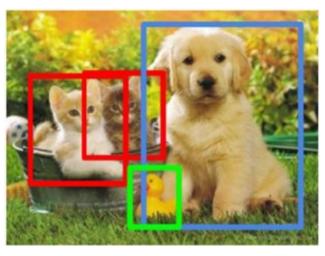
Mortar: Morphing the Bit Level Sparsity for General Purpose Deep Learning Acceleration

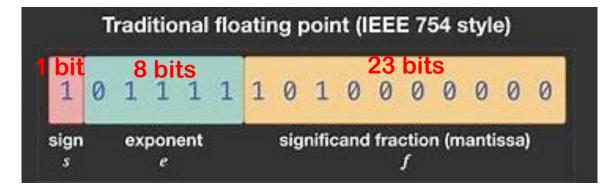
Yunhung Gao³, Hongyan Li¹², Kevin Zhang ³, Xueru Yu⁴, Hang Lu¹²

¹State Key Laboratory of Computer Architecture, Institute of Computing Technology, CAS, Beijing, China ²University of Chinese Academy of Sciences, Beijing, China ³School of Electronics Engineering and Computer Science Peking University Beijing, China ⁴Shanghai Integrated Circuits R&D Center Co. Ltd Shanghai, China

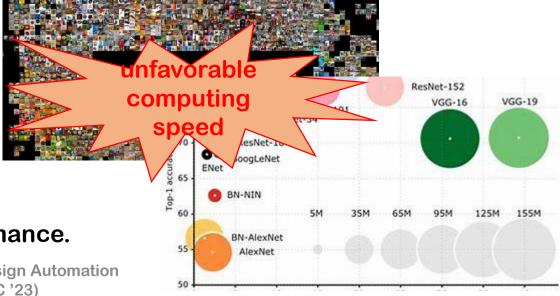
Introduction

DNN networks





28th Asia and South Pacific Design Automation Conference (ASPDAC '23)



Introduction

The contributions of this work

Propose Mortar, a novel on/off-line collaborative approach for general purpose deep learning acceleration

① An off-line mantissa morphing algorithm to get higher model accuracy & higher bit-level sparsity

Mortar maintains on average 3.55% higher model accuracy while increasing more bit-level sparsity than the baseline.

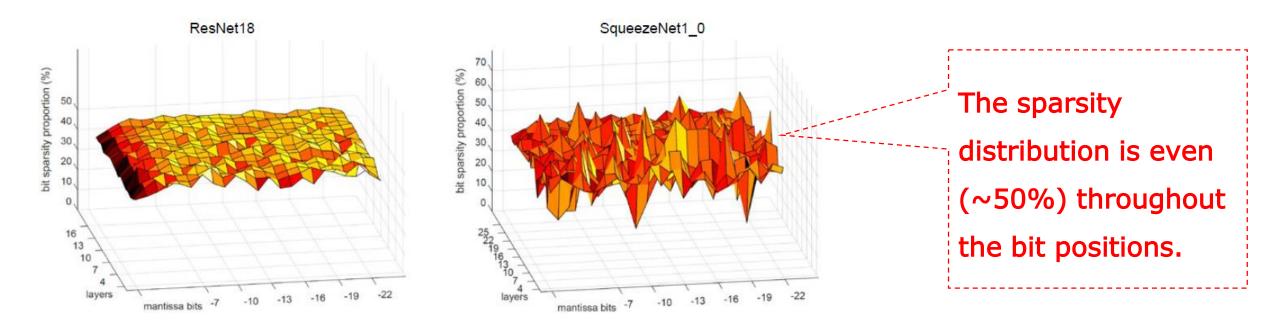
② The on-line associating hardware accelerator to speed up the on-line fp32 inference

The hardware accelerator outperforms up to 4.8x over the baseline, with an area of $0.031 \text{ } mm^2$ and power of 68.58 mw.

