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Overview

Multiple Object Tracking (MOT) on HD Video Stream

Challenges for MOT deployment on Edge Devices

Data-Model-Circuit Tri-Design Framework and its Efficacy

Temporal Frame Filtering & Spatial Saliency Focusing

Hardware-friendly Sparsity Pattern-aware Pruning 

Scalable Dataflow-style FPGA-based Accelerator



• Basis for video 
intelligence in
- Autonomous driving
- Virtual reality
- Medical imaging

• Involves object
- Detection
- Localization
- Association

Multiple Object Tracking (MOT) 

Source: BDD100K Driving Dataset Example for Object Tracking

https://www.bdd100k.com/


• Computationally-expensive ML models
- High in accuracy but not hardware friendly

• Massive size of video data as input
- Further adds to computational complexity

• Poor scalability of hardware devices
- Limited computing resources and power
- Low degree of parallelism by design tools

Problem & Motivation

Accurate real-time High-Definition (HD) video processing for MOT

Critical Limitations:



Challenges & Approaches

No prior work addresses ①-③ in a single unified MOT implementation pipeline!

MOT implementation prohibitively 
expensive in energy and latency 

due to large data size

Gigantic number of parameters in 
state-of-the-art MOT models

Eliminate temporal and spatial 
redundancies in video frames to 

reduce data complexity 

Hardware-friendly model 
compression necessary

Lack of software-hardware 
full-stack design approach

Realistic implementation and 
evaluation on hardware



Proposed Data-Model-Circuit Tri-Design Framework
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• Faster R-CNN with Feature Pyramid Network (FPN) backbone
• Contrastive Learning to optimize backbone parameters
• Bi-directional Softmax for object association and tracking 

State-of-the-art MOT Model: QDTrack1 with BDD100K dataset

A synergized software/hardware 
co-optimization framework for MOT

High-throughput Low-cost High-accuracy

Real-time performance High-energy efficiency

1Pang et al., Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021.



Data-Model-Hardware Tri-Design Overview

Map to

Temporal Frame Filtering 
• Reinforcement-

learning based policy

Spatial Dimensionality 
Detection 
• Complexity-score 

based detection

Map to

Reduced 
Frames

Reduced 
Regions

Software
Design

1 2 3

Hardware 
Design

Pruning and Compressing 
• Kernel-Wise Pruning  
• Pattern-Wise Pruning

0 0 0
0 0 0
0 0 0

Kernel-wise

Pruning

1 0 1
0 0 0
1 0 1

Pattern-wise

Pruning

Skip Frame Computation Tile-based Architecture Pruning-aware Parallelism

Map to

4 4 4

Frame 1
backend

Frame 3
RPN+FPN

Frame 4
Backbone

Skip 
tiles ×

Skip 
channels

Sobel
Frame T

Skip Frame T?

Frame T-1

Frame T-2

Frame 2 dropped



RL-based Model for Temporal Frame Filtering

Performance Loss

Minimize ID-swap/frame

Amount of Filtering

Maximize frame drop rate

Training Objective

Baselines
• Drop every Nth frame
• Drop frames randomlyBaselines

• Performs better
• “Sweet” drop rate: 40% Proposed



Frame Filtering Model Architecture

- Low inference time, easy for deployment

- High efficiency for subsequent modules

A light-weight model to drop unimportant frames



Temporal Frame Filtering Model Behavior 

Less changes 
in surroundings

More frames 
filtered

More changes 
in surroundings

Less frames 
filtered

After Frame Dropping

Before Frame Dropping



Spatial Saliency Focusing

- Drop unimportant pixels

- Align with visually spatial saliency, 

easy for computation

- Eliminate in images and features

HighlightsSpatial Saliency Reduction (SSR) Method

- Decompose input image into multiple patches

- Obtain saliency score using Sobel operator 

- Create binary masks based on the scores

- Apply to both image and feature spaces



Saliency Score and Patch Size Estimation 

Saliency score performs better than random patch dropping

Hardware-friendly “sweet” patch size: 60 x 60



Spatial Saliency Focusing Behavior

Saliency focusing 
ratio set to 20%

Discarded pixels 
shown by dark patches

GT -> Ground Truth
FM -> Feature Map 

(i, j) -> ResNet-50 layer



Hardware-aware Model Pruning

Hardware-friendly

Structured PruningUnstructured Pruning

Hinders parallelization

Metrics
Dense 
Model

Global 
Pruning

0% 80% 85% 90%

IDF1 ↑ 0.714 0.712 0.706 0.703

MOTA ↑ 0.637 0.631 0.627 0.624

Sparse Kernel Ratio 0% 36.59% 34.44% 32.53%

But… IMP is unstructured

SOTA Iterative Magnitude Pruning (IMP) applied to QDTrack

Kernel-wise sparsity 

embedded in irregular 

weight pruning on 

QDTrack!

