
Machine Learning and GPU

Accelerated Sparse Linear Solvers for

Transistor-Level Circuit Simulation:

A Perspective Survey

ASP-DAC 2024

Zhou Jin, Wenhao Li, Yinuo Bai, Tengcheng Wang, Yicheng Lu, Weifeng Liu

Super Scientific Software Laboratory,

China University of Petroleum-Beijing, China

Email: jinzhou@cup.edu.cn

Contents

◼ Background

◼ Sparse Linear Solvers for Circuit Simulation

◼ SFLU: Synchronization-Free Sparse LU Factorization

for Fast Circuit Simulation on GPUs

◼ Accelerating Sparse LU Factorization with Density-

Aware Adaptive Matrix Multiplication for Circuit

Simulation

◼ PanguLU: A Scalable Regular Two-Dimensional Block-

Cyclic Sparse Direct Solver on Distributed

Heterogeneous Systems

◼ Conclusions

Contents

◼ Background

◼ Sparse Linear Solvers for Circuit Simulation

◼ SFLU: Synchronization-Free Sparse LU Factorization

for Fast Circuit Simulation on GPUs

◼ Accelerating Sparse LU Factorization with Density-

Aware Adaptive Matrix Multiplication for Circuit

Simulation

◼ PanguLU: A Scalable Regular Two-Dimensional Block-

Cyclic Sparse Direct Solver on Distributed

Heterogeneous Systems

◼ Conclusions

ASP-DAC 2024

Transistor-Level Circuit Simulation
◆Transistor-level circuit simulation (SPICE simulation) plays a crucial

role in verifying circuit performance, and serving as the basis of timing,
yield and reliability analysis, etc.

needs to be iteratively

verified in the design

process

Circuit

design

Pre-

simulation

Layout

design
Verification

RC

extraction
Post-

simulation

Chip

fabrication

Average duration of post-simulation

(times)

◆Challenges in SPICE simulation: the continuous expansion of scale,

making it extremely time-consuming during the IC design process.

Design process of analog circuits

ASP-DAC 2024

Read the netlist and

establish the circuit

equation

DC analysis

Transient iteration

Newton-Raphson iteration

NR Converge

Waveform output

Model

evaluation

Sparse LU

factorization

（A=LU）

Triangle

solution(Ly=b

，Ux=y)

Y

N

➢ The most time-

consuming step in

SPICE simulation is

solving linear

equations Ax = b.

➢ In post-layout

simulation that

takes parasitic

effects into account,

the linear direct

solution typically

takes 60-90% of the

time.

➢ SPICE workflow example

Transistor-Level Circuit Simulation

offer initial

parameter

numerical

integration

Y

N transient converge
or reach end time

Solve Ordinary Differential

Equations （ODE）

ASP-DAC 2024

LU Factorization
LU factorization is part of the direct method to solve the linear equations and

is also one of the most important tasks in many scientific computing

applications. The following figure shows an example of LU factorization:

The elements of L and U are calculated from the following two equations:

ASP-DAC 2024

usually only

performed once

Sparse LU Factorization
When the input matrix is sparse, the sparse LU factorization can be used to

reduce unnecessary computation and storage, which is called sparse LU

factorization.

Unlike LU factorization, sparse LU factorization is divided into the following

three phases:

reduce fill-in nonzeros

and maintain

numerical stability

Pre-processing Symbolic factorization
determine the

structure of the

matrices L and U

often performed

multiple times

Numeric factorization

perform floating-point

operations

The most time-

consuming

ASP-DAC 2024

Development of Direct Sparse Solver
SuperLU us ing supernodal method

is developed by Li and Demmel

et a l . SuperLU_DIST is a

d is t r ibuted vers ion. (TOMS03)

2003 2020

Davis

developed

UMFPACK

which

combines

pre-order ing

and

mul t i f ronta l

method .

(TOMS04)

Davis et

al also

developed

KLU,

which is a

sparse

so lver for

c i rcu i t

s imulat ion.

(TOMS10)

2004

PARDISO is

developed by

Schenk et al . I t

uses a combinat ion

of le f t - and r ight -

look ing Level -3

BLAS to explo i t

paral le l ism.

(FGCS01)

MUMPS is a

dist r ibuted di rect

solver us ing the

mul t i f ronta l method.