Motivation

Sparsity Parallelism

X-axis : the bit slice of the binary represented weight (in fp32) Y-axis : the sequential layers of the model Z-axis : the fraction of bit '1'



Motivation

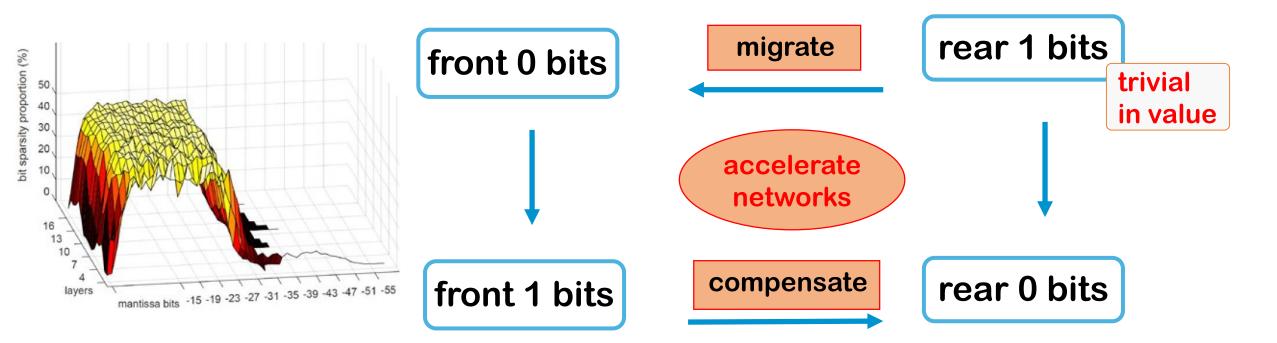
Sparsity Irregularity

Bit-level sparsity after exponent matching SqueezeNet1_0 ResNet18 80 70 bit sparsity proportion (%) bit sparsity proportion (%) 60 50 50 40 40 30 30 20 20 10 10 16 13 10 mantissa bits -10 -13 -16 -19 -22 -25 -28 -31 -34 -37 15 -19 -23 -27 -31 -35 -39 -43 -47 -51 -55 layers mantissa b _ess than 10%

All the evaluated DNNs exhibit an "arched" shape. Exponent matching will generate more sparsity due to the shifting operation making the sparsity distribution highly irregular.

Problem tackled in this work

Goal : computing fewer 1 bits while still maintaining target accuracy



We intend to solve the problem in Mortar!

28th Asia and South Pacific Design Automation Conference (ASPDAC '23)

Methodology – Mantissa Morphing

Mantissa Morphing

$$Precision = \left(\left| \frac{W_i - W_i}{W_i} \right| = \left| \frac{\varepsilon_i}{W_i} \right| < P \right) ? 1:0$$

a hyperparameter balancing the tradeoff between sparsity and accuracy.

Algorithm 1: Mantissa Morphing

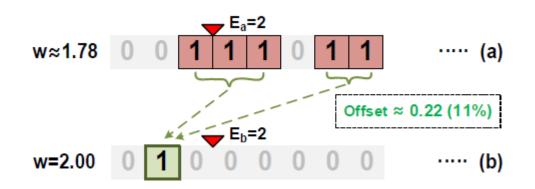
Input: Original fp32 weight, W_i

Output: New weight after mantissa morphing, W_i' ,

Interpret the n-bit exponent $E = [e_1, ..., e_n]$ and mantissa 1: 2: $M = [m_1, \dots, m_n]$, the actual position of E is determined. Set the value for parameter 'P' in Precision function 3: for each column j in W4: 5: if $W_{j} = 1$ and $W_{j-1} = 0$: 6: $W'_{i-1} = 1;$ 7: for each column k in W[j:c]8: $W_{\nu}^{\prime} = 0;$ 9: if (Precision(W, W', P)) # precision judge 10: Return W', j + 1; 11: else W' = W: 12: continue

