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Background — loT and Smart Home

With the advancement of edge computing technology, the Internet of Things (loT) has become
iIncreasingly valuable in a multitude of domains.

High-performance hardware and artificial intelligence (Al) technologies further help to build a
robust foundation for smart home system.
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Background — Deep Learning and Neural Network

Deep Learning and Neural Network: A subset of machine algorithms that mimic human brain
operation, recognizing patterns and interpreting sensory data.
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Broadly used in IoT and smart homes for: Energy Efficiency, Security and Surveillance, Voice and
Image Recognition, Remote Control, etc.



Background — Related Work

HEMS-loT: A Big Data and Machine Learning-Based Smart Home System for Energy Saving
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[I. Machorro-Cano, et al., Energies, 2020]
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Limitation: Focus exclusively on energy
management

[W. Li, et al., IEEE Internet of Things Journal, 2018]



Background — Challenges E

Ultimate goal:

Translate users’ living patterns and environmental factors into actionable rules that could
improve residents’ quality of life.

Challenges:
® Complexities of household environments for data analysis
® Lack of high-quality event sequence datasets for smart home rule-mining

® Balance user-specific enhancements with household optimization



Contribution:

* HomeSGN - an innovative generative smart home system
¢ State-of-the-art rule-mining and proposing system with scorer and generator
* Data augmentation and rectification module for data pre-processing

* Integration of smart home framework and real-life experiment

® Encourage practical optimization for users and enhance user-nome interactions



Motivation — From Device to User

® Current designs focuses on the device level, fails to
enhance residents' living quality.

® Require user input to perform certain functions.

® Cannot adapt to individual user preferences and
routines.

® Highlight the need to enhance the intelligence of these
systems to improve users' living quality.

® Transition from a device-centric to a user-centric
approach in smart home design.
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Motivation — Generative Neural Network

Generative Neural Network: Neural network that generates new data samples by learning the
given dataset.

GAN (Generative Adversarial Network): A framework contains a generator and a discriminator,
that compete against each other.
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Methodology — Overview

HomeSGN (Home Scorer-Generator Network):

Unique scorer-generator network crafted for smart home systems, targeting to propose
useful new living rules based on historical living sequences.

® Miner Block: Statistic rule mining
® Scorer Block: Living rule evaluation

® Generator Block: Enhanced new rule generation
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Overview of Multi-user HomeSGN



Methodology — Mining Block

Mining Block

From house-level living sequence to find living patterns
of individual users and interactive rules among users.

Modified MDD (Multi-valued decision diagram) algorithm:

® Input: House-level living sequences with user _ids,
location_info, and timestamps.

® Output: Preliminary rules for each user, interactive rules
among involved users.

Advantages:

® Smaller search space

® Enable complex and non-numerical constraints
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Methodology — Scorer Block (Pre-processor)
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Challenge:
® Insufficient living rules for model training.
® Training data with bad living habit.

Solution and feature of the pre-processor:

® Provide an additional good baseline for users who
do not have enough training data.

® Rectify bad rules with high-quality activities in the
same category to provide good living rule
examples.



Methodology — Scorer Block (Encoding)

Encoding: One-hot encoding

Assuming K different activities, Act = {Act}, 1 <i =<K, Seq = {Seqj}, Seq; € Act, 1<j=sL

I if Seq; is Aect,

0  otherwisex

Given a certain Seq, we can encode Seq into a L-by-K matrix Enc where Enc;,; — {

To illustrate, Assuming Act = {Eat, Pray, Love}, the sequence Seq = {Eat, Eat, Love, Pray}

_ |'1 0 n"
IS encoded as , 1 0 0
Fine =
0o o 1
0 1 0
Simple encoding with the values of the activities’ indices, such as Enc =[1, 1, 3, 2] becomes

much more difficult for the neural network to learn the features due to lack of informative data.

One-hot encoding can also support complex activity sequences.



Methodology — SGN
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The Scorer-Generator:

® Input: Training rules after pre-process, environment and users’ preference

® Output: Preferred Rules for each user
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Methodology — SGN (GAN vs. Others)

Insights of GAN network
® High-quality generation capability

® Remarkable ability to generate high-quality, realistic data samples
® Implicit modeling attributes

® Implicit modeling of data distribution suits complex, multimodal data distributions

® Limitation of Variational Autoencoders (VAES) and Diffusion Probabilistic Models
® Cannot handle living rule data well

® VAESs lack diversity or creativity due to their tendency to average over the training data in
the latent space



Methodology — Multi-User HomeSGN
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The Multi-User HomeSGN:;

® Input: Sequence data for the house

® Output: Preferred rules for each user, and global optimized rules for the house
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Theta is the coefficient to determine the privilege



Experiment and Evaluation — Experiment Setup

Experimental Setup:

® Edge node build with Raspberry Pi 4B
® Cloud node on a desktop with an Intel Xeon W-2225 CPU and an NVIDIA Quadro P2200 GPU

Dataset:
YouHome dataset!t with profiles of two users

® Originally designed for activities of daily living (ADL).

® The dataset includes 45 distinct activities and 6 human postures with 20 participants in two
different residential contexts with 29 camera viewpoints.

® Living sequences are derived from the dataset using sequential video data.

[1] The YouHome dataset is available at https://github.com/UIUC-ChenLab/YouHome-Dataset/
The repo is currently private due to paper review and will be public soon.


https://github.com/UIUC-ChenLab/YouHome-Dataset/

Methodology — Rule augmentation:

. . —DBaseline
. . Insufficient
Rule augmentation preliminary results: 0.8 NSUTIEIENT  __ Augmented
Rectified
® Our method improves the number of rules in the 0.6 —Agmt. and Retf.
score range of 2 to 8 compared to the baseline. e =
0.4 -
® Combining both methods significantly enhance the ——H\/__
guality of the training data. 0.2
78 8 82 85 88 9
Score
60 Baseline -
1 Augmented @ 0.8 SUﬁClClEHt
E 40 Rectified EE"
52 0 Augmented and rectified E 0.6 '
5 20 S e ——
Q0 { o v"._-_._
E | ,; % .4
Z2 0 ‘ £ E’
1 2 3 4 5 6 7 8 9 s
Score 9 0.2

59 61 63 65 67 69 71 74
Score



Methodology — Single User Multiple Optimization Targets

Single User Multiple Optimization Targets
® 50% Energy Factor and 50% Health Factor

¢ Great improvement for both attributes - 30% for energy consumption and 15% for health
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Methodology — Multi-User Multiple Optimization Targets

Multi-User Multiple Optimization Targets
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Conclusion

Novel Smart Homes:

® HomeSGN introduces novel living rule proposer for users in smart home.
Innovative Rule Mining:

® Utilizes Scorer-Generator GAN for personalized, high-value rule suggestions.
Data Augmentation and Rectification:

® Ensures high-quality results even with limited or poor-quality data.
Interactive and Adaptive:

® Offers optimized user preferences and inter-user interactive rules.
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