I t was developed by

Patr ick and Duff et

al . (PARA00)

2001 2010

GLU is a

sparse

di rec t

solver on

GPU

developed

by Tan et

al .

(D&T20)

2015 2019

SuperLU_DIST has been

cont inuous ly updated and added

vers ions for GPU.(JPDC19)

2013

NICSLU is a

sparse solver

us ing leve l -set

and supernode.

Developed by

Chen and

Wang et a l .

(TCAD13)

2022

FLU is

developed

by Yan et

a l . I t

in t roduces

a regis ter -

leve l

method.

(DATE22)

2000

Only on share memory CPUs

On Single GPU

On distributed systems

On share memory CPUs and

single GPU

ASP-DAC 2024

Development of Direct Sparse Solver
SuperLU us ing supernodal method

is developed by Li and Demmel

et a l . SuperLU_DIST is a

d is t r ibuted vers ion. (TOMS03)

2003 2020

Davis

developed

UMFPACK

which

combines

pre-order ing

and

mul t i f ronta l

method .

(TOMS04)

Davis et

al also

developed

KLU,

which is a

sparse

so lver for

c i rcu i t

s imulat ion.

(TOMS10)

2004

PARDISO is

developed by

Schenk et al . I t

uses a combinat ion

of le f t - and r ight -

look ing Level -3

BLAS to explo i t

paral le l ism.

(FGCS01)

MUMPS is a

dist r ibuted di rect

solver us ing the

mul t i f ronta l method.

I t was developed by

Patr ick and Duff et

al . (PARA00)

2001 2010

GLU is a

sparse

di rec t

solver on

GPU

developed

by Tan et

al .

(D&T20)

2015 2019

SuperLU_DIST has been

cont inuous ly updated and added

vers ions for GPU.(JPDC19)

2013

NICSLU is a

sparse solver

us ing leve l -set

and supernode.

Developed by

Chen and

Wang et a l .

(TCAD13)

2022

FLU is

developed

by Yan et

a l . I t

in t roduces

a regis ter -

leve l

method.

(DATE22)

2000

Dedicated to

circuit matrix

ASP-DAC 2024

Circuit Matrix Properties
In circuit simulation, the matrix usually

has the following properties:

(1) The value and position of nonzeros in

circuit matrix are usually unsymmetric

(2) Circuit matrices are often very sparse

(3) The distribution of non-zero elements

in circuit matrix is extremely irregular,

leading to some dense rows and

columns (e.g., power supplies are

usually connected to a larger number of

devices).

The structure of some circuit sparse matrices.

Circuit sparse matrix properties.

ASP-DAC 2024

Development of Direct Sparse Solver
SuperLU us ing supernodal method

is developed by Li and Demmel

et a l . SuperLU_DIST is a

d is t r ibuted vers ion. (TOMS03)

2003 2020

Davis

developed

UMFPACK

which

combines

pre-

order ing

and

mult i f ronta l

method .

(TOMS04)

Davis et

al also

develope

d KLU,

which is

a sparse

so lver for

c i rcu i t

s imulat io

n.

(TOMS10)

2004

PARDISO is

developed by

Schenk et al .

I t uses a

combinat ion

of le f t - and

r ight - look ing

Level -3 BLAS

to explo i t

para l le l ism.

(FGCS01)

MUMPS is a

dist r ibuted di rect

solver us ing the

mul t i f ronta l method.

I t was developed by

Patr ick and Duff et

al . (PARA00)

2001 2010

GLU is

a

sparse

di rec t

solver

on GPU

develo

ped by

Tan et

a l .

(D&T20)

2015 2019

SuperLU_DIST has been

cont inuous ly updated and added

vers ions for GPU.(JPDC19)

2013

NICSLU is

a sparse

solver

us ing leve l -

set and

supernode.

Developed

by Chen

and Wang

et a l .

(TCAD13)

2021

SFLU is

develope

d by

SSSLab .

I t uses

synchroni

zat ion-

f ree

st rategy

on GPU.

(DAC21)

2022

FLU is

develope

d by Yan

et al . I t

in t roduc

es a

reg is ter -

leve l

method.

(DATE22)

2023

DALU is

develope

d by

SSSLab .

I t

proposed

a dens i ty-

aware

adapt ive

method.