*Loop 7 can be parallelized for speedups

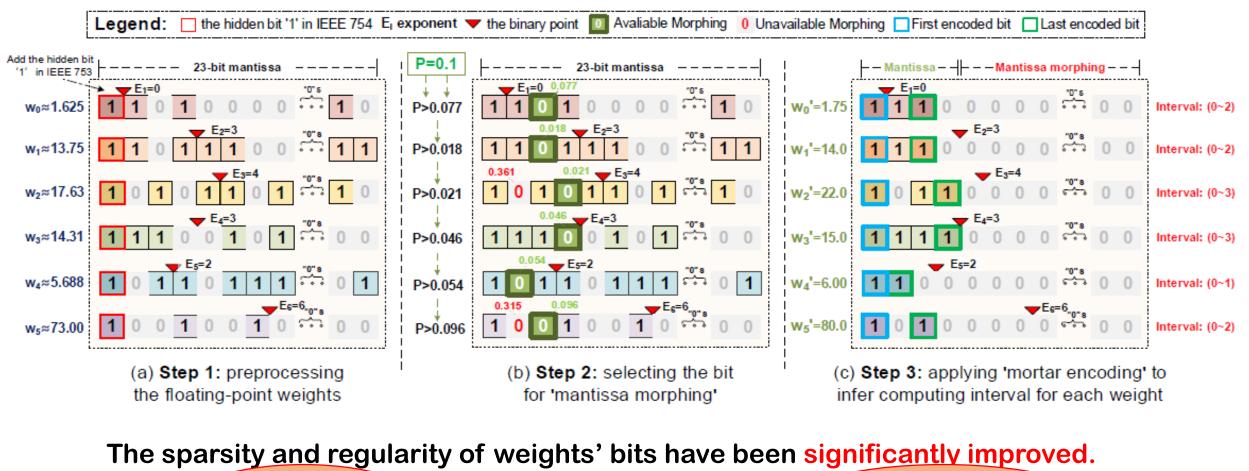
An example of Mantissa Morphing



$$\frac{number of \ bit \ 1s \ in \ (a)}{number \ of \ bit \ 1s \ in \ (b)} = 5$$

Methodology – core concept

off-line bit morphing

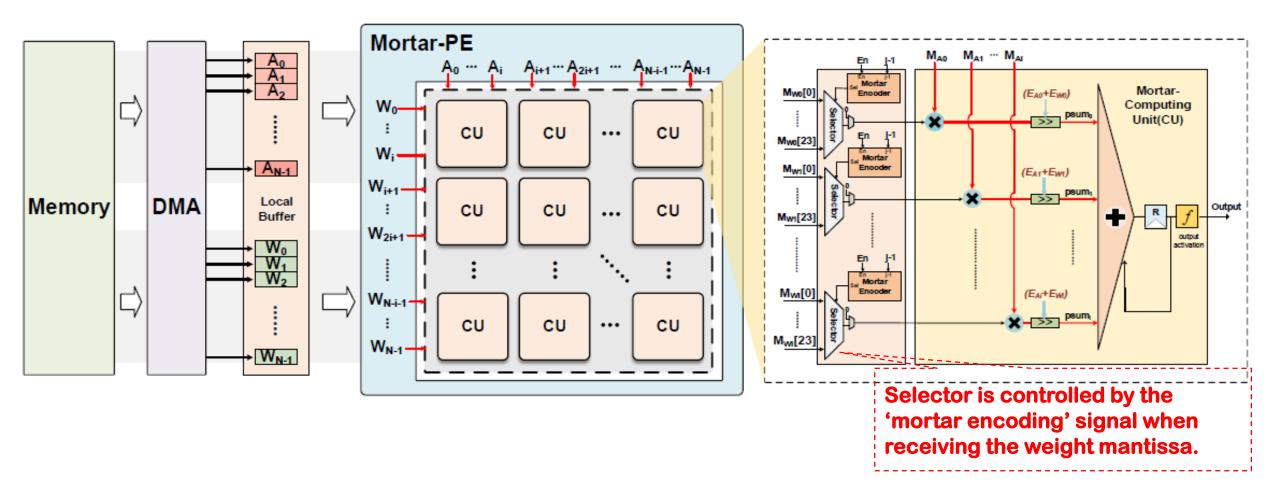


less computation 28t

28th Asia and South Pacific Design Automation Conference (ASPDAC '23) less hardware design overheads

