
Xiaotian Guo

1

RobustDiCE: Robust and

Distributed CNN Inference at the Edge
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Improve Robustness of Distributed CNN inference at the edge

Fig. BranchNet, Von Zitzewitz, et.al. "Survey of neural networks in autonomous driving." 2017
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Example: Distribute Neurons in a CNN layer into two devices: mobile and laptop

Output data loss 
Due to Partition

Don't put all your eggs in one basket

How to distribute neurons robustly over multiple edge devices?
1. Ensure the execution against possible device failures 

2. Largely preserve the important channels of output data

3. Balance the robustness with the resource usage per device

https://www.dictionary.com/browse/don-t-put-all-your-eggs-in-one-basket


a.

b.

c.

Grouping MethodsFilter Partitioning Neurons 5

Our method (c) splits neurons into several groups according to 
neuron importance and distributes them over multiple devices 
robustly.



6

Four Groups of Neurons 2 Devices

1. Calculate and Normalize Importance Scores 
2. Cluster neurons into groups  
3. Distribute neurons of each group in a round-robin manner
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1. Magnitude-based approach
L1-Norm, L2-Norm, LAMP, etc. measure the relative importance 
of each neuron in a CNN layer based on the sum or square sum 
of its absolute weights. 

II. Neuron Importance

2. Data/Gradient-based approach

3. Loss-based approach

Taylor Expansion, SNIP, GraSP, etc. use the gradients of the 
training loss to effectively identify the connection sensitivity of 
neurons.

CURL, etc. approximate the change in the loss function induced 
by removing a neuron in CNN layers. The relative change of the 
loss value represents the importance of the removed neuron in 
the model. 



Neuron Grouping/Clustering via Importance 

1.Normalize Importance Scores 
2.Measure neuron distance (Euclidean distance) 
3.Use Distance Threshold value T control the size of group 8

III. Neuron Grouping

T = 0
(Full replica)

T = 0.5
(Partial replica)

T = 1
(0% replica)



More Memory

More Computation

9

T = 0
(Full replica)

T = 0.5
(Partial replica)

T = 1
(0% replica)

Maximum Robustness Less Robustness
Less Memory

Less Computation

III. Neuron Grouping



3D-Fail Example: 3 Devices fail out of 4 Devices
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IV. System Setup
Eval Configurations


SysConf4D: system with four edge devices

SysConf3D: system with three edge devices

SysConf2D: system with two edge devices


Scenario A: SysConf4D where 1 device fails (1D-
Fail),  2 devices fail (2D-Fail), or 3 devices fail (3D-
Fail)

Scenario B: SysConf3D where 1D-Fail or 2D-Fail

Scenario C: SysConf2D where 1D-Fail


Eval Metrics

Accuracy: Top-1 accuracy on ImageNet-1k 

FPS: image per second (system throughput)

Memory: maximum memory usage per device

Energy: maximum energy consumption per device


CDC-Method For Comparison [11]

LOP-Method For Comparison [7]



TABLE III
COMPARISON OF THE MAXIMUM PER-DEVICE ENERGY CONSUMPTION,

SYSTEM THROUGHPUT, AND MAXIMUM PER-DEVICE MEMORY USAGE FOR
THREE CNNS UNDER FOUR DIFFERENT CONFIGURATIONS

Importance Scores AlexNet (%) VGG16 BN (%) ConvNext Tiny (%)

s1 43.718 60.426 76.618
s2 43.642 58.920 75.904
s3 43.432 59.942 76.134

s1 + s2 51.268 69.152 76.678
s1 + s3 51.658 71.736 76.580
s2 + s3 51.250 67.360 76.572

s1 + s2 + s3 52.396 72.500 76.820

TABLE IV
USED CNN MODELS AND EXECUTION TIME BREAKDOWN

Importance Scores AlexNet VGG16 BN ConvNext Tiny
Configurations 1D-Fail 2D-Fail 3D-Fail 1D-Fail 2D-Fail 3D-Fail 1D-Fail 2D-Fail 3D-Fail

s1 43.718 60.426 76.618
s2 43.642 58.920 72.670
s3 43.432 59.942 72.670

s1 + s2 51.268 69.152 75.142
s1 + s3 51.658 71.736 74.470
s2 + s3 51.250 67.360 73.268

s1 + s2 + s3 52.396 72.500 77.692

Energy consumption:
Memory usage: The memory utilization of each device

during the deployment of the neural networks was measured
using system profiling tools. This allowed for a comparison of
memory usage across the different CNN models and devices.

