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Photolithography

e Use photomask and photoresist to define where some material
will be present or absent

UV light floods backside of mask
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Optical Effect

e I|deal lithography: light passes through features by a straight
path

e Real lithography: light behaves like waves when feature size is
close to wavelength

ideal lithography real lithography
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Lithography Simulation

e Lithography simulation generates simulated wafer patterns in
the layout design stage

= Require high accuracy
= Computationally expensive and time-consuming
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Optical Proximity Correction (OPC)

e One of the most effective and widely adopted RETs
e Model-based OPC is usually adopted and also time-consuming
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Data-driven Approaches

e Machine learning-based approaches are recently popular
= Fastinference time (greatly speed up lithography simulation and OPC)
» Could handle unseen patterns
= Require huge data for model training

e In this talk
= Data-driven approaches are reviewed
= Critical challenges are highlighted
= Primary technical contributions are summarized
= Future research directions are suggested
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A Data-driven Resist Model

e Watanabe et al., “Accurate lithography simulation model based
on convolutional neural networks,” SPIE’17

=  Convolutional neural network (CNN)-based
= Automatically extracting features from an aerial image
=  Outperform constant/variable threshold resist models

Training data Training phase
/Aerial images threhold?
0.1

Testing data Testing phase

o

Aerial images

Predicted threshold
0.095

Prediction model

[Watanabe et al., SPIE'17]
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An End-to-End Lithography Model

e Yeetal, “LithoGAN: end-to-end lithography modeling with
generative adversarial networks,” DAC’19

Conditional generative adversarial network (CGAN)-based

= The CGAN generates the simulated image of the target hole

= The CNN predicts the center coordinate of the hole
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A CGAN-based OPC Model

e Yang et al., “GAN-OPC: Mask
optimization with lithography-
guided generative adversarial
nets,” DAC’18

» GAN-based

= The generator is composed of an
auto-encoder

= The discriminator determines
whether the mask pattern is a
reference pattern and
corresponds to the target pattern
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OPC Acceleration with ML Prediction

e Jiang et al., “A fast machine learning-based mask printability
predictor for OPC acceleration,” ASPDAC’19

» Edge fragmentation and SRAF insertion are performed first
= Two models are used for each checkpoint
> One predicts whether the EPE exceeds a threshold
> The other predicts the intensity value to determine edge shifting
» Could be embedded into industrial OPC flows
= Comparable to and faster than GAN-based models

Input mask ¢ Prediction |—» Predicted
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[Jiang et al., ASPDAC’19]
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SRAF Insertion with Binary Classification

Sub-resolution assist feature (SRAF) insertion

= Non-printable auxiliary patterns to enhance neighboring layout features

resolution assist feature generation,” ISPD’16

TCAD’20

Xu et al., “A machine learning based framework for sub-

Geng et al., “SRAF insertion via supervised dictionary learning,”

=  Concentric circle area sampling (CCAS) for feature extraction

= Predict whether a grid is an SRAF grid
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Image-based SRAF Insertion

e Alawieh et al., “GANSRAF: sub-resolution assist feature

generation using conditional generative adversarial networks,”
TCAD’21

» CGAN-based

= A CycleGAN architecture is adopted for training with unpaired data
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Mask Rule-Compliant Optimization

e Yuetal, “Deep learning-based framework for comprehensive
mask optimization,” ASPDAC’19

= Deep neural network (DNN)-based

= ML models for both OPC and SRAF insertion

= Edge-based OPC approach

= Only consider limited numbers of SRAFs and SRAF dimensions

SRAF
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[Yu et al., ASPDAC’19]
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LithoNet: A SEM Simulator

e Shao et al., “From IC layout to die photograph: a CNN-based

data-driven approach,” TCAD’21
e LithoNet: GAN-based SEM simulator
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A CycleGAN extracts pattern contours of SEM images
The generator outputs a deformation map
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OPC with Self-Supervised Learning

e Shao et al., “From IC layout to die photograph: a CNN-based
data-driven approach,” TCAD’21
e OPCNet: GAN-based OPC engine
= Self-supervised learning with the help of LithoNet
=  Optimized by using the input—output consistency loss
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[Shao et al., TCAD’21]
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DAMO with Enhanced DCGAN

e Chen et al., “DAMO: Deep agile mask optimization for full chip
scale,” TCAD’22

= DCGAN-HD: perform high-resolution feature extraction and high-
resolution image synthesis
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Optimization for Full Chip

e Chen et al., “DAMO: Deep RSN
agile mask optimization for
full chip scale,” TCAD’22
= Layout splitting for full-chip
application
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[Chen et al., TCAD22]
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Future Directions

e Data-driven approaches for complicated layouts

» Existing studies only consider contact/via hole layouts or simple and
few layout clips

= Complicated layouts are required to verify existing models
= More sophisticated models and design strategies may be required

e Simultaneous OPC and SRAF insertion with GAN-based models
» Unified models are desirable for both SRAF insertion and OPC
= A GAN-based model may be developed

e Full-chip simulation/mask optimization for complicated layouts
= The stitching problem of layout patterns emerges among windows
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