviewed
- Critical challenges are highlighted
- Primary technical contributions are summarized
- Future research directions are suggested

Data-driven Approaches for Lithography Simulation

A Data-driven Resist Model

- Watanabe et al., "Accurate lithography simulation model based on convolutional neural networks," SPIE'17
 - Convolutional neural network (CNN)-based
 - Automatically extracting features from an aerial image
 - Outperform constant/variable threshold resist models

An End-to-End Lithography Model

- Ye et al., "LithoGAN: end-to-end lithography modeling with generative adversarial networks," DAC'19
 - Conditional generative adversarial network (CGAN)-based
 - The CGAN generates the simulated image of the target hole
 - The CNN predicts the center coordinate of the hole

Data-driven Approaches for Mask Optimization

A CGAN-based OPC Model

- Yang et al., "GAN-OPC: Mask optimization with lithographyguided generative adversarial nets," DAC'18
 - GAN-based
 - The generator is composed of an auto-encoder
 - The discriminator determines whether the mask pattern is a reference pattern and corresponds to the target pattern

[Yang et al., DAC'18]

OPC Acceleration with ML Prediction

- Jiang et al., "A fast machine learning-based mask printability predictor for OPC acceleration," ASPDAC'19
 - Edge fragmentation and SRAF insertion are performed first
 - Two models are used for each checkpoint
 - > One predicts whether the EPE exceeds a threshold
 - > The other predicts the intensity value to determine edge shifting
 - Could be embedded into industrial OPC flows
 - Comparable to and faster than GAN-based models

[Jiang et al., ASPDAC'19]

SRAF Insertion with Binary Classification

- Sub-resolution assist feature (SRAF) insertion
 - Non-printable auxiliary patterns to enhance neighboring layout features
- Xu et al., "A machine learning based framework for subresolution assist feature generation," ISPD'16
- Geng et al., "SRAF insertion via supervised dictionary learning," TCAD'20
 - Concentric circle area sampling (CCAS) for feature extraction
 - Predict whether a grid is an SRAF grid

Image-based SRAF Insertion

- Alawieh et al., "GANSRAF: sub-resolution assist feature generation using conditional generative adversarial networks," TCAD'21
 - CGAN-based

Electronic Design Automati

• A CycleGAN architecture is adopted for training with unpaired data

[Alawieh et al., TCAD'21]

Mask Rule-Compliant Optimization

- Yu et al., "Deep learning-based framework for comprehensive mask optimization," ASPDAC'19
 - Deep neural network (DNN)-based
 - ML models for both OPC and SRAF insertion
 - Edge-based OPC approach
 - Only consider limited numbers of SRAFs and SRAF dimensions

Data-driven Approaches from Simulation to Mask Optimization

LithoNet: A SEM Simulator

- Shao et al., "From IC layout to die photograph: a CNN-based data-driven approach," TCAD'21
- LithoNet: GAN-based SEM simulator
 - A CycleGAN extracts pattern contours of SEM images
 - The generator outputs a deformation map

Electronic Design Au

OPC with Self-Supervised Learning

- Shao et al., "From IC layout to die photograph: a CNN-based data-driven approach," TCAD'21
- OPCNet: GAN-based OPC engine
 - Self-supervised learning with the help of LithoNet
 - Optimized by using the input-output consistency loss

[Shao et al., TCAD'21]

DAMO with Enhanced DCGAN

- Chen et al., "DAMO: Deep agile mask optimization for full chip scale," TCAD'22
 - DCGAN-HD: perform high-resolution feature extraction and highresolution image synthesis

Optimization for Full Chip

- Chen et al., "DAMO: Deep agile mask optimization for full chip scale," TCAD'22
 - Layout splitting for full-chip application
 - Identify high-via-density clusters
 - Assign each via to a specific window
 - Simulate/correct each window separately

[Chen et al., TCAD'22]

Future Research Directions

Future Directions

• Data-driven approaches for complicated layouts

- Existing studies only consider contact/via hole layouts or simple and few layout clips
- Complicated layouts are required to verify existing models
- More sophisticated models and design strategies may be required

• Simultaneous OPC and SRAF insertion with GAN-based models

- Unified models are desirable for both SRAF insertion and OPC
- A GAN-based model may be developed

• Full-chip simulation/mask optimization for complicated layouts

The stitching problem of layout patterns emerges among windows

