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Background

Variational quantum algorithm (VQA): 
•Promising application of near-term quantum computers
•Require measurement methods that efficiently extract information from quantum state

Classical Shadow:
•Obtain the estimator by polynomial number of measurements
•There are several methods for increasing accuracy of estimator
•Decision Diagram (DD)-based method [Hillmich et al. 2021]: High accuracy

Shallow-circuit quantum measurement:
•Estimate quantum state by measuring each qubit
•Measurement based on single-qubit gate such as Pauli operations 𝑋, 𝑌, 𝑍
•Robust to noise of quantum computers
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Shallow-circuit quantum measurements

Optimization of probability distribution 𝛽 over measurement basis 𝒫!(𝒫 = 𝑋, 𝑌, 𝑍 )

𝐻 = +
"∈ $,&,',( !

𝛼"𝑃

Shallow-circuit quantum measurement problem:
Given quantum state 𝜌 ∈ ℂ)!,  we estimate Tr(𝐻𝜌) with small variance
by single qubit pauli-operation and measurement on computational basis ( 0 , |1⟩)

Reduced

Consider 𝑛-qubit Hamiltonian 𝐻 represented by following equation
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Variance of estimator

Var 𝜈 =
1
𝑆

(
!,#

𝛼!𝛼#𝑔 𝑃, 𝑄, 𝛽 Tr 𝑃𝑄𝜌 − Tr 𝐻𝜌 $

Explanation of terminology “cover”:
Cover 𝑃 ≔ {𝐵 ∈ 𝒫!|𝐵* = 𝑃*	 whenever	 𝑃 ≠ 𝐼}
𝐵 covers 𝑃. ⟹ Tr(𝑃𝜌) can be estimated by measurement on 𝐵.
e.g.) 𝑋𝑋𝑋𝑋 covers 𝑋𝐼𝑋𝐼

Existing decision diagram (DD)-based method [Hillmich, et al. 2021]: 
•Extract measurement basis from DD representing Hamiltonian
•Demonstrate high accuracy compared with other classical shadow methods

This is small when # of measurement basis covering 𝑃, 𝑄 is small
            Reduces the variance
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Extract measurement basis from DD

Estimate Tr(𝐻𝜌) using measurement basis obtain by random walk

Factor of variance: Edge weight, Shape of graph

Y (0.25) Z (0.5)X (0.25)

𝐻 = 0.25𝑋𝑋𝑋 + 0.25𝑌𝑌𝑋 + 0.5𝑍𝑍𝑍DD for quantum measurements:
Rooted directed acyclic multi-graph 𝐺 = 𝑉, 𝐸
Date given to edges:
•Single-qubit Pauli-operator
•Weight 𝑤 𝑒 ∈ (0,1] Probability of selecting edge
Requirements:
• 𝑣 ∈ 𝑉 has at least one out-going edge
• For out-going edge of 𝑣 (𝑒 ∈ out(𝑣)), ∑+∈,-.(0)𝑤 𝑒 = 1
Path: Corresponds measurement basis

Root

Terminal

Convert
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Building method for DD

Flow of existing building method for DD

•Reduce Hamiltonian
Reduce # of Pauli-operators
Tuning probability distribution

•Initialize DD
Build DD from reduced Hamiltonian

•Normalize DD
Normalize edge weights
Eliminate redundant nodes

Y (0.25) Z (0.5)X (0.25)

𝐻 = 0.25𝑋𝑋𝑋 + 0.25𝑌𝑌𝑋 + 0.5𝑍𝑍𝑍

Build DD
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Reduce Hamiltonian

𝐻 = −0.810𝐼𝐼𝐼𝐼 + 0.045𝑋𝑋𝑋𝑋 + 0.045𝑋𝑋𝑌𝑌 + 0.045𝑌𝑌𝑋𝑋 + 0.045𝑌𝑌𝑌𝑌 + 0.172𝑍𝐼𝐼𝐼𝐼 − 0.225𝐼𝑍𝐼𝐼 + 0.172IIZI
         −0.225𝐼𝐼𝐼𝑍 + 0.120𝑍𝑍𝐼𝐼 + 0.168𝑍𝐼𝑍𝐼 + 0.166𝑍𝐼𝐼𝑍 + 0.166𝐼𝑍𝑍𝐼 + 0.174𝐼𝑍𝐼𝑍 + 0.120𝐼𝐼𝑍𝑍