Methodology – Mortar accelerator

on-line hardware accelerator



Benchmark models

Models	Domain	Туре	Dataset	Metric	GFLOPS	Weights (M)
DenseNet161	Image Classification	2D Convolution	ILSVRC2012	Top-1 %	15.64	28.68
ResNext101	Image Classification	2D Convolution	2D Convolution ILSVRC2012 Top-1 % 33.02		33.02	88.79
ResNet18	Image Classification	2D Convolution	ILSVRC2012	Top-1	3.64	11.69
YoloV3	Object Detection	2D Convolution	COCO	mAP	25.42	61.95
FCOS	Object Detection	Feature Pyramid	COCO	mAP	80.14	32.02
ViT	Video Understanding	Transformers ILSVRC2012 Top_1(%)		Top_1(%)	29.42	86.61
D3DNet	Video Super Resolution	3D Deformable	Viemo-90k	PSNR	408.82	2.58
DSDNet	video super Resolution	5D Deformatie		SSIM		
LapSRN	Image Super Resolution	2D De-Convolution	SET14	/	736.73	0.87
CartoonGAN	Style Transfer	GAN	Flickr	/	108.98	11.69

Various benchmark models in different domains demonstrate the generalization capability of Mortar.

Design space exploration

P balances the tradeoff between sparsity and accuracy.

Model	Baseline	P=0.0001	P=0.0005	P=0.001	P= 0.005	P=0.01	P=0.05	P=0.1	P=0.3	P=0.5
DenseNet161	75.28	75.28	75.28	75.28	75.28	75.27	75.29	75.31	75.37	75.06
ResNext101	78.24	78.24	78.24	78.25	78.25	78.27	78.29	78.26	77.93	77.41
ResNet18	67.28	67.29	67.29	67.29	67.29	67.28	67.28	67.22	67.13	66.92
YoloV3	52.73	52.75	52.75	52.75	52.73	52.73	52.69	52.50	51.72	51.38
FCOS	0.382	0.382	0.382	0.382	0.382	0.382	0.382	0.378	0.318	0.258
ViT	83.89	83.89	83.89	83.88	83.88	83.88	83.76	83.66	83.33	82.91
D3DNet -	36.05	36.05	36.05	36.05	36.05	36.05	36.05	36.05	36.02	35.97
	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94

For most models, setting 0.0001 < P < 0.05 maintains equal accuracy with the baseline, and even improvements in certain cases. However, most model accuracy starts to decrease when $P \ge 0.1$.

Accuracy & sparsity

Model accuracy and sparsity change after applying mantissa morphing at P=0.1.

Madala	Baseli	ne	Mortar			
Models	Accuracy / Sparsity					
DenseNet161	75.28/	'1x	75.37/1.58x			
ResNext101	78.24/1x		78.26/1.81x			
ResNet18	67.28/1x		67.22/2.09x			
YoloV3	52.73/1x		52.50/1.28x			
FCOS	0.382/1x		0.378/1.38x			
ViT	83.89/1x		83.66/2.51x			
	36.05		36.05			
D3DNet	0.94	1x	0.94	2.28x		
Avg. loss/sparsity	0.00/1x		-0.06/1.85x			

Accuracy/Sparsity comparison with BitX $_{[1]}$.

Models	Original	BitX	Mortar	
DenseNet161	75.28/1x	74.79/1.61x	75.37/1.58x	
ResNext101	78.24/1x	73.00/1.74x	78.26/1.81x	
ResNet18	67.28/1x	62.52/1.90x	67.22/2.09x	
Avg. loss / sparsity	0.00/1x	-3.50/1.75x	+0.05/1.83x	

In general cases, the sparsity improvement of a model can reach $\sim 2x$ with a neglectable accuracy degradation.

Mortar greatly **outperforms** SOTA approach in accuracy while maintaining a slightly **improved sparsity**.

[1] H. Li et al., "BitX: Empower Versatile Inference with Hardware Runtime Pruning," in ICPP, 2021.

