Data-Model-Circuit Tri-Design for Ultra-Light Video Intelligence on Edge Devices

Yimeng Zhang¹, **Akshay Kamath²**, Qiucheng Wu³, Zhiwen Fan⁴, Wuyang Chen⁴, Zhangyang Wang⁴, Shiyu Chang³, Sijia Liu¹, Cong Hao²

¹*Michigan State University, USA* ²*Georgia Institute of Technology, USA* ³University of California at Santa Barbara, USA

⁴University of Texas at Austin, USA

ASP-DAC 2023

Speaker Bio

ECE graduate student at Georgia Tech, USA

2021 - 2023

Thesis Advisor : Prof. Cong (Callie) Hao Research Area : Hardware accelerators for deep learning

Akshay Kamath

Interned in the SoC Design and Integration team at Apple Silicon Engineering Group, Cupertino, USA

RTL Design Engineer at Samsung Semiconductor India Research Cryptographic accelerator IPs, SerDes IPs, and test chips.

Bachelor's degree from NITK Surathkal in India

Electronics and Communication Engineering MITACS Research Intern at University of Toronto in Summer 2016

Overview

- / Multiple Object Tracking (MOT) on HD Video Stream
 - Challenges for MOT deployment on Edge Devices
 - Data-Model-Circuit Tri-Design Framework and its Efficacy

(

Temporal Frame Filtering & Spatial Saliency Focusing

Hardware-friendly Sparsity Pattern-aware Pruning

Scalable Dataflow-style FPGA-based Accelerator

Multiple Object Tracking (MOT)

- Basis for video intelligence in
 - Autonomous driving
 - Virtual reality
 - Medical imaging
- Involves object
 - Detection
 - Localization
 - Association

Source: <u>BDD100K</u> Driving Dataset Example for Object Tracking

Problem & Motivation

Accurate real-time High-Definition (HD) video processing for MOT

Critical Limitations:

- Computationally-expensive ML models
 - High in accuracy but not hardware friendly
- Massive size of video data as input
 - Further adds to computational complexity
- Poor scalability of hardware devices
 - Limited computing resources and power
 - Low degree of parallelism by design tools

Challenges & Approaches

MOT implementation prohibitively expensive in energy and latency due to large data size

Eliminate temporal and spatial redundancies in video frames to reduce data complexity

Gigantic number of parameters in state-of-the-art MOT models

Hardware-friendly model compression necessary

2

Lack of software-hardware full-stack design approach

-

Realistic implementation and evaluation on hardware

No prior work addresses 1-3 in a single unified MOT implementation pipeline!

Proposed Data-Model-Circuit Tri-Design Framework

State-of-the-art MOT Model: QDTrack¹ with BDD100K dataset

- Faster R-CNN with Feature Pyramid Network (FPN) backbone
- Contrastive Learning to optimize backbone parameters
- Bi-directional Softmax for object association and tracking

¹Pang et al., *Quasi-Dense Similarity Learning for Multiple Object Tracking*, CVPR 2021.

Data-Model-Hardware Tri-Design Overview

RL-based Model for Temporal Frame Filtering

Frame Filtering Model Architecture

Temporal Frame Filtering Model Behavior

Before Frame Dropping

After Frame Dropping

Spatial Saliency Focusing

Spatial Saliency Reduction (SSR) Method

- Decompose input image into multiple patches
- Obtain saliency score using Sobel operator
- Create binary masks based on the scores
- Apply to both image and feature spaces

Highlights

- Drop unimportant pixels
- Align with visually spatial saliency, easy for computation
- Eliminate in images and features

Saliency Score and Patch Size Estimation

Saliency score performs better than random patch dropping

Hardware-friendly "sweet" patch size: 60 x 60

Spatial Saliency Focusing Behavior

Hardware-aware Model Pruning

SOTA Iterative Magnitude Pruning (IMP) applied to QDTrack

Metrics	Dense Model	Global Pruning			
	0%	80%	85%	90%	
IDF1 ↑	0.714	0.712	0.706	0.703	
ΜΟΤΑ ϯ	0.637	0.631	0.627	0.624	
Sparse Kernel Ratio	0%	36.59%	34.44%	32.53%	

But... IMP is unstructured (:-)

X **Structured Pruning Unstructured Pruning** Hinders parallelization

Hardware-friendly

 \checkmark

Ratio of pruned 3 x 3 kernel weights over total number of pruned weights

Kernel-wise sparsity embedded in irregular weight pruning on QDTrack!

Irregular Pattern-aware Pruning

- For uncovered sparse weights
 - From kernel-wise sparse patterns
- Effective area of a convolution kernel,
 - Maintains specific sparse patterns
 - May not yield kernels with all zero weights
- Pre-defined irregular sparse patterns^[1]
 - Leveraged for 3 x 3 kernels
- Fixed number of such sparse patterns
 - Facilitates efficient hardware implementation

Pattern Pruning

^[1]Xiaolong Ma et al., An image enhancing pattern-based sparsity for real-time inference on mobile devices, ECCV 2020.

Proposed Pruning Method

- Find irregular weight sparse mask M_0
 - As per model weight magnitudes
- Extract kernel-wise sparsity mask M_k from M₀
- Find irregular pattern-aware mask M_p
 - On remaining weights identified by $(1 M_k)$
- **Retrain** non-zero model weights
 - Under fixed pruning mask (M_k + M_p)

Our method achieves MOT performance like IMP across different pruning ratios!

Channel-wise pruning sensitive to pruning ratio

Computation Complexity Comparison

Baseline models and our tri-design approaches

Back-end Hardware Accelerator Overview

- a) Feature maps partitioned
 - Limited on-chip memory
 - Tile size same as patch
- b) Parallel computations
 - Unrolling each row
- c) Overlapping operations
 - Effectively single-cycle
- d) Pruning-aware design
 - Skip pruned channels

Scalable Multi-FPGA Dataflow Architecture

Performance Comparison

Methods	Metrics						
	IDF1 ↑	MOTA ↑	Latency↓ (ms)	EFR	Power↓ (W)	Energy Efficiency↓	
QDTrack (GPU Baseline)	0.714	0.637	60.9	22.5	296	13.2 J/frame	
QDTrack on FPGA	0.714	0.637	554.7	1.8	50.8	28.2 J/frame	
Tri-design (proposed)	0.704	0.617	44.4	37.6	50.8	1.35 J/frame	

- Standard MOT metrics: IDF1 score and Multi-Object Tracking Accuracy (MOTA).
- IDF1 emphasizes association accuracy while MOTA concerns with object detection accuracy.
- EFR (Effective Frame Rate) is indicative of throughput in processing video frames

Tri-Design Summary w.r.t. State-of-the-Art Baseline

Highly-efficient video processing algorithm/hardware pipeline

- DNN-based state-of-the-art MOT model
- BDD100K dataset contents as inputs
- FPGA cluster with Alveo U50 and ZCU104
- Data-model-circuit tri-design for MOT implementation on edge
 - Aggressive data reduction techniques
 - Hardware-friendly model compression
 - SW optimization-aware dataflow accelerator

Thank You!

Akshay Kamath akshay.k2@gatech.edu Dr. Callie Hao

callie.hao@gatech.edu