(DAC23)

PanguLU is developed by

SSSLab . I t uses s t ra teg ies such

as regular two-d imens ional

b lock ing, synchronizat ion - f ree

and sparse kernels on

d is t r ibuted heterogeneous

p la t form. (SC23 Best paper)

2000

On CPU with AI assisted

On single GPU

On distributed heterogeneous system

Contents

◼ Background

◼ Sparse Linear Solvers for Circuit Simulation

◼ SFLU: Synchronization-Free Sparse LU Factorization

for Fast Circuit Simulation on GPUs

◼ Accelerating Sparse LU Factorization with Density-

Aware Adaptive Matrix Multiplication for Circuit

Simulation

◼ PanguLU: A Scalable Regular Two-Dimensional Block-

Cyclic Sparse Direct Solver on Distributed

Heterogeneous Systems

◼ Conclusions

ASP-DAC 2024

SFLU: Synchronization-Free Sparse LU Factorization on GPUs (DAC21)

[1] Demmel, James W , Eisenstat, et al, A supernodal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis & Applications, 1999.

[2] Wai-Kong L , Ramachandra A , Nakhla M S, Dynamic GPU Parallel Sparse LU Factorization for Fast Circuit Simulation, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018

Name Strategy Characteristic

SuperLU[1]
Running GPU-version dense matrix-matrix

multiplication on (often small) matrices

generated from supernodal pattern.
Can not use GPU for

scheduling to save the

cost for kernel

relaunching and cache

data flushing.GLU[2]

Finding dependencies between columns,

generating levels, and using level scheduling

method for running multiple columns in the

same level on GPUs concurrently.

? ？
Can use GPU for

scheduling.

Using GPU for general computing has become a research hotspot.

TABLE I: There are two ways to utilize GPUs for sparse LU.

We need to design a method that can use GPU for scheduling.

ASP-DAC 2024

Global memory

Thread block 1

Thread block 2

Thread block 3

Thread block 4

Due to the logic between symbolic and numeric factorization are similar. we
only use the symbolic factorization to introduce our algorithm.

: to do

: busy waiting

SFLU: Synchronization-Free Sparse LU Factorization on GPUs (DAC21)

ASP-DAC 2024

0

1

2

3

4

0 1 2 3 4

: to do

: busy waiting

: new fill-in

The index represents the row

index of each element.
NnzL and nnzU represents the number of

elements in each column of L and U.

Degree represents the number

of uneliminated elements in

each column.
0 1 1 2 2

All the elements above

the diagonal of column

k are eliminated.

Elements above the diagonal line of

the row k can be eliminated.

Specifically:

SFLU: Synchronization-Free Sparse LU Factorization on GPUs (DAC21)

ASP-DAC 2024

Three warps are working

: to do

: busy waiting

: new fill-in 0

1

2

3

4

0 1 2 3 4

We use the storage order of indexU to determine

the decomposition object of each thread block.

Each unfinished thread block should have an

object.

Four objects.

SFLU: Synchronization-Free Sparse LU Factorization on GPUs (DAC21)

ASP-DAC 2024

Three warps are working

: to do

: busy waiting

: new fill-in 0

1

2

3

4

0 1 2 3 4

One element will be busy waiting.

SFLU: Synchronization-Free Sparse LU Factorization on GPUs (DAC21)

ASP-DAC 2024

Three warps are working

: to do

: busy waiting

: new fill-in 0

1

2

3

4

0 1 2 3 4

One element will be busy waiting.

Three elements will be eliminated.

SFLU: Synchronization-Free Sparse LU Factorization on GPUs (DAC21)

ASP-DAC 2024

0

1

2

3

4

0 1 2 3 4

: to do

: busy waiting

: new fill-in

Three nonzero elements were filled in.

Degree Changed.

SFLU: Synchronization-Free Sparse LU Factorization on GPUs (DAC21)

ASP-DAC 2024

Experimental Result
We test 1309 matrices from the SuiteSparse matrix set on Titan RTX (Turing)

GPUs, Intel 20-core CPUs, comparing the performance of SFLU with SuperLU

and GLU.

Figure 1. Symbolic factorization comparison. Figure 2. Numeric factorization comparison.

In the symbolic factorization, the acceleration is up to 205.14x and 701x

compared to SuperLU and GLU, respectively.

In the numeric factorization, the acceleration is up to 3585.2x and 252.2x

compared to SuperLU and GLU, respectively.