28th Asia and South Pacific Design Automation

Conference (ASPDAC '23)

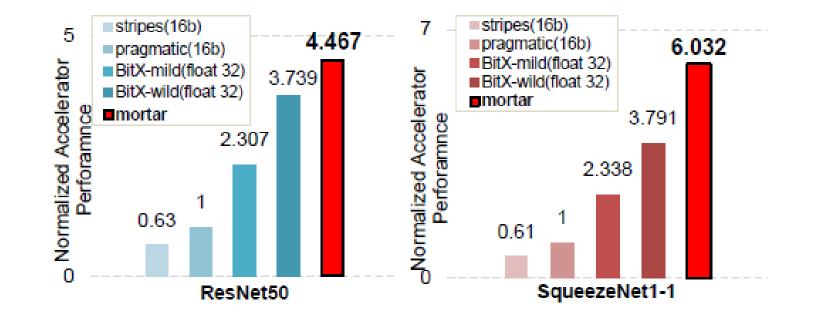
Visual Comparison

Visual demonstrations of 4x super resolution inference via Mortar and cartoon style transfer via Mortar

(b) visual comparison for CartoonGAN

The results are nearly indistinguishable which proves that Mortar could attain faster inference with the maintained Quality of Result.

Comparison with SOTA Accelerators



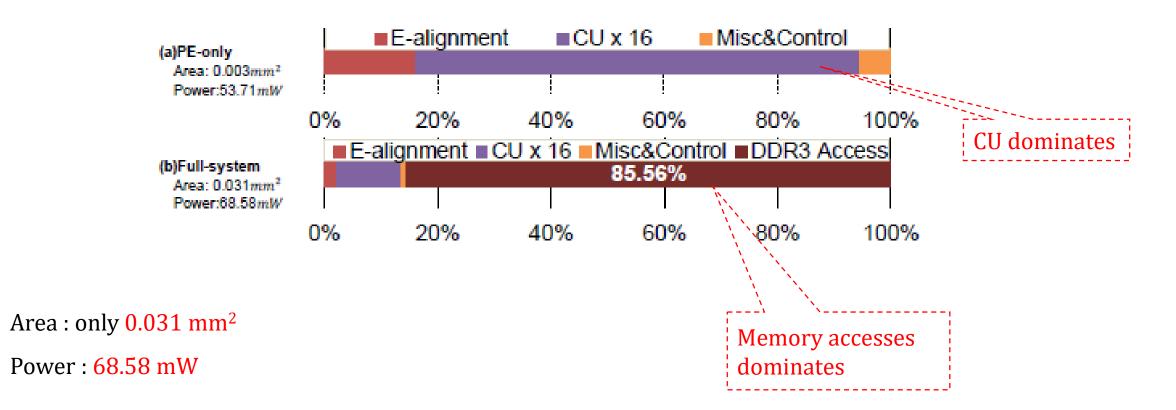
- 1. The speedup shows better result over other SOTA accelerators.
- 2. Mortar's performance on ResNet50 is 4.467x that of the baseline. On SqueezeNet1_1, Mortar outperforms the baseline by 6.032x.

Accelerator energy and area breakdown

1.

2.

Mortar' Area & Energy Breakdown for PE-only and full system



Recap

The contributions of this work

① Propose a novel off-line mantissa morphing algorithm – "Mortar"

significantly increase the bit-level sparsity

accelerate fp32 inference while maintaining high accuracy

show the strong generalization capabilities on various models

② Propose the associating on-line hardware accelerator "Mortar accelerator"

Applications, and what's more?

28th Asia and South Pacific Design Automation Conference (ASPDAC '23)

Thanks for listening!

Questions?

Yunhung Gao³, Hongyan Li¹², Kevin Zhang ³, Xueru Yu⁴, Hang Lu¹²

¹State Key Laboratory of Computer Architecture, Institute of Computing Technology, CAS, Beijing, China

²University of Chinese Academy of Sciences, Beijing, China

³School of Electronics Engineering and Computer Science Peking University Beijing, China

⁴Shanghai Integrated Circuits R&D Center Co. Ltd Shanghai, China

