

Date: January 16 – 19, 2023

DESIGN DISCONFERENCE

Mixed-Type Wafer Failure Pattern Recognition (Invited Paper)

Hao Geng¹, Qi Sun², Tinghuan Chen², Qi Xu³, Tsung-Yi Ho², Bei Yu²

¹ShanghaiTech University
²The Chinese University of Hong Kong
³University of Science and Technology of China

Jan. 18, 2023

Introduction

Wafer Defect Inspection

- Technology nodes shrinks, smaller but more complex circuits are etched on wafers
- Recognizing wafer defects is vital

The defect inspection technologies in wafer manufacturing.¹

¹P.-C. Chen et al., "Defect Inspection Techniques in SiC," Nanoscale Research Letters, 2022.

• Single-type defect patterns emerge and are coupled and shaped mixed-type patterns

Some wafer map patterns in MixedWM38 benchmark: (a) Center; (b) Scratch; (c) Location; (d) Edge-Location; (e) 2 single-type defects mixed (Center, Scratch); (f) 2 single-type defects mixed (Scratch, Location); (g) 3 single-type defects mixed (Center, Scratch, and Location); (h) 4 single-type defects mixed (Center, Scratch, Location, and Edge-Location).

Wafer Defect Pattern Recognition Flow

Visualizing wafer maps

Recognizing wafer defect patterns by various approaches

reasoning the root cause of defects

The General Wafer Defect Pattern Recognition Flow.

Current Methods For Wafer Defect Pattern Recognition

The taxonomy of prior arts.

Shallow Learning-based Recognition Paradigm

Clustering-based Methods

An example of clustering-based method.¹

¹M. B. Alawieh et al., "Identifying wafer-level systematic failure patterns via unsupervised learning," IEEE TCAD, 2017.

Typical Classification-based Methods

An example of typical classification-based method.¹

¹M.-J. Wu et al., "Wafer map failure pattern recognition and similarity ranking for large-scale data sets," IEEE TSM, 2015.

Deep Learning-based Recognition Paradigm

The illustration of the data augmentation and selective wafer defect recognition network.¹

 $^{^1}$ M. B. Alawieh et al., "Wafer map defect patterns classification using deep selective learning," DAC, 2020.

The proposed semi-supervised wafer failure pattern classifier.¹

¹H. Geng et al., "When wafer failure pattern classification meets few-shot learning and self-supervised learning," ICCAD, 2021.

The architecture of the transformer-based defect recognition.¹

¹Y. Wei et al., "Mixed-type wafer defect recognition with multi-scale information fusion transformer," IEEE TSM, 2022.

(a) An example of pattern-level recognition. ¹
(b) The segmentation example for the wafer defect detection. ²

¹ P. P. Shinde et al., "Wafer defect localization and classification using deep learning techniques," IEEE Access, 2022.

²Y. Kong et al., "Qualitative and quantitative analysis of multi-pattern wafer bin maps," IEEE TSM, 2020.

Conclusion & Future Directions

•

- A survey of recent line of arts in wafer failure pattern recognition
- The conflict between the security of wafer information and the development of a learning-based method
- Rethinking deep learning-based algorithms: susceptible to perturbations, prior information incorporation, ...
- Considering extracting and fusing multi-level features from wafer-level to die-level

THANK YOU!