
Department of Electrical and Computer Engineering

A Resource-efficient Task

Scheduling System using

Reinforcement Learning

Chedi Morchdi1, Cheng-Hsiang Chiu2,

Tsung-Wei Huang2, Yi Zhou1

1Department of ECE, University of Utah
2Department of ECE, University of Wisconsin-Madison

Department of Electrical and Computer Engineering

Content

• Introduction

• System Overview

• RL-Based Scheduling

• Experiments and Results

• Conclusion

2

Department of Electrical and Computer Engineering

Introduction

3

Department of Electrical and Computer Engineering

Why Parallelizing CAD?

• Advance the performance to a new level

4

0

100

200

300

400

500

600

1 CPU 8 CPUs 16 CPUs 24 CPUs 32 CPUs 40 CPUs 1 GPU

Time (minutes) to speed up a circuit timing analysis algorithm

10-100x speed-up over manycore CPUs

Department of Electrical and Computer Engineering

Today’s Parallel CAD Workload is Complex
• GPU-accelerated circuit analysis on a design of 500M gates1

– >100 kernels

– >100 dependencies

– >500s to finish

– >10hrs turnaround

5

…

Simulation

task graph

Department of Electrical and Computer Engineering

Task-parallel Programming Solution
• Task graph parallelism scales the best for parallelizing CAD

– Capture programmers’ intention in decomposing an algorithm

into a top-down task graph

– Runtime can scale these dependent tasks across a large

number of processing units

Task

dependency

Department of Electrical and Computer Engineering

Scheduling is a Big Challenges
• Many CAD task graphs need multiple runs

– Both inside and outside the program (e.g., iterative optimization,

multiple scenario timing analysis)

– CAD task graphs are often very sparse (e.g., 17M tasks with

18M dependencies)

– However, existing scheduling algorithms often count on general-

purpose heuristics (e.g., random assignment, work stealing) that

consume many workers to schedule sparse task graphs

• Ex: OpenMP by default uses all available CPU cores,

wasting a lot of CPU resources

• Need a smart, adaptive, and resource-efficient scheduler

Department of Electrical and Computer Engineering

Contribution
• Scheduling Algorithm: We introduced a RL-based task

scheduling algorithm. Using fewer resources, we had
comparable performance to existing solutions.

• Generalizability: Our proposed scheduling policy generalized
well to a wide range of task graphs.

• Extensible State Representations: easy-to-extend state
representation to accommodate new computing environment
statistic.

8

Department of Electrical and Computer Engineering

System Overview

9

Department of Electrical and Computer Engineering

Problem Formulation

• Static timing analysis (STA): describe the timing analysis

circuit as a task graph

• Nodes and edges represent tasks and their dependencies

• Dependencies constraint the execution order of tasks and

denote the data flow

10

Department of Electrical and Computer Engineering

Scheduler

• Consider a system with multi-cores (called workers)

• Scheduler assigns tasks to workers

A

11

B,C

D

task queue

Scheduler

Department of Electrical and Computer Engineering

RL-based Scheduler

• We propose a reinforcement learning (RL)-based scheduler

• Formulate task-scheduling as Markov Decision Process

• Based on State, RL scheduler takes Action to assign tasks

12

Department of Electrical and Computer Engineering

13

Reinforcement Learning (RL)

Department of Electrical and Computer Engineering

RL and Markov Decision Process (MDP)

• MDP: describe how agent interacts with an environment

• MDP: state 𝑠𝑡, policy 𝜋, action 𝑎𝑡, reward 𝑟𝑡

• Goal: learn optimal policy that yields the highest reward

14

Department of Electrical and Computer Engineering

State

15

Department of Electrical and Computer Engineering

Action and Policy

▪ Action: 𝑚 possible actions (for 𝑚 workers)

▪ Policy: specified by state-action value table 𝑄(𝑠, 𝑎)

❑expected total reward of taking action 𝑎 in state 𝑠

❑ learned using deep Q-learning

𝜋 𝑎 𝑠 = argmax
𝑎′

𝑄(𝑠, 𝑎′)

▪ State transition: after task is assigned, the state changes

(worker’s queue workload changed).