Contents

◼ Background

◼ Sparse Linear Solvers for Circuit Simulation

◼ SFLU: Synchronization-Free Sparse LU Factorization

for Fast Circuit Simulation on GPUs

◼ Accelerating Sparse LU Factorization with Density-

Aware Adaptive Matrix Multiplication for Circuit

Simulation

◼ PanguLU: A Scalable Regular Two-Dimensional Block-

Cyclic Sparse Direct Solver on Distributed

Heterogeneous Systems

◼ Conclusions

ASP-DAC 2024

Sparse LU with Density-Aware Adaptive Matrix Multiplication (DAC23)

The numeric factorization in supernodal LU factorization follows four steps，

where K signifies the K-th iteration and N denotes the number of matrix

blocks on the diagonal.

◼ Factorize the diagonal block.

◼ Factorize the sub-matrices in L panel: L(K : N, K)

◼ Factorize the sub-matrices in U panel: U(K, K +1 : N)

◼ Perform the Schur-complement for all the tailing sub-matrices by using A =

A−L×U.

The Schur-complement phase

contains a large number of GEMM

operations.

ASP-DAC 2024

GEMM takes up much of the time for numeric factoriztaion.

We tested some circuit matrices, such as the G3_circuit matrix in the

figure, which accounts for as much as 73.4% of the time, and most of the

other matrices tend to account for 40%-60% of the GEMM time.

Accelerating

GEMM is of

great

significance for

numeric

factorization

performance

improvement.

Sparse LU with Density-Aware Adaptive Matrix Multiplication (DAC23)

ASP-DAC 2024

Schur-complement

Figure 1. How to form supernodes.
Figure 2. Example of Schur-

complement computation.

In order to better utilize the dense GEMM of Level-3 BLAS, the traditional

approach is to form dense blocks using supernodal (shown in Figure 1) or

multifrontal methods. However, for matrices without a regular sparse

structure, supernodes formed through relaxation may not always be

dense (shown in Figure 2).

Sparse LU with Density-Aware Adaptive Matrix Multiplication (DAC23)

ASP-DAC 2024

We select three representative circuit matrices and can see that the input

matrix (L and U blocks) involved in GEMM are not always dense.

Figure 1. Density distribution of matrix factors (L and U blocks) participating in GEMM.

The introduction of sparse matrix multiplication (SpMM) shows great

potential for further accelerating the LU factorization.

Sparse LU with Density-Aware Adaptive Matrix Multiplication (DAC23)

ASP-DAC 2024

After introducing SpMM, we test the data in Table 1. The "Oracle" in the

table indicates the optimal total time computed by picking the optimal

kernel in SpMM and GEMM for each matrix multiplication in the ideal case.

Compared with GEMM and SpMM, the performance improvement potential

of "Oracle" is 1.03x-10.24x and 1.13x-4.25x, respectively.

We need to pick the optimal kernel for each execution of matrix

multiplication!

Which method is

best？GEMM？
SpMM？

TABLE I: Analysis of the performance improvement space of matrix multiplication.

Sparse LU with Density-Aware Adaptive Matrix Multiplication (DAC23)

ASP-DAC 2024

Figure 1. Performance comparison based on density and matrix size.

Figure 2. Density-aware LU factorization.

It is difficult to define thresholds for either density or matrix size. The use of

density-aware adaptive matrix multiplication equipped with random forest[1]

provides an effective solution to the issues mentioned above.

Sparse LU with Density-Aware Adaptive Matrix Multiplication (DAC23)

ASP-DAC 2024

Experimental Result

• Dataset Source: The large-scale circuit matrices in SuiteSparse and exported by

SuperLU_DIST 8.0.0.

• Samples in the dataset: Each sample contains 15 matrix features (F1-F15) and

a label P, where P=1 indicates that using GEMM is better than that of SpMM, and

P=0 is vice versa.

• Data preprocessing:

• Z-score normalization

• Sample equalization

• Number of samples in the dataset ：

An example of 15 matrix features (F1-F15).

ASP-DAC 2024

Experimental Result
We test several matrix in a 2 * Intel Xeon Silver 4210 CPU @ 2.20GHz, 512GB DDR4

platform configuration. We test 11 test matrix from the SuiteSparse, including 6 circuit

matrix and 5 non-circuit matrix.

