

AutoFlex: Unified Evaluation And Design Framework for Flexible Hybrid Electronics

Tianliang Ma Shanghai Jiao Tong University

Introduction

2

Unified Evaluation Framework for Flexible Hybrid Electronics

3

Quantitative Studies for Flexible Technologies

System Demonstration of Flexible Hybrid Electronics

Introduction

Unified Evaluation Framework for Flexible Hybrid Electronics

Quantitative Studies for Flexible Technologies

System Demonstration of Flexible Hybrid Electronics

Introduction

Progress of Wearable Applications

Fitness

Industrial/Military

Source: Transparency Market Research & IDTechEx Report

Introduction

Comparison between silicon and flexible technologies

Traditional Silicon	High Performance/Reliability; Small Variation				
	Poor Wearability; Limited Functionality; High Cost				
Emerging Flexible Electronics	Great Wearability; Diverse Functionality; Low Cost				
	Low Performance/Reliability; Large Variation				

Flexible Hybrid Electronics(FHE) = Flexible Electronics + Silicon IC

Introduction

> Advantages and challenges of FHE system

Challenges:

- Lack of standardized evaluation framework
- Fair comparison between various flexible technologies

Unified Evaluation Framework for Flexible Hybrid Electronics(FHE)

Introduction

Unified Evaluation Framework for Flexible Hybrid Electronics

Quantitative Studies for Flexible Technologies

System Demonstration of Flexible Hybrid Electronics

> AutoFlex: Design Automation Flow for Flexible Hybrid Electronics

> AutoFlex Code Structure

- ► Inputs
- Key parameters of flexible transistor
- Netlists of standard cell library
- Evaluation benchmarks
- Environmental settings of working conditions and EDA tools

- ► Outputs
- Leakage power
- Dynamic power
- Maximum frequency
- Minimum chip area

> Unified Compact Model for Various Flexible Devices

Traditional CMOS Model: Linear Region

$$I_D \approx \frac{W}{L} \mu C_{ox} (V_{GS} - V_T - \frac{V_{DS}}{2}) V_{DS}$$

Mobility Enhancement

$$\mu = \begin{cases} \mu_0 (V_G - V_{th})^{\gamma}, & \text{N-type TFT} \\ \mu_0 (V_{th} - V_G)^{\gamma}, & \text{P-type TFT} \end{cases}$$

Mobility Degeneration

$$\frac{\tilde{\mu}}{\mu} = \frac{1}{1 + k R_C (V_{th} + V_{SG})}; \ k = \frac{W}{L} C_{ox} \mu$$

Unified Compact Model

$$V_{SD} \approx \begin{cases} k' \{ (V_{th} - V_{GS}) - \frac{1+\gamma}{2} V_{SD} \} V_{SD}, \ V_{DS} > V_{GT} \\ \frac{k'}{(\gamma+2)} (V_{th} - V_{GS})^2, \ V_{DS} \le V_{GT} \end{cases}$$

 $k' = k(V_{th} - V_{GS})^{\gamma}; \ V_{GT} = V_{GS} - V_{th}$

Ref: L. Shao et al, DATE, 2018, (Best Paper Award Nominations) DOI: 10.23919/DATE.2018.8342058

1

> Unified Compact Model for Various Flexible Devices

Ref: L. Shao et al, DATE, 2018, (Best Paper Award Nominations) DOI: 10.23919/DATE.2018.8342058

Introduction

Unified Evaluation Framework for Flexible Hybrid Electronics

Quantitative Studies for Flexible Technologies

System Demonstration of Flexible Hybrid Electronics

Circuit Topology Comparisons

Table 3: Performance Comparisons of Different Mono-type Inverters

Mono-type Structures	Diode-Load	Resistive-Load	Pseudo-E
Output High Voltage(V)	2.54	3.30	3.30
Output Low Voltage(V)	0.56	0.22	0.05
Output Rise Time(ns)	76.10	27.88	45.26
Output Fall Time(ns)	53.31	23.70	37.89

