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Background

Variational quantum algorithm (VQA):
*Promising application of near-term quantum computers
*Require measurement methods that efficiently extract information from quantum state

Shallow-circuit guantum measurement:

Estimate quantum state by measuring each qubit

Measurement based on single-qubit gate such as Pauli operations X,Y, Z
*Robust to noise of quantum computers

Classical Shadow:

*Obtain the estimator by polynomial number of measurements

*There are several methods for increasing accuracy of estimator

*Decision Diagram (DD)-based method [Hillmich et al. 2021]: High accuracy



Shallow-circuit quantum measurements

Consider n-qubit Hamiltonian H represented by following equation

H = 2 apP
Pe{l,X,)Y,Z}"

Shallow-circuit guantum measurement problem:

Given quantum state p € C2", we estimate Tr(Hp) with small variance
by single qubit pauli-operation and measurement on computational basis (]|0), |1))

@ Reduced

Optimization of probability distribution f over measurement basis P™*(P = {X,Y,Z})



Variance of estimator

1
Var(v) = S((Z apaqg (P, Q,mTr(PQp)) - (Tr(Hp>)2>

P,Q \

This is small when # of measurement basis covering P, Q is small
——)> Reduces the variance

Explanation of terminology “cover”:

Cover(P) := {B € P"|B; = P; whenever P + I}

B covers P. = Tr(Pp) can be estimated by measurement on B.
e.g.) XXXX covers XIXI

Existing decision diagram (DD)-based method [Hillmich, et al. 2021]:
Extract measurement basis from DD representing Hamiltonian
Demonstrate high accuracy compared with other classical shadow methods



Extract measurement basis from DD

H = 0.25XXX + 0.25YYX + 0.5ZZZ
DD for quantum measurements:

Rooted directed acyclic multi-graph ¢ = (V,E) @ Convert
Date given to edges:

-Single-qubit Pauli-operator Root
*Weight w(e) € (0,11 <<= Probability of selecting edge

Requirements: X (0257, 0.25) " Z(0.5)

* v € IV has at least one out-going edge
» For out-going edge of v (e € out(v)), Xecourwyw(e) =1
Path: Corresponds measurement basis

Estimate Tr(Hp) using measurement basis obtain by random walk Terminal

Factor of variance: Edge weight, Shape of graph



Building method for DD

H = 0.25XXX + 0.25YYX + 0.5ZZZ
Flow of existing building method for DD

@ Build DD
*Reduce Hamiltonian

Reduce # of Pauli-operators
Tuning probability distribution

Initialize DD X025y 9.25) * 2(0.5)
Build DD from reduced Hamiltonian

*Normalize DD
Normalize edge weights
Eliminate redundant nodes



Reduce Hamiltonian

H = —0.81011I11 + 0.045XXXX + 0.045XXYY + 0.045YYXX + 0.045YYYY + 0.172Z111] — 0.2251Z1]1 + 0.17211I’ZI
—0.225111Z + 0.120ZZ11 + 0.168Z1Z1 + 0.166Z11Z + 0.1661ZZ1 + 0.1741Z1Z + 0.12011ZZ

Reduce (Pauli grouping) *Merge Pauli-operators
N *Tuning probability distribution

Reduced Hamiltonian R(H)
= 0.045XXXX + 0.045XXYY + 0.045YYXX + 0.045YYYY + 1.714Z777

Coefficients correspond to probability distribution over measurement basis

Algorithm:
Check whether merging is possible for all combinations of terms



Initialize DD

R(H) = 0.045X, X, XX, + 0.045X, X, YsY, + 0.045Y,Y, X3 X, + 0.045Y,Y,Y3Y, + 1.7142,7,77,

""""""""""" N Qubit order:
— Order in which bits are referenced
------------------------ -- Q2
........................ - g3 Create path for each pauli-operator
*Give weight to bottom edge
---------------------- -- Q4 (Weight corresponds to coefficient)

Y (0.045) X (0.045) ¥ (0.045)

X (0.045) Next, normalize this DD
: Z(1.714 . : .
—— (1.7149) Normalize edge weights

‘Merge some nodes




Normalize edge weight

Requirement for edge weight:
For out-going edge of v (e € out(v)), Xecoutwyw(e) =1

While propagating weight to root node,
normalize edge weight so that above requirement is satisfied.

X(0.048) 7 0.048)  Z(0.904)

x5 Y05 Xx(0.5) Y(03)

Y (0.045) X (0.045) Y (0.045)

X (0.045) Z (1.714)
"

Initial DD Normalized weight 9



Merge equivalent node

Merge node v, u, when the two nodes satisfy following conditions.

(1) V. (child-nodes of node v) = V." (child-nodes of node u)

(2) For any node a € V,,

Pauli-operation and weight of edge (v, a) and edge (u, a) are equivalent.

