

PAAP-HD: PIM-Assisted Approximation for Efficient Hyper-Dimensional Computing

Authors: Fangxin Liu, Haomin Li, Ning Yang, Yichi Chen, Zongwu Wang, Tao Yang, and Li Jiang*

水思源•爱

Shanghai Jiao Tong University

E

Introduction

- Background and Related Works
- Proposed PAAP-HD
- Evaluation
- Conclusion

Introductions: HDC Limitations

TABLE I PREFORMANCE OF HDC WITH DIFFERENT KINDS OF DATA BIT WIDTH.

Metrics	Accuracy(%)			Energy Co	onsumption(µJ)
Configuration	FP32	INT8	Binary	INT8	Binary
ISOLET [6]	91.53	90.89	67.73	8.46	2.82
HAR [7]	90.83	89.97	59.14	4.445	2.407
CARDIO [8]	84.98	83.10	68.08	0.558	0.186

^aEvaluation is performed on FPGA with Verilog implementation.

Binary HDC: Data precision

high-precision cosine distance calculations: Large Computational Cost

PIM-assisted Approximate Model

- An effective alternative model for HDC
- Map the approximate model to parallel crossbar-based MAC operation

Predictor Design for Module Switching

• Enabling a seamless transition between the HDC and approximate models

Comprehensive Evaluation

• Across various datasets from different fields

HDC Basics

Fig. 1. HDC classification framework. HV is short for hypervector.

Three Basic Modules: IM ,CIM,AM

- **Three Stages for Learning: Encoding, Training, Inference**
- Binary HDC: binarize each class hypervector in AM & the sample hypervector

Computing Basics

Approximate Model

- Introduced a simple predictor
- **In-memory Computing**
 - ReRAM-based PIM
- Motivation
 - Not fully leveraged the direct benefits of PIM
- Tailored solely for binary HDC

Overview of Proposed PAAP-HD

3 Main Components:

- A high-precision HDC model
 - INT8 HDC model
- An approximate model
 - mapped onto a PIM-based crossbar
- A quality control predictor
 - determine which model to use

Approximate Model Design

The associative search in the AM

• prediction = $\underset{i=1,...,K}{arg \max} Cos(\vec{S}, \vec{C_i}) = \frac{\vec{S} \cdot \vec{C_i}}{|\vec{S}| \cdot |\vec{C_i}|}$

The neural approximation

• Dotp result = $A(W\vec{f} + \vec{b}) = AW\vec{f} + A\vec{b}$

Trained on the output

(b) Approximate Encoding

Fully leverage the benefits of PIM

Design of a Quality Control Predictor

(c) Predictor Design

Optimization and Compression of Predictor

Evaluation: Experimental Setup

Implementations

- Software: utilized Python on an Intel(R) Xeon(R) Silver 4208 CPU with 16GB memory
- Hardware: involved a Kintex-7 FPGA and Verilog for predictors and high-precision HDCs

Datasets and Models

- Speech recognition, activity recognition, and disease classification
- Main comparison: PAAP-HD and the traditional HDC model (models set: 1, 000)

Metrics

• Ac	C tr		TABLE II DATASET STATISTICS					
			#feature	#class	Train size	Test size	Description	raccaracy
		ISOLET [6] UCIHAR [7] CARDIO [8]	617 561 21	26 12 10	6,238 6,213 1,913	1,559 1,554 213	Speech recognition Activity recognition(Mobile) Disease classification	

Evaluation: Accuracy

TABLE III Accuracy Comparison

Configuration	binary HDC	Accuracy INT8 HDC	PAAP-HD	
ISOLET	67.73%	90.89%	90.38%	
HAR	59.14%	89.97%	89.34%	
CARDIO	68.08%	83.10%	81.69%	

Employed the INT8 HDC version as the baseline

Compared to the original HDC model:

Speech and action recognition tasks: < 0.5%

Disease classification task: < 1%

Evaluation: Overall Performance

Evaluation: Approximation Details

Fig. 5. Predictor's performance on three datasets with different dimension-pruning rate.

TABLE III ACCURACY COMPARISON				Nearly all samples deemed approximable	
Configuration	binary HDC	Accuracy INT8 HDC	PAAP-HD	for the HAR dataset	
ISOLET	67.73%	90.89%	90.38%		
HAR	59.14%	89.97%	89.34%		
CARDIO	68.08%	83.10%	81.69%	NO negatively impact	

Evaluation: Approximation Details

Evaluation: Variation Analysis

Fig. 6. Variation performance with different σ .

Challenge: Resistance Variations $\sigma = 0.02$: no accuracy loss All σ values: consistent level of accuracy (Speech recognition & disease classification tasks)

PAAP-HD: a PIM-assisted framework for energy-efficient hyperdimensional computation

- Fuses and approximates the encoding and association search stages of HDC
- Integrating specially designed approximate models and quality control predictors
- Minimize energy consumption
- Enhances HDC inference efficiency
 - the potential of approximation
 - Significant advancement in energy-efficient HDC design.

PAAP-HD: PIM-Assisted Approximation for

Efficient Hyper-Dimensional Computing

Authors: Fangxin Liu, Haomin Li, Ning Yang, Yichi Chen, Zongwu Wang, Tao Yang, and Li Jiang*

Shanghai Jiao Tong University