Ratio of pruned 3 x 3 

kernel weights over 

total number of 

pruned weights



Irregular Pattern-aware Pruning

Pattern Pruning

• For uncovered sparse weights
- From kernel-wise sparse patterns

• Effective area of a convolution kernel,
- Maintains specific sparse patterns
- May not yield kernels with all zero weights

• Pre-defined irregular sparse patterns[1]

- Leveraged for 3 x 3 kernels

• Fixed number of such sparse patterns
- Facilitates efficient hardware implementation

[1]Xiaolong Ma et al., An image enhancing pattern-based sparsity for real-time inference on mobile devices, ECCV 2020.



Proposed Pruning Method

• Find irregular weight sparse mask M0

- As per model weight magnitudes

• Extract kernel-wise sparsity mask Mk from M0

• Find irregular pattern-aware mask Mp

- On remaining weights identified by (1 – Mk)

• Retrain non-zero model weights

- Under fixed pruning mask (Mk + Mp)

Channel-wise pruning sensitive to pruning ratio
Our method achieves MOT performance 

like IMP across different pruning ratios!



Computation Complexity Comparison

Significant reduction 
in GOPs achieved with 
software optimizations 

Hardware design 
must leverage 
frame filtering, 

saliency focusing, 
and pruning. 



Back-end Hardware Accelerator Overview
a) Feature maps partitioned

- Limited on-chip memory
- Tile size same as patch

b) Parallel computations
- Unrolling each row

c) Overlapping operations
- Effectively single-cycle

d) Pruning-aware design
- Skip pruned channels

p%
channels 
pruned

p%
latency 
reduced



Scalable Multi-FPGA Dataflow Architecture

FPGA 3
Xilinx 

ZCU104@5W

Conv1

Anchor Generator, Non-Maximum Suppression (NMS),
and Region-Of-Interest (ROI) Align 

NMS, Bounding-Box-to-ROI, and ROI Align

Conv2_x Conv3_x Conv4_x Conv5_x

FPN0 FPN1 FPN2 FPN3

RPN0 RPN1 RPN2 RPN3/4

BBox_regression
13.93

Bbox_classify
13.90

Track Head Convs + Group Norm + FC
3.86

Bi-directional Softmax

2.2
FPGA 1

Xilinx Alveo
U50@75W

FPGA 2
Xilinx Alveo
U50@75W

GOPs before pruning

ResNet-50 
+ FPN

GOPs after pruning

GOPs with un-structured 
pruning 

11.67 1.16 17.36 1.74 25.56 2.56 13.26 1.33

34.73 3.47 8.68 0.87 2.17 0.22 1.02 0.10

34.91 3.49 8.73 0.87 2.18 0.22 0.69 0.07

1.39 1.39

0.39

QDTrack

Deployment 

on FPGA 

Cluster

• Computation complexity in GOPs
- 1 GOP = 1 MAC operation

• Multi-FPGA is scalable!
- Design tool runs faster
- Device utilization is high



Performance Comparison

Methods

Metrics

IDF1 ↑ MOTA ↑ Latency ↓
(ms)

EFR ↑
(fps)

Power ↓
(W)

Energy 
Efficiency ↓

QDTrack (GPU Baseline) 0.714 0.637 60.9 22.5 296 13.2 J/frame

QDTrack on FPGA 0.714 0.637 554.7 1.8 50.8 28.2 J/frame

Tri-design (proposed) 0.704 0.617 44.4 37.6 50.8 1.35 J/frame

• Standard MOT metrics: IDF1 score and Multi-Object Tracking Accuracy (MOTA).
• IDF1 emphasizes association accuracy while MOTA concerns with object detection accuracy.
• EFR (Effective Frame Rate) is indicative of throughput in processing video frames



Tri-Design Summary w.r.t. State-of-the-Art Baseline

12.5x
Latency Reduction

20.9x
Effective Frame Rate (EFR)

5.8x
Lower power

9.8x
Better Energy Efficiency

Similar Accuracy!



• Highly-efficient video processing algorithm/hardware pipeline

- DNN-based state-of-the-art MOT model

- BDD100K dataset contents as inputs

- FPGA cluster with Alveo U50 and ZCU104 

• Data-model-circuit tri-design for MOT implementation on edge

- Aggressive data reduction techniques

- Hardware-friendly model compression

- SW optimization-aware dataflow accelerator

Summary
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