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Introduction
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Why Parallelizing CAD?

• Advance the performance to a new level
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Today’s Parallel CAD Workload is Complex
• GPU-accelerated circuit analysis on a design of 500M gates1

– >100 kernels

– >100 dependencies

– >500s to finish

– >10hrs turnaround
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Task-parallel Programming Solution
• Task graph parallelism scales the best for parallelizing CAD

– Capture programmers’ intention in decomposing an algorithm 

into a top-down task graph 

– Runtime can scale these dependent tasks across a large 

number of processing units

Task

dependency
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Scheduling is a Big Challenges
• Many CAD task graphs need multiple runs

– Both inside and outside the program (e.g., iterative optimization, 

multiple scenario timing analysis)

– CAD task graphs are often very sparse (e.g., 17M tasks with 

18M dependencies) 

– However, existing scheduling algorithms often count on general-

purpose heuristics (e.g., random assignment, work stealing) that 

consume many workers to schedule sparse task graphs

• Ex: OpenMP by default uses all available CPU cores, 

wasting a lot of CPU resources

• Need a smart, adaptive, and resource-efficient scheduler 
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Contribution
• Scheduling Algorithm: We introduced a RL-based task 

scheduling algorithm. Using fewer resources, we had 
comparable performance to existing solutions. 

• Generalizability: Our proposed scheduling policy generalized 
well to a wide range of task graphs.

• Extensible State Representations:  easy-to-extend state 
representation to accommodate new computing environment 
statistic.
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System Overview
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Problem Formulation

• Static timing analysis (STA): describe the timing analysis 

circuit as a task graph

• Nodes and edges represent tasks and their dependencies

• Dependencies constraint the execution order of tasks and 

denote the data flow
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Scheduler

• Consider a system with multi-cores (called workers)

• Scheduler assigns tasks to workers

A
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RL-based Scheduler

• We propose a reinforcement learning (RL)-based scheduler

• Formulate task-scheduling as Markov Decision Process

• Based on State, RL scheduler takes Action to assign tasks
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Reinforcement Learning (RL)
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RL and Markov Decision Process (MDP)

• MDP: describe how agent interacts with an environment

• MDP: state 𝑠𝑡, policy 𝜋, action 𝑎𝑡, reward 𝑟𝑡

• Goal: learn optimal policy that yields the highest reward
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State
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Action and Policy

▪ Action: 𝑚 possible actions (for 𝑚 workers)

▪ Policy: specified by state-action value table 𝑄(𝑠, 𝑎)

❑expected total reward of taking action 𝑎 in state 𝑠

❑ learned using deep Q-learning

𝜋 𝑎 𝑠 = argmax
𝑎′

𝑄(𝑠, 𝑎′)

▪ State transition: after task is assigned, the state changes 

(worker’s queue workload changed).
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Reward

▪ 𝑟𝑡 := − log10(workload balance) − 𝛼 log10(transfer cost)

❑Workload balance: max(queue loads)-min(queue loads)

❑Transfer cost: sum of workloads of parents that were not 

assigned to the same worker

❑𝛼 > 0: hyperparameter. 

❑Reward design penalizes actions that cause imbalanced 

queue workloads and high transfer cost.
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Deep Q-learning algorithm

• The Q-function satisfies the following Bellman equation:

• We use a deep NN to parametrize the Q function. 

• The NN takes the state as input and outputs the Q values of 

all possible actions:
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• Step 1: Data Collection

➢ Take action 𝑎𝑡 (using 𝜖-greedy policy)

➢ Collect data (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), add to replay memory

• Step 2: Data Sampling

➢ Sample batch 𝐵 data from replay memory.

➢ Compute target 𝑦𝑇 = 𝑟𝑇 + 𝛾max
𝑎

𝑄(𝑠𝑇+1, 𝑎)

• Step 3: Update 𝑄-network

➢Compute loss 𝐿 =
1

𝐵
σ𝑇∈𝐵 𝑦𝑇 − 𝑄𝜃 𝑠𝑇 , 𝑎𝑇

2

➢Update 𝑄𝜃 via backpropagation
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Experimental Results
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Experiments Setting

• Evaluated on static timing analysis (STA) application

• 9 task graphs generated using OpenTimer

• Compiled using gcc-12, -std=c++17 and -O3 enabled

• Experiments ran on a Ubuntu 19.10 (Eoan Ermine)

machine with 80 Intel Xeon Gold 6138 CPU at 2.00GHz

and 256 GB RAM
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Baseline Scheduler 

• Assigns tasks uniformly at random to the 40 workers

• Not adaptive to the dynamic computing environment

• Widely used to schedule STA workload.
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RL-based Scheduler

• Algorithm 1 implemented with hyper-parameters:

– batch size B = 64

– target network synchronization period K = 10

– reward discount factor γ = 0.95

– reward weight α = 0.01

– experience replay memory size N = 10k

• Trained on mixed graph: aes_core, tv80 and c6288.
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Training
• Policy parameters θ trained using Adam 

optimizer with learning rate η = 1e − 4.

• The training loss decays quickly, indicating 

that the learned policy performs well on the 

training data.
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Performance Comparison

• Runtime of RL-based scheduler is consistently slightly lower

than the RA scheduler for all the test graphs.

• The RL scheduler uses less workers compared to the RA

scheduler (7-8 workers vs 40 workers).
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Performance Comparison

• Histogram of tasks over workers on aes_core graph.
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Performance Comparison

• Histogram of tasks over workers on mixed graph.

27



Department of Electrical and Computer Engineering

28

Conclusions



Department of Electrical and Computer Engineering

Conclusions

• Developed a resource-efficient RL-based task 

scheduling system adapted to the dynamic computing 

environment. 

• Compared to the baseline scheduler, our RL-based 

scheduler achieved a lower runtime on all task graphs 

while using only 20% of workers. 

• Future work: extend to a distributed environment and 

consider GPU task graphs into our state model. 
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Thank you!
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