Minimum output voltage loss

Minimum transition time

Table 4: Leakage Power Comparison of CMOS and Mono-type Structures

Benchmarks	Leakage Power consumption(nW)				
	CMOS	Pseudo-E	Diode-Load	Resistive-Load	
encoder_8to3bit	0.24	1.55e+7	4.56e+6	1.09e+6	
adder_16bit	4.70	1.58e+8	7.27e+7	1.37e+7	
multiplier_8bit	10.52	5.86e+8	1.93e+8	3.72e+7	

CMOS structure has absolute advantages in reducing leakage power

Parameters Extraction And Standard Cell Library Characterization

Table 1: Parameters for Emerging Flexible Technologies					
Device Type	CNT	IGZO	OTFT	$2D/MoS_2$	Silicon
Device Width (μm)	5	5	5	5	5
Channel Length (μm)	0.6	0.6	0.6	0.6	0.6
Gate Unit Capacitance(nF/cm^2)	110	55	55	150	
Threshold Voltage(V)	0.5	0.9	-0.5	0.4	
Sub-threshold Swing($Vdec^{-1}$)	0.18	0.26	0.062	0.074	
Effective Mobility($cm^2V^{-1}s^{-1}$)	55	74	5.7	55	
Contact Resistance $R_C(\Omega)$	1000	2500	1450	2900	
$\lambda (V^{-1})$	0.064	0.002	0.028	0.055	
γ (-)	0.20	0.3	0.5	0.19	

Table 2: Standard Cell Library Logic Cells Drive Strengths AND2, OR2, NAND2, NOR2 X1,X2,X4 AND3, OR3, NAND3, NOR3 X1 AOI21, AOI22, AOI221, AOI222 X1 OAI21, OAI22, OAI221, OAI222 X1 ADDF, ADDH X1DFFQ/R, MUX2/4, XOR2, XNOR2 X1, X2 INV, BUF X1,X2,X4,X8,X16,X32

Key parameters of flexible technologies extracted from published data

Ref:

Jianshi. Tang et al, Nature Electronics, 2018, DOI:<u>10.1038/s41928-018-0038-8</u> Jiazhen. Sheng et al, ACS Applied Materials & Interfaces, 2019, DOI:<u>10.1021/acsami.9b14310</u> James W. Borchert et al, Nature Communications, 2019, DOI:<u>10.1038/s41467-019-09119-8</u> Na. Li et al, Nature Electronics, 2020, DOI:<u>10.1038/s41928-020-00475-8</u>

Flexible standard cell library

Transistor Level Evaluations

System Level Power And Performance Evaluations

System Level Power And Performance Evaluations

Similar leakage power as silicon designs by adjustment of Vth

Large difference in dynamic power because of difference in gate capacitance and parasitics

Introduction

Unified Evaluation Framework for Flexible Hybrid Electronics

Quantitative Studies for Flexible Technologies

System Demonstration of Flexible Hybrid Electronics

System Demonstrations of Flexible Hybrid Electronics

Structure of Demonstration

Encoder

Ref: L. Shao et al, DAC, 2020, DOI: 10.1109/DAC18072.2020.9218570

System Demonstrations of Flexible Hybrid Electronics

Details of Demonstration

Ref: L. Shao et al, DAC, 2020, DOI: <u>10.1109/DAC18072.2020.9218570</u>

Process design kit for flexible hybrid electronics

Ref: L. Shao et al, ASP-DAC, 2018, DOI: <u>10.1109/ASPDAC.2018.8297396</u>

Conclusion And Future Work

Contributions

Unified evaluation framework for flexible hybrid Electronics

Quantitative studies for flexible technologies

System demonstration of flexible hybrid electronics

Future Work

Power and signal integrity analysis of FHE system

Make "AutoFlex" adapt to more open-sourced EDA tools

Physical on-chip validation about the simulation result

https://github.com/mtl2236/AutoFlex

>Acknowledgement

Shanghai Jiao Tong University

- Prof. Leilai Shao
- Mr. Zhihui Deng

Thank you and Q&A