The experimental results were then analyzed to determine
the efficiency and effectiveness of the three CNN models on
the Jetson Xavier NX devices. The insights gained from this
evaluation can be applied to further optimize and tailor the
neural networks for deployment in edge computing environ-
ments.

We randomly sample a batch of images from the validation
dataset, The goal of our experiments is to demonstrate that,
thanks to our novel contributions presented in this paper, our
framework can rapidly explore and automatically implement
CNN partitions over multiple edge devices to realize dis-
tributed CNN inference. Moreover, it can do so with lower per-
device energy consumption, with smaller per-device memory
usage, and under certain conditions, with the same or higher
CNN inference throughput, as compared to CNN execution on
a single edge device. We introduce the experimental setup for
this DSE experiment in three steps. First, we explain the three
CNNs as well as the hardware platforms used in our experi-
ments. Second, we describe the evaluation process of the three
different objectives for a given CNN mapping. Finally, we
describe the actual DSE process, which is based on the well-
known Non-dominated Sorting Genetic Algorithm (NSGA-II)
[?] to generate different CNN mapping specifications and find
the Pareto-optimal solutions.

We select NVIDIA Jetson Xavier NX as our experimental
hardware platform because it is a well-known and easy-to-

use embedded platform. We can easily and accurately acquire
the needed inference throughput and energy consumption data
of each processor by setting timers within the executed code
and by sampling the integrated onboard power monitors,
respectively.

As explained in Section ??, the second level in our DSE
methodology uses to evaluate CNN mappings. This means
that for the CNN mapping specifications in that DSE level,
we apply to generate and distribute a deployment package
for every Jetson Xavier NX device. Subsequently, we measure
and collect energy consumption per device, CNN inference
throughput, and memory usage per device results, as an
average value over 20 CNN inference executions. As the
experiments are targeted to embedded devices, the batch size
of CNN inference is 1. The inference throughput (measured
by instrumenting the code with appropriate timers) and the
memory usage per device are reported directly by the code
itself during the CNN execution. To measure the energy
consumption per device, a special sampling program reads
power values from the integrated power monitors on each
NVIDIA Jetson Xavier NX board during the CNN execution
period, where the power consumption involves the whole
board including CPUs, GPU, SoC, etc.

To evaluate the fitness of CNN mappings during DSE using
our tool, the chromosomes inside our GA are translated
to the mapping format described in Section ??. The GA
is executed with a population size of 100 individuals, a
mutation probability of 0.2, a crossover probability of 0.5, and
performs 400 search generations. For all experiments with the
three aforementioned CNNs, the original data precision (i.e.,
float32) is utilized to preserve the original model accuracy of

1 Device fail out of 4 Devices (1D-Fail in SysConf4D)
Ablation study for Importance Metrics
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V. Experimental Results
We fix T values of each layer 
and test different combinations 
of using s1, s2, s3 importance 
scores


More dimensional evaluation of the 
neuron importance

Facilitate a more effective clustering 
of neurons



TABLE I
COMPARISON OF THE MAXIMUM PER-DEVICE ENERGY CONSUMPTION,

SYSTEM THROUGHPUT, AND MAXIMUM PER-DEVICE MEMORY USAGE FOR
THREE CNNS UNDER FOUR DIFFERENT CONFIGURATIONS

Network System Max. per-device System Max. per-device
Configuration Energy (J/img) Throughput (FPS) Memory (MB)

QMR/TMR/DMR 0.179 46.255 150.914
CDC-SysConf3D 0.165 43.670 94.117

AlexNet CDC-SysConf4D 0.157 45.587 78.852
Robust-SysConf2D 0.159 48.214 99.254
Robust-SysConf3D 0.148 50.045 80.777
Robust-SysConf4D 0.142 51.219 72.801