Figure 1. Model accuracy

For circuit matrix, up to 9.35x acceleration for

matrix mutiplication and 1.76x for LU

factorization;

For other irregular matrix, up to 4.32x and

2.08x, respectively.

Contents

◼ Background

◼ Sparse Linear Solvers for Circuit Simulation

◼ SFLU: Synchronization-Free Sparse LU Factorization

for Fast Circuit Simulation on GPUs

◼ Accelerating Sparse LU Factorization with Density-

Aware Adaptive Matrix Multiplication for Circuit

Simulation

◼ PanguLU: A Scalable Regular Two-Dimensional Block-

Cyclic Sparse Direct Solver on Distributed

Heterogeneous Systems

◼ Conclusions

ASP-DAC 2024

PanguLU: Sparse Solver on Distributed Heterogeneous Systems (SC23)

When the supernodal method aggregates columns of the same structure,

there are different sizes of supernodes.

It can be seen that the matrix blocks generated by the supernodes can be

very irregular, which often affects the computational efficiency, and their

irregular structure makes it difficult to optimise the performance at the kernel

level.

Motivation 1: Uneven Block Sizes

ASP-DAC 2024

As a result, for the two matrices there is a chance that sparse BLAS is faster

compared with dense BLAS.

concentrated at [0,10)%

concentrated

at [90,100)%

This matrix has an overall even distribution

but a significant portion is less than 50%

2. The local sparsity of the matrix cannot be exploited during GEMM

calculations.

The supernodal method divides the matrix into uneven dense blocks to

be computed with dense BLAS, which may cause two questions.

1. Redundant zero fill-ins can occur when forming dense blocks that add

extra floating-point operations.

PanguLU: Sparse Solver on Distributed Heterogeneous Systems (SC23)

Motivation 2: Redundant Zero Fill-ins

ASP-DAC 2024

We test six real-world matrices from SuiteSparse Matrix Collection on 64 NVIDIA

A100 GPUs.

The synchronization cost would be more than 50% at 64 processes on irregular

matrices.

We need a new method to reduce synchronization costs.

Tree nodes consist of multiple dense BLAS and there

are dependencies between each tree node that need to

be synchronized, resulting in additional synchronization

overhead.

SuperLU_DIST uses the level-set method to generate an elimination tree

with tree nodes as the minimum scheduling unit in distributed systems,

which can lead to high synchronization costs.

PanguLU: Sparse Solver on Distributed Heterogeneous Systems (SC23)

Motivation 3: High Synchronisation Costs

ASP-DAC 2024

Each process uses a two-layer sparse structure to store the matrix.

Our approach is completely different from the classic supernodal method.

PanguLU splits the matrix into multiple blocks of equal size and uses sparse

kernel to calculate.

First layer sparse structure stores the positional information of sparse matrix

blocks. We will get the position of sub-matrix in this layer sparse format.

Second layer sparse structure stores the non-zero elements of sub-matrix

block with sparse format. We will get internal information about the block,

including rows, non-zeros, and sub-matrix structure.

Data Layout of PanguLU

ASP-DAC 2024

Sparse Kernels of PanguLU

In the numeric factorization of PanguLU, since the matrix blocks are sparse,

we develop four dedicated sparse kernels: sparse general triangular

factorization (GETRF), sparse upper triangular solve (TSTRF), sparse lower

triangular solve (GESSM), and Schur complement with sparse-sparse matrix

multiplication (SSSSM).

All four sparse kernels use sparse sub-matrix blocks as inputs and outputs.

A = L * U X * U = A

L * X = A - L * U + C = C

ASP-DAC 2024

There are several critical factors for the performance of numeric factorzation,

such as density, structure and size of the matrix. To exploit the best

performance, we implement 17 sparse kernels in PanguLU.

Kernel
Versi

on

Addressin

g Method

Paralleling

Method

Dense

Mappi

ng

GETR

F

C_V1 Direct Row ✓

G_V1 Bin-search Un-sync SFLU -

G_V2 Direct Un-sync SFLU ✓

TSTR

F/

GESS

M

C_V1 Merge Column -

C_V2 Direct Column ✓

G_V1 Bin-search Warp-level column
-

G_V2 Bin-search
Un-sync warp-level

row

-

G_V3 Direct Warp-level column ✓

SSSS

M

C_V1 Direct
Approximate equal

load column block
✓

C_V2 Bin-search
Adaptive split-bin

type
-

G_V1 Bin-search Adaptive multi-level -

G_V2 Direct Warp-level column ✓

The “Addressing Method” indicates how the

calculation value is located and updated. In

addition, the “Dense Mapping” represents that

the sparse structure is mapped to a dense space.

