IMAGINE UIT;JIVERSITY

OF UTAH"®

Department of Electrical and Computer Engineerin

A Resource-efficient Task
Scheduling System using
Reinforcement Learning

Chedi Morchdit, Cheng-Hsiang Chiu?,
Tsung-Wei Huang?, Yi Zhou!?

Department of ECE, University of Utah
’Department of ECE, University of Wisconsin-Madison

IMAGINE U UNIVERSITY

OF UTAH®

Content

* [ntroduction

« System Overview
 RL-Based Scheduling

« Experiments and Results

e Conclusion

IMAGINE UU{;JIVERSITY

OF UTAH®

Introduction

IMAGINE u UNIVERSITY

OF UTAH®

Department of Electrical and Computer Engineering

Why Parallelizing CAD?

» Advance the performance to a new level

10-100x speed-up over manycore CPUs

600 ‘
500

400

300
1CPU 8CPUs 16 CPUs 24 CPUs 32CPUs 40CPUs 1GPU

200
Time (minutes) to speed up a circuit timing analysis algorithm

100

IMAGINE UUIQIVEI’\SI’I‘Y

OF UTAH®

Today’s Parallel CAD Workload is Complex

« GPU-accelerated circuit analysis on a design of 500M gates?
— >100 kernels
— >100 dependencies
— >b500s to finish
— >10hrs turnaround

I

—

Simulation
task graph

CLK

IMAGINE u UNIVERSITY

OF UTAH®

Department of Electrical and Computer Engineering

Task-parallel Programming Solution

 Task graph parallelism scales the best for parallelizing CAD

— Capture programmers’ intention in decomposing an algorithm
Into a top-down task graph

— Runtime can scale these dependent tasks across a large
number of processing units

OpenMP StarPU Ckokkos

.0
1@ PaRSEC QO

Task b

dependency

IMAGINE U UNIVERSITY

OF UTAH®

Department of Electrical and Computer Engineering

Scheduling Is a Big Challenges

« Many CAD task graphs need multiple runs

— Both inside and outside the program (e.g., iterative optimization,
multiple scenario timing analysis)

— CAD task graphs are often very sparse (e.g., 17M tasks with
18M dependencies)

— However, existing scheduling algorithms often count on general-
purpose heuristics (e.g., random assignment, work stealing) that
consume many workers to schedule sparse task graphs

* Ex: OpenMP by default uses all available CPU cores,
wasting a lot of CPU resources

 Need a smart, adaptive, and resource-efficient scheduler

IMAGINE U UNIVERSITY

OF UTAH®

Contribution

« Scheduling Algorithm: We introduced a RL-based task
scheduling algorithm. Using fewer resources, we had
comparable performance to existing solutions.

» Generalizability: Our proposed scheduling policy generalized
well to a wide range of task graphs.

« Extensible State Representations: easy-to-extend state
representation to accommodate new computing environment
statistic.

THE
UNIVERSITY
IMAGINE B Pps:

System Overview

IMAGINE U UNIVERSITY

OF UTAH®

Problem Formulation

» Static timing analysis (STA): describe the timing analysis
circuit as a task graph

u1
— T H DD =
P>

* Nodes and edges represent tasks and their dependencies

» Dependencies constraint the execution order of tasks and
denote the data flow

IMAGINE UUIQIVEI’\SI’I‘Y

OF UTAH®

Scheduler

« Consider a system with multi-cores (called workers)
« Scheduler assigns tasks to workers

task queue
Wo A

wW: |B,C

o Scheduler
—— . [T

IMAGINE U UNIVERSITY

OF UTAH®

RL-based Scheduler

« We propose a reinforcement learning (RL)-based scheduler
* Formulate task-scheduling as Markov Decision Process
« Based on State, RL scheduler takes Action to assign tasks

Wo
e Wi State
0“0 %% Agent
e W2 Action
Wm—l

THE
UNIVERSITY
IMAGINE B Pps:

Reinforcement Learning (RL)

IMAGINE U UNIVERSITY

OF UTAH®

RL and Markov Decision Process (MDP)

 MDP: describe how agent interacts with an environment

‘:| Agent ||
state| |reward action

S| |-, A

S, L Environment

 MDP: state s,, policy «, action a,, reward r,

« Goal: learn optimal policy that yields the highest reward

IMAGINE UUI:JIVERSITY

OF UTAH®

Wi
1. Workload of each worker
h (B)
Wm—l see o“o eee
A 4
A
©
Wi A 2. The parent task’s
W workload that is finished
at each worker
W*m—l

\ 4
A B I 3. Workload of a task

IMAGINE U UNIVERSITY

OF UTAH®

Department of Electrical and Computer Engineering

Action and Policy

= Action: m possible actions (for m workers)
* Policy: specified by state-action value table Q(s, a)
 expected total reward of taking action a in state s

learned using deep Q-learning
n(al|s) = argmax Q(s,a’)
a’

= State transition: after task is assigned, the state changes
(worker’s queue workload changed).

IMAGINE U UNIVERSITY

OF UTAH®

Department of Electrical and Computer Engineering

Reward

= 1, = —log,,(workload balance) — a log,,(transfer cost)
d Workload balance: max(queue loads)-min(queue loads)

 Transfer cost: sum of workloads of parents that were not
assigned to the same worker

da > 0: hyperparameter.

1 Reward design penalizes actions that cause imbalanced
gueue workloads and high transfer cost.

IMAGINE U UNIVERSITY

OF UTAH®

Department of Electrical and Computer Engineering

Deep Q-learning algorithm
« The Q-function satisfies the following Bellman equation:

Q(st,a¢) =1 + WE[mC?X Q(St+1, a)]

 We use a deep NN to parametrize the Q function.

 The NN takes the state as input and outputs the Q values of
all possible actions:

State

v
1 1
(A

IMAGINE U UNIVERSITY

OF UTAH®

Department of Electrical and Computer Engineering

« Step 1: Data Collection
» Take action a, (using e-greedy policy)
» Collect data (s¢, as, 13, S¢4+1), add to replay memory

« Step 2: Data Sampling
» Sample batch B data from replay memory.
» Compute target yr = rr + ymax Q(S74+1,a)
a

e Step 3: Update Q-network

> Compute loss L = %ZTEB(yT — Qq(s7, aT))2
» Update Qg4 via backpropagation

THE
UNIVERSITY
IMAGINE B Pps:

Experimental Results

IMAGINE U UNIVERSITY

OF UTAH®

Department of Electrical and Computer Engineering

Experiments Setting
« Evaluated on static timing analysis (STA) application

* 9task graphs generated using OpenTimer
« Compiled using gcc-12, -std=c++17 and -O3 enabled

 Experiments ran on a Ubuntu 19.10 (Eoan Ermine)
machine with 80 Intel Xeon Gold 6138 CPU at 2.00GHz

and 256 GB RAM

IMAGINE U UNIVERSITY

OF UTAH®

Baseline Scheduler

* Assigns tasks uniformly at random to the 40 workers

* Not adaptive to the dynamic computing environment

* Widely used to schedule STA workload.

IMAGINE U UNIVERSITY

OF UTAH®

RL-based Scheduler

« Algorithm 1 implemented with hyper-parameters:
— batch size B = 64
— target network synchronization period K = 10
— reward discount factor y = 0.95
— reward weight a = 0.01
— experience replay memory size N = 10k

« Trained on mixed graph: aes_core, tv80 and c6288.

IMAGINE U UNIVERSITY

OF UTAH®

Training
0.20
» Policy parameters 0 trained using Adam n o
optimizer with learning rate n = 1e - 4. o
£0.10
g
0.05
« The training loss decays quickly, indicating """ 20000 20000 60000 80000
. Iterations
that the learned policy performs well on the
training data. 5.6
£ 58 \W
5
_; —6.0
% —6:2
£
3 —6.4
= —6.6
687 20 40 60 80

IMAGINE {J

THE
UNIVERSITY
OF UTAH®

Performance Comparison

Runtime of RL-based scheduler is consistently slightly lower
than the RA scheduler for all the test graphs.

The RL scheduler uses less workers compared to the RA
scheduler (7-8 workers vs 40 workers).

Runtime (Seconds # Workers

Graph VI IE] RA RL (Improv)ement RA | RL | Improvement
mixed graph | 88,626 | 115,777 | 38.44 | 38.29 0.39% 40 7 471%
aes_core 66,751 | 86,446 | 29.55 | 28.89 2.28% 40 8 400%
ac97_ctrl 42,438 | 53,558 | 18.92 | 18.09 4.59% 40 8 400%
tv_80 17,038 | 23,087 776 | 7.04 10.22% 40 8 400%
wb_dma 13,125 | 16,593 5.52 5.33 3.56% 40 8 400%
c6288 4,837 6,244 2.01 1.98 1.52% 40 8 400%
c7552_slack 3,802 4,791 1.75 1.60 9.38% 40 7 471%
usb_phy_ispd | 2,447 2,999 1.11 1.00 11% 40 7 471%
s1494 2,292 2,925 1.04 0.97 7.22% 40 7 471%

IMAGINE UUIQIVEI’\SI’I‘Y

OF UTAH®

Performance Comparison
« Histogram of tasks over workers on aes_core graph.

1 UORA scheduler | |
o RL scheduler
4l _ s |
E 10 - M =
3
= _ _ _ _
e 103
= B B
Z _
s 10
5 -
E
5 1 1L
100: _|:|___________________ S IS {5 5 R O 5 O | O O | O O 6 | O 5 O O O
- I [I I [[[[I [[[I [I
SNAUD WO SN DS SIIIILSLLISTIFTEFEFISTITIESESS

IMAGINE UUIQIVEI’\SI’I‘Y

OF UTAH®

Performance Comparison
« Histogram of tasks over workers on mixed graph.

10° F i
= I OBRA scheduler
. B o RL scheduler
2 107 E ~
§ - _
- N MERRERARAR RN ER AR IR E R E R m Eim
5 10°
§ —
k) 102;
E r
E
=]_
3 10 H
10° B e e et e sttt st et b i e

I I I I I I I I I I I I I I I
DYVBEDOA DI PSIPIVPLIIPGIRTRRL PPDD Y RFRDP

IMAGINE UU{;JIVERSITY

OF UTAH®

Conclusions

THE
UNIVERSITY
IMAGINE BB Bty

Department of Electrical and Computer Engineering

Conclusions

* Developed a resource-efficient RL-based task
scheduling system adapted to the dynamic computing

environment.
« Compared to the baseline scheduler, our RL-based

scheduler achieved a lower runtime on all task graphs
while using only 20% of workers.

 Future work: extend to a distributed environment and
consider GPU task graphs into our state model.

IMAGINE UUIQIVEI’\SI’I‘Y

OF UTAH®

Thank youl!