A 7 (0.904)

X (0.048) Y (0.048)  Z(0.904) X (0.048) Y (0.048)

Equivalent nodes

Y (0.5)

®

x(05) Y05 Xx(0.5) Y(03) X(0.5)

X(0.5)  Y(0.5)

10



Node reduction by merging l-edges

When graph satisfies some conditions, following operation can be applied

9 ®

1057 v(05) Y
~ |
N Convert AN

X X(0.5) Y05 mEm=y X075 Y025
| | /

# of nodes =7 # of nodes =5 »



Our contribution

Issue of DD:
Size of Hamiltonian: Large = Size of DD: Large
|:> Can not be applied to large-size Hamitonian

Our contribution:
*Propose a method for reducing size of DD
*Our method does not compromise accuracy of estimator
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Relaxing condition of equivalent nodes

Merge nodes v, u, when the two nodes satisfy the following conditions
(1) V. (child-nodes of node v) = V.' (child-nodes of node u)

(2) For any node a € V., Pauli operations of edge (v, a) and edge (u, a) are equivalent

N

Difference from existing method: Ignore edge weight

Existing method: v, u are not equivalent

X(0.7) Y (0.7)
é)/ X(0.3) Y(0.3) \(5 Proposed method: v, u are equivalent

# of nodes merged is increased
I:> Reduce # of nodes in DD
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Edge weighting scheme

1
Var(v) = S (2 apagg(P, Q;ﬁ)TI‘(PQP)) - (TF(HP))Z
P,Q T
Small

# of measurement basis covering P, Q: Large

Small Influence of Pauli operator with large coefficient: Large

# of measurement basis covering P, Q with large coefficient: Large

Edge weighting scheme:
Give a large weight to edges in path corresponding to such measurement basis




Qubit ordering

Reduce # of nodes by qubit ordering Q7 a1
DD for quantum measurements O---12
# of nodes: Depends on qubit order Ay ds

BDD (representative DD)
*# of nodes: ()--- 4
Depends on variable order (corresponds to qubit order)

Naive algorithm for finding qubit order that minimizes # of nodes:
Examine all qubit orders
*Time complexity: 0(n!)

Proposed method:

Fast algorithm based on dynamic programming

(technique utilized in BDD variable ordering)

*Obtain the optimal ordering when ignoring the reduction by merging I-edges



Divide DD
Q ={q4,95, -.-,qn} (q;: Qubits in a DD)

H
| Upper Assumption:
ScCQ Ignore the reduction by merging I-edges
\)(/ Il \_7/ \\
7\ /{/ \ # of nodes in upper part:
Y eoe @ Lower

Independent from lower part qubit order

\ # of nodes in lower part:

Independent from upper part qubit order

Q\S

Problem of finding optimal qubit order:
We can separate upper part and lower part

Optimal qubit order: Examine all combinations of S
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# of boundary nodes

Information for finding optimal qubit order:
*Set of qubits S
# of boundary nodes

H
|
scQ /\ Upper

\
\
oo (1) Boundary nodes
Q\S Lower \

# of boundary nodes:
Constant regardless of S




Master Profile Chart(MPC)

Root node (o}, 1

Data of nodes:*Set of qubits S

((1},3) 12},3 31,3 14,3 # of boundary nodes
\‘-><<.|l"l||-» <q..l'
/‘ O" \ Edge: Transition of S
1212 1315 (((L4]5) 2305 2415 3.41.2y) Path: Corresponds to qubit order

Path weight: # of nodes in DD
(Node weight: # of boundary nodes)

({1, 2,3}, 3) ({1,2,4},3) ({1,3,4},3) ({2,3,4},3)

Terminal node (({1,2,3,4}, 1)

Finding qubit order that minimize # nodes = Finding minimum weighted path

Breadth fast search can solve this problem
Time complexity: Exponential to # of qubits
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Experimental results

Comparison of existing method with proposed method

CS [4] Existing DD-based [21] Proposed
Molecule Encode | Terms Vari. Node Edge Vari. Node Edge Vari.
LiH (12-qubit) JW 751 266 166 271 11.3 74 137 8.28
Parity 778 760 215 429 31.2 172 316 36.7
BK 765 163 290 521 29.6 167 300 44 1
BeH, (14-qubit) | JW 796 1792 319 484 123 177 297 314
Parity 831 3524 375 702 635 266 468 697
BK 833 2273 336 545 561 226 390 3597
H,O (14-qubit) JW 1302 4789 389 682 1444 220 397 1474
Parity 1332 11209 540 1065 3552 229 492 5660
BK 1333 26004 476 864 5325 265 487 9481

Proposed methods: Reduce DD size without compromising accuracy

[4] S. Aaronson, “Shadow tomography of quantum states,” 2020. 19
[21] S. Hillmich, et. al, “Decision diagrams for quantum measurements with shallow circuits,” 2021.



Conclusion

DD based quantum measurement:
*High accuracy
*Scalability issue regarding DD size

Proposed methods:
*Relax condition of equivalent nodes

*Edge weighting scheme
*Qubit ordering optimization

Experimental results:
Demonstrate proposed methods can reduce DD size without

compromising accuracy