QMR/TMR/DMR 0.850 10.744 429.215
CDC-SysConf3D 0.809 10.634 313.688

VGG16-BN CDC-SysConf4D 0.799 10.485 272.293
Robust-SysConf2D 0.826 10.761 328.426
Robust-SysConf3D 0.799 10.993 295.086
Robust-SysConf4D 0.779 11.078 267.395

QMR/TMR/DMR 0.308 28.223 88.895
CDC-SysConf3D 0.307 27.107 69.129

ConvNext-Tiny CDC-SysConf4D 0.297 28.248 59.961
Robust-SysConf2D 0.301 28.044 76.465
Robust-SysConf3D 0.296 28.415 65.203
Robust-SysConf4D 0.288 29.034 58.090

We compared the accuracy under each failure scenario (1, 2,
or 3 device failures) with the baseline accuracy obtained when
all four devices functioned correctly. This evaluation allowed
us to examine the impact of device failures on the model’s
performance and gauge the robustness of the CNN models
when deployed in distributed edge computing environments.

The results of the model accuracy validation under device
failures were analyzed to examine the impact of device failures
on the performance of the distributed CNN models. We com-
pared the accuracy of the models under each failure scenario
(1, 2, or 3 device failures) with the baseline accuracy obtained
when all 4 devices were functioning correctly.

This analysis allowed us to assess the resilience and ro-
bustness of the distributed CNN models under different levels
of device failure. Additionally, it provided insights into the
fault tolerance of the models, which is crucial for real-world
deployments in edge computing environments where devices
may be subjected to various hardware and software failures.

1) Performance, Energy, and Memory Metrics: For each
CNN model, the following metrics were measured and com-
pared across the Jetson Xavier NX devices:

Performance: The inference time per image and throughput
(images per second) were recorded for each device to assess
the model’s performance.

Energy consumption:
Memory usage: The memory utilization of each device

during the deployment of the neural networks was measured
using system profiling tools. This allowed for a comparison of
memory usage across the different CNN models and devices.

The experimental results were then analyzed to determine
the efficiency and effectiveness of the three CNN models on
the Jetson Xavier NX devices. The insights gained from this
evaluation can be applied to further optimize and tailor the

neural networks for deployment in edge computing environ-
ments.

We randomly sample a batch of images from the validation
dataset, The goal of our experiments is to demonstrate that,
thanks to our novel contributions presented in this paper, our
framework can rapidly explore and automatically implement
CNN partitions over multiple edge devices to realize dis-
tributed CNN inference. Moreover, it can do so with lower per-
device energy consumption, with smaller per-device memory
usage, and under certain conditions, with the same or higher
CNN inference throughput, as compared to CNN execution on
a single edge device. We introduce the experimental setup for
this DSE experiment in three steps. First, we explain the three
CNNs as well as the hardware platforms used in our experi-
ments. Second, we describe the evaluation process of the three
different objectives for a given CNN mapping. Finally, we
describe the actual DSE process, which is based on the well-
known Non-dominated Sorting Genetic Algorithm (NSGA-II)
[?] to generate different CNN mapping specifications and find
the Pareto-optimal solutions.

We select NVIDIA Jetson Xavier NX as our experimental
hardware platform because it is a well-known and easy-to-
use embedded platform. We can easily and accurately acquire
the needed inference throughput and energy consumption data
of each processor by setting timers within the executed code
and by sampling the integrated onboard power monitors,
respectively.

As explained in Section ??, the second level in our DSE
methodology uses to evaluate CNN mappings. This means
that for the CNN mapping specifications in that DSE level,
we apply to generate and distribute a deployment package
for every Jetson Xavier NX device. Subsequently, we measure

Comparison
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Fix T values of 
each layer

Use s1, s2, s3 
importance 
scores




VGG-16 ConvNext-Tiny

Robustness Under Failures
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1. Neuron Importance
Various importance scores offer unique insights, e.g. gradient-
based scores assess inter-layer dependencies, magnitude-
based scores evaluate intra-layer dependencies, etc.

Take Away

2. Neuron Clustering

3. Importance-aware Partitioning

Utilizing a combination of importance scores enhances overall 
effectiveness.

Importance-aware partitioning maintains CNN model accuracy 
on multiple edge devices more effectively against device failures 
than current partitioning methods.



Thanks!

Questions?

15


