

A Resource-efficient Task Scheduling System using Reinforcement Learning

Chedi Morchdi¹, Cheng-Hsiang Chiu², Tsung-Wei Huang², <u>Yi Zhou¹</u>

¹Department of ECE, University of Utah ²Department of ECE, University of Wisconsin-Madison

Content

- Introduction
- System Overview
- RL-Based Scheduling
- Experiments and Results
- Conclusion

Introduction

Why Parallelizing CAD?

• Advance the performance to a new level

Today's Parallel CAD Workload is Complex

- GPU-accelerated circuit analysis on a design of 500M gates¹ •
 - >100 kernels
 - >100 dependencies
 - >500s to finish

Task-parallel Programming Solution

- Task graph parallelism scales the best for parallelizing CAD
 - Capture programmers' intention in decomposing an algorithm into a top-down task graph
 - Runtime can scale these dependent tasks across a large number of processing units

Scheduling is a Big Challenges

- Many CAD task graphs need multiple runs
 - Both inside and outside the program (e.g., iterative optimization, multiple scenario timing analysis)
 - CAD task graphs are often very sparse (e.g., 17M tasks with 18M dependencies)
 - However, existing scheduling algorithms often count on generalpurpose heuristics (e.g., random assignment, work stealing) that consume many workers to schedule sparse task graphs
 - Ex: OpenMP by default uses all available CPU cores, wasting a lot of CPU resources
- Need a smart, adaptive, and resource-efficient scheduler

Contribution

IMAGINE

- Scheduling Algorithm: We introduced a RL-based task scheduling algorithm. Using fewer resources, we had comparable performance to existing solutions.
- **Generalizability**: Our proposed scheduling policy generalized well to a wide range of task graphs.
- Extensible State Representations: easy-to-extend state representation to accommodate new computing environment statistic.

System Overview

Problem Formulation

• Static timing analysis (STA): describe the timing analysis circuit as a task graph

- Nodes and edges represent tasks and their dependencies
- Dependencies constraint the execution order of tasks and denote the data flow

Scheduler

- Consider a system with multi-cores (called workers)
- Scheduler assigns tasks to workers

RL-based Scheduler

- We propose a reinforcement learning (RL)-based scheduler
- Formulate task-scheduling as Markov Decision Process
- Based on *State*, RL scheduler takes *Action* to assign tasks

Reinforcement Learning (RL)

RL and Markov Decision Process (MDP)

• MDP: describe how agent interacts with an environment

- MDP: state s_t , policy π , action a_t , reward r_t
- Goal: learn optimal policy that yields the highest reward

State

Action and Policy

- Action: *m* possible actions (for *m* workers)
- Policy: specified by state-action value table Q(s, a)
 □ expected total reward of taking action a in state s
 □ learned using deep Q-learning π(a|s) = arg max Q(s, a') a'
- State transition: after task is assigned, the state changes (worker's queue workload changed).

Reward

- $r_t := -\log_{10}(workload \ balance) \alpha \log_{10}(transfer \ cost)$ • Workload balance: max(queue loads)-min(queue loads)
 - Transfer cost: sum of workloads of parents that were not assigned to the same worker
 - $\Box \alpha > 0$: hyperparameter.
 - Reward design penalizes actions that cause imbalanced queue workloads and high transfer cost.

Deep Q-learning algorithm

• The Q-function satisfies the following Bellman equation:

$$Q(s_t, a_t) = r_t + \gamma \mathbb{E}\left[\max_a Q(s_{t+1}, a)\right]$$

- We use a deep NN to parametrize the Q function.
- The NN takes the state as input and outputs the Q values of all possible actions:

- Step 1: Data Collection
 - > Take action a_t (using ϵ -greedy policy)
 - > Collect data (s_t, a_t, r_t, s_{t+1}) , add to replay memory
- Step 2: Data Sampling
 - > Sample batch B data from replay memory.
 - $\succ \text{Compute target } y_T = r_T + \gamma \max_a Q(s_{T+1}, a)$
- Step 3: Update *Q*-network

> Compute loss
$$L = \frac{1}{B} \sum_{T \in B} (y_T - Q_\theta(s_T, a_T))^2$$

> Update Q_{θ} via backpropagation

Experimental Results

Experiments Setting

- Evaluated on static timing analysis (STA) application
- 9 task graphs generated using OpenTimer
- Compiled using gcc-12, -std=c++17 and -O3 enabled
- Experiments ran on a Ubuntu 19.10 (Eoan Ermine) machine with 80 Intel Xeon Gold 6138 CPU at 2.00GHz and 256 GB RAM

Baseline Scheduler

- Assigns tasks uniformly at random to the 40 workers
- Not adaptive to the dynamic computing environment
- Widely used to schedule STA workload.

RL-based Scheduler

IMAGINE

- Algorithm 1 implemented with hyper-parameters:
 - batch size B = 64
 - target network synchronization period K = 10
 - reward discount factor $\gamma = 0.95$
 - reward weight $\alpha = 0.01$
 - experience replay memory size N = 10k
- Trained on mixed graph: aes_core, tv80 and c6288.

IMAGINE UNIVERSITY OF UTAH*

Training

• Policy parameters θ trained using Adam optimizer with learning rate $\eta = 1e - 4$.

• The training loss decays quickly, indicating that the learned policy performs well on the training data.

Performance Comparison

- Runtime of RL-based scheduler is consistently slightly lower than the RA scheduler for all the test graphs.
- The RL scheduler uses less workers compared to the RA scheduler (7-8 workers vs 40 workers).

Graph	$\ V\ $	$\ E\ $	Runtime (Seconds)			# Workers		
			RA	RL	Improvement	RA	RL	Improvement
mixed graph	88,626	115,777	38.44	38.29	0.39%	40	7	471%
aes_core	66,751	86,446	29.55	28.89	2.28%	40	8	400%
ac97_ctrl	42,438	53,558	18.92	18.09	4.59%	40	8	400%
tv_80	17,038	23,087	7.76	7.04	10.22%	40	8	400%
wb_dma	13,125	16,593	5.52	5.33	3.56%	40	8	400%
c6288	4,837	6,244	2.01	1.98	1.52%	40	8	400%
c7552_slack	3,802	4,791	1.75	1.60	9.38%	40	7	471%
usb_phy_ispd	2,447	2,999	1.11	1.00	11%	40	7	471%
s1494	2,292	2,925	1.04	0.97	7.22%	40	7	471%

Performance Comparison

• Histogram of tasks over workers on aes_core graph.

Worker id

Performance Comparison

• Histogram of tasks over workers on mixed graph.

Worker id

Conclusions

Conclusions

- Developed a resource-efficient RL-based task scheduling system adapted to the dynamic computing environment.
- Compared to the baseline scheduler, our RL-based scheduler achieved a lower runtime on all task graphs while using only 20% of workers.
- Future work: extend to a distributed environment and consider GPU task graphs into our state model.

Thank you!