16

Department of Electrical and Computer Engineering

Reward

▪ 𝑟𝑡 := − log10(workload balance) − 𝛼 log10(transfer cost)

❑Workload balance: max(queue loads)-min(queue loads)

❑Transfer cost: sum of workloads of parents that were not

assigned to the same worker

❑𝛼 > 0: hyperparameter.

❑Reward design penalizes actions that cause imbalanced

queue workloads and high transfer cost.

17

Department of Electrical and Computer Engineering

Deep Q-learning algorithm

• The Q-function satisfies the following Bellman equation:

• We use a deep NN to parametrize the Q function.

• The NN takes the state as input and outputs the Q values of

all possible actions:

18

Department of Electrical and Computer Engineering

• Step 1: Data Collection

➢ Take action 𝑎𝑡 (using 𝜖-greedy policy)

➢ Collect data (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), add to replay memory

• Step 2: Data Sampling

➢ Sample batch 𝐵 data from replay memory.

➢ Compute target 𝑦𝑇 = 𝑟𝑇 + 𝛾max
𝑎

𝑄(𝑠𝑇+1, 𝑎)

• Step 3: Update 𝑄-network

➢Compute loss 𝐿 =
1

𝐵
σ𝑇∈𝐵 𝑦𝑇 − 𝑄𝜃 𝑠𝑇 , 𝑎𝑇

2

➢Update 𝑄𝜃 via backpropagation

19

Department of Electrical and Computer Engineering

20

Experimental Results

Department of Electrical and Computer Engineering

Experiments Setting

• Evaluated on static timing analysis (STA) application

• 9 task graphs generated using OpenTimer

• Compiled using gcc-12, -std=c++17 and -O3 enabled

• Experiments ran on a Ubuntu 19.10 (Eoan Ermine)

machine with 80 Intel Xeon Gold 6138 CPU at 2.00GHz

and 256 GB RAM

21

Department of Electrical and Computer Engineering

Baseline Scheduler

• Assigns tasks uniformly at random to the 40 workers

• Not adaptive to the dynamic computing environment

• Widely used to schedule STA workload.

22

Department of Electrical and Computer Engineering

RL-based Scheduler

• Algorithm 1 implemented with hyper-parameters:

– batch size B = 64

– target network synchronization period K = 10

– reward discount factor γ = 0.95

– reward weight α = 0.01

– experience replay memory size N = 10k

• Trained on mixed graph: aes_core, tv80 and c6288.

23

Department of Electrical and Computer Engineering

Training
• Policy parameters θ trained using Adam

optimizer with learning rate η = 1e − 4.

• The training loss decays quickly, indicating

that the learned policy performs well on the

training data.

24

Department of Electrical and Computer Engineering

Performance Comparison

• Runtime of RL-based scheduler is consistently slightly lower

than the RA scheduler for all the test graphs.

• The RL scheduler uses less workers compared to the RA

scheduler (7-8 workers vs 40 workers).

25

Department of Electrical and Computer Engineering

Performance Comparison

• Histogram of tasks over workers on aes_core graph.

26

Department of Electrical and Computer Engineering

Performance Comparison

• Histogram of tasks over workers on mixed graph.

27

Department of Electrical and Computer Engineering

28

Conclusions

Department of Electrical and Computer Engineering

Conclusions

• Developed a resource-efficient RL-based task

scheduling system adapted to the dynamic computing

environment.

• Compared to the baseline scheduler, our RL-based

scheduler achieved a lower runtime on all task graphs

while using only 20% of workers.

• Future work: extend to a distributed environment and

consider GPU task graphs into our state model.

29

Department of Electrical and Computer Engineering

Thank you!

30