How to select one of these sparse kernels

at runtime?

Different sparse kernels have different

Sparse Kernels of PanguLU

ASP-DAC 2024

We propose an algorithm selection strategy for constructing sparse kernels

based on large amounts of performance data to select better sparse kernels.

We develop four decision trees according to #non-zeros of matrix A/B and

the FLOPs involved in the computation from the performance of 17 sparse

kernels to guide our algorithm selection.

Sparse Kernels of PanguLU

ASP-DAC 2024

PanguLU develops a mapping method and redistributes the computational

load between processes. We map sparse block of heavy-load process to

less-load process according to kernel types and time slices.

Calculate the total weights of the LU factorisation by preprocessing

Each block presents a sparse kernel

Migrate heavy-load sparse

kernels for load-balancingExchange load from orange

process to blue process

Exchange from red

process to green process

Mapping of PanguLU

ASP-DAC 2024

Executive direction

PanguLU are computed sequentially in the order of time slices, to maintain the correctness of the

sparse LU factorisation as show in figure.

Synchronisation-Free Scheduling

ASP-DAC 2024

PanguLU are computed sequentially in the order of time slices, to maintain the correctness of the

sparse LU factorisation as show in figure.

The synchronisation between each time slice is required to ensure that the correctness of the

calculations.

But obviously these time slices can be computed in parallel on different processes.

Executive direction

For the blocks 1, 2 and 6, if we do the

calculations in time-slice order, these

blocks will be executed sequentially.

Mainly because synchronisation

reduces parallelism in distributed

systems.

Is there another method of calculation that can guarantee correctness while keeping the

processes in a working state as much as possible?

Synchronisation-Free Scheduling

ASP-DAC 2024

So we researched the order of computation of sparse LU factorisation using sparse kernels.

In particular, we do not use any synchronisation in here.

We find all kernels

need to calculate

according to the

dependencies

shown in the

figure.

The computation of

all sparse kernels

(GETRF, TSTRF,

GESSM and

SSSSM) can only be

started after

computation of the

kernel pointed to by

the previous arrow

has been completed,

which is like the

relationship between

0 and non-zero.

Therefore, we can

use a

synchronisation-free

array to keep the

number of sparse

kernels that still need

to be calculated for

each block to ensure

the correctness of

the computation.

For blocks 1, block

2, and block 6, the

synchronisation-

free array is 0

because there are

no arrows.

For block 12, the synchronisation-free

array is 3 because there are three arrows.

Synchronisation-Free Scheduling

ASP-DAC 2024

Experimental Result

Two experimental platforms
Two heterogeneous

distributed Solvers

4 * NVIDIA A100 GPUs

(40 GB, B/W 1555GB/s)

2 * Intel Xeon 8180 CPUs @ 2.5

GHz

(512GB DDR4)

SuperLU_DIST 8.1.2

PanguLU 3.5

4 * AMD MI50 GPUs

(16 GB, B/W 1024GB/s)

1 * AMD Epyc 7601 CPU @ 2.2

GHz

(128GB DDR4)

SuperLU_DIST 8.1.2

PanguLU 3.5

Experimental Setup

ASP-DAC 2024

Experimental Result
Compared with

SuperLU_DIST,

PanguLU achieves an

average speedup of

2.53x and 2.79x on

the NVIDIA GPU

platform and the AMD

GPU platform, with

speedups ranging

from 1.10x - 11.70x

and 1.12x - 17.97x,

respectively.

In this figure, the red lines and blue lines indicate

the performance of SuperLU_DIST and PanguLU,

respectively, while the solid lines and dotted lines

indicate the performance on the A100 GPU and

MI50 GPU platforms, respectively.

Especially, PanguLU achieves

significant performance advantages

for irregular matrices such as

ASIC_680k (circuit matrix) with

speedups of up to 11.70x and

17.97x on the two GPU platforms,

respectively.