Reduced Hamiltonian ℛ 𝐻
= 0.045𝑋𝑋𝑋𝑋 + 0.045𝑋𝑋𝑌𝑌 + 0.045𝑌𝑌𝑋𝑋 + 0.045𝑌𝑌𝑌𝑌 + 1.714𝑍𝑍𝑍𝑍

Reduce (Pauli grouping)

Algorithm:
Check whether merging is possible for all combinations of terms 

•Merge Pauli-operators
•Tuning probability distribution

Coefficients correspond to probability distribution over measurement basis 
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Initialize DD

X Y Z

X (0.045)Y (0.045)

X (0.045)

Y (0.045)

Z (1.714)

𝑞%

𝑞$

𝑞&

𝑞'

ℛ 𝐻 = 0.045𝑋!𝑋"𝑋#𝑋$ + 0.045𝑋!𝑋"𝑌#𝑌$ + 0.045𝑌!𝑌"𝑋#𝑋$ + 0.045𝑌!𝑌"𝑌#𝑌$ + 1.714𝑍!𝑍"𝑍#𝑍$

Qubit order: 
Order in which bits are referenced 

•Create path for each pauli-operator
•Give weight to bottom edge
(Weight corresponds to coefficient)

Next, normalize this DD
•Normalize edge weights
•Merge some nodes
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Normalize edge weight

X Y Z

X (0.045)Y (0.045)

X (0.045)

Y (0.045)

Z (1.714)

Normalized weightInitial DD

X (0.5)Y (0.5)

X (0.048)

Y (0.5)

Z (0.904)

X (0.5)

Y (0.048)

Requirement for edge weight:
For out-going edge of 𝑣 (𝑒 ∈ out(𝑣)), ∑+∈,-.(0)𝑤 𝑒 = 1

While propagating weight to root node, 
normalize edge weight so that above requirement is satisfied.
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Merge equivalent node

X (0.048)

Equivalent nodes

Y (0.048) Z (0.904)

X (0.5)
X (0.5)

Y (0.5)
Y (0.5)

X (0.5)Y (0.5)

X (0.048)

Y (0.5)

Z (0.904)

X (0.5)

Y (0.048)

Merge node 𝑣, 𝑢, when the two nodes satisfy following conditions.
(1) 𝑉E (child-nodes of node 𝑣) = 𝑉E′ (child-nodes of node 𝑢)
(2) For any node 𝑎 ∈ 𝑉E, 
Pauli-operation and weight of edge (𝑣, 𝑎) and edge (𝑢, 𝑎) are equivalent.
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Node reduction by merging I-edges

X
Convert

Y (0.5)X (0.5)

X
Z

Y

Y (0.5)I (0.5)

Merge

Merge

Y (0.25)X (0.75)

X
Z

Y

Y

When graph satisfies some conditions, following operation can be applied

# of nodes = 7 # of nodes = 5
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Our contribution

Issue of DD:
Size of Hamiltonian: Large ⟹ Size of DD: Large
        Can not be applied to large-size Hamitonian

Our contribution:
•Propose a method for reducing size of DD
•Our method does not compromise accuracy of estimator 
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Relaxing condition of equivalent nodes

Merge nodes 𝑣, 𝑢, when the two nodes satisfy the following conditions
(1) 𝑉E (child-nodes of node 𝑣) = 𝑉E′ (child-nodes of node 𝑢)
(2) For any node 𝑎 ∈ 𝑉E, Pauli operations of edge (𝑣, 𝑎) and edge (𝑢, 𝑎) are equivalent

# of nodes merged is increased
          Reduce # of nodes in DD

Difference from existing method: Ignore edge weight

X (0.7)
X (0.3)

Y (0.7)
Y (0.3)

𝑣 𝑢
Existing method: 𝑣, 𝑢 are not equivalent

Proposed method: 𝑣, