

#### Adaptive Workload Distribution for Accuracy-aware DNN Inference on Collaborative Edge Platforms

Zain Taufique<sup>1</sup>, Antonio Miele<sup>2</sup>, Pasi Liljeberg<sup>1</sup>, Anil Kanduri<sup>1</sup>

<sup>1</sup> University of Turku, Finland

<sup>2</sup> Politecnico di Milano, Italy







#### **DNN Inference on Cloud**



**Benefits:** 

- 1. High Performance
- 2. Battery Saving

#### Drawbacks:

- 1. Internet Dependency
- 2. Communication overheads
- 3. Privacy Concerns
- 4. Server Cost



- Battery consumption (%)
- Performance (inference per seconds)
- Target Performance

# **DNN Inference on Edge**



Benefits:

- 1. High Performance
- 2. Battery Saving
- 3. Fast response
- 4. Secure

Drawbacks:

1. Complex Design

2. Limited Resources



## **Collaborative Edge Inference**



Opportunistic resource sharing to meet the performance

## Workload Partitioning Methods

(a). Model Partitioning

(b). Data Partitioning



- 1. Complex Design
- 2. Architectural Limitations
- 3. Difficult to scale



- 1. Scalable
- 2. Feasible for input parallel applications

## Inference on Heterogeneous Edge Nodes





Complex trade-off space between different edge platforms

**Possible Pareto-optimal points** 

## Workload Distribution Strategies



#### Comparison with State-of-the-Art

|              | [1]          | [9]          | [10]         | [11]         | [3]          | [5]          | [12]         | [13]         | Our                   |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------------|
| Perf. aware  | $\checkmark$          |
| Acc. aware   | $\checkmark$ | ×            | ×            | $\checkmark$ | $\checkmark$ | $\checkmark$ | ×            | ×            | $\checkmark$          |
| Heter. aware | $\checkmark$ | $\checkmark$ | ×            | ×            | $\checkmark$ | ×            | $\checkmark$ | 1            | ✓                     |
| Adaptive     | $\checkmark$ | ×            | ×            | 1            | $\checkmark$ | $\checkmark$ | 1            | $\checkmark$ | ✓                     |
| Run-time     | ×            | ×            | ×            | ×            | ×            | $\checkmark$ | ×            | ×            | <ul> <li>✓</li> </ul> |

#### **Approximation with Model Selection**

- 1. Pre-trained light models take less memory
- 2. Run-time availability to cater varying performance demands
- 3. Ensures adaptability in dynamic application scenarios



## **Proposed DNN Inference Framework**



#### Node Architecture

- 1. Dispatch Policy is only available in the Global Node
- 2. All nodes are supported by Linux Operating System
- 3. Application Layer is responsible for inference
- 4. Network Layer enables communication between nodes



## **Resource Manager**

- 1. Implemented as a finite state machine
- 2. Triggers in case of new inference request
- 3. Initial profiling is done to populate the exploration table



#### Design Space Exploration for Workload Distribution









#### **Performance Evaluation**



#### Performance with variable input sizes



#### Conclusion

- Adaptive workload distribution policy
  - Partitions DNN inference requests on collaborative heterogeneous edge clusters.
  - Exploits accuracy-performance trade-offs of DNN models
  - Jointly determines optimal partitioning points and accuracy levels of dynamic inference requests
- Strategy implementation on a real hardware testbed
  - Cluster of devices 2xOdroid Xu4, Raspberry Pi 4, Jetson Nano
  - Workload distribution policy implemented as a middleware
- Evaluation against relevant workload distribution strategies
  - Average performance gain of 42.5%
  - Average accuracy gain of 4.2% against other approximation methods