ASP-DAC 2024

Kernel time comparison of SuperLU_DIST and PanguLU for 16 test matrices on a signle A100 GPU.

PanguLU achieves better performance by using sparse kernel on a single GPU.

In the 16 matrices, PanguLU has a geometric mean of 6.54x compared with

SuperLU.

Experimental Result

Contents

◼ Background

◼ Sparse Linear Solvers for Circuit Simulation

◼ SFLU: Synchronization-Free Sparse LU Factorization

for Fast Circuit Simulation on GPUs

◼ Accelerating Sparse LU Factorization with Density-

Aware Adaptive Matrix Multiplication for Circuit

Simulation

◼ PanguLU: A Scalable Regular Two-Dimensional Block-

Cyclic Sparse Direct Solver on Distributed

Heterogeneous Systems

◼ Conclusions

ASP-DAC 2024

Sparse Linear Solvers for Circuit Simulation

Machine Learning and GPU Accelerated Sparse Linear Solver (on CPU, GPU

and Distributed Heterogeneous Systems):
◼ Jianqi Zhao, Yao Wen, Yuchen Luo, Zhou Jin, Weifeng Liu, Zhenya Zhou. SFLU: Synchronization-Free

Sparse LU Factorization for Fast Circuit Simulation on GPUs.

The 58th ACM/IEEE Design Automation Conference (DAC' 21). 2021.

◼ https://gitee.com/ssslab/sflu

◼ Tengcheng Wang, Wenhao Li, Haojie Pei, Yuying Sun, Zhou Jin, Weifeng Liu. Accelerating Sparse LU

Factorization with Density-

Aware Adaptive Matrix Multiplication for Circuit Simulation. The 60th ACM/IEEE Design Automation Con

ference (DAC' 23). 2023

◼ https://github.com/SuperScientificSoftwareLaboratory/DALU

◼ Xu Fu, Bingbin Zhang, Tengcheng Wang, Wenhao Li, Yuechen Lu, Enxin Yi, Jianqi Zhao, Xiaohan Gen

g, Fangying Li, Jingwen Zhang, Zhou Jin, Weifeng Liu. PanguLU: A Scalable Regular Two-

Dimensional BlockCyclic Sparse Direct Solver on Distributed Heterogeneous Systems. 36th ACM/IEEE

International Conference for High Performance Computing, Networking, Storage, and Analysis (SC'

23). 2023. (Best paper award)

◼ https://www.ssslab.cn/software.html

https://gitee.com/ssslab/sflu
https://github.com/SuperScientificSoftwareLaboratory/DALU
https://www.ssslab.cn/software.html

ASP-DAC 2024

An overview of surveyed sparse direct solver

Solver Left/Right

looking

Blocking

method

Kernel Parallelism

Level Method Distributed Multi-

thread

GPU

Gene-

ral

MUMPS Left Multifrontal Level-3

BLAS

Tree/Node Level-set √ √ —

UMFPAC

K

Left Multifrontal Level-3

BLAS
— — — — —

SuperLU_

DIST

Right Supernode Level-3

BLAS

Supernode Level-set √ √ √

PARDISO Left & Right Supernode Level-3

BLAS

Supernode Pipeline √ √ —

PanguLU Right Regular 2D

block

Adaptive

sparse

kernel

2D block Synchronizat

ion-free
√ √ √

Dedi-

cated

to

circuit

matrix

KLU Left Block diagonal — — — — — —

NICSLU Left Supernode Level-3

BLAS

Supernode Level-set — √ √

FLU Left Supernode Level-3

BLAS

Supernode Register

Level
— √ —

GLU Left & Right — — Element Level-set — — √

SFLU Left & Right — — Element Synchronizat

ion-free
— — √

Density-

aware LU

Right Supernode Adaptive

kernel

Supernode Level-set √ √ —

ASP-DAC 2024

Some Observations for Future

The future opportunities in this evolving landscape:

◼ Taking into account various factors such as the matrix and hardware

platform characteristics in algorithm design.

◼ How to introduce sparse computations and strike a trade-off

between dense and sparse kernels for different computational tasks

remains a pivotal challenge.

◼ Better task scheduling strategies and computational kernels need to

be designed on GPUs to improve the parallel computing

performance.

ASP-DAC 2024

Thanks!

jinzhou@cup.edu.cn

mailto:jinzhou@cup.edu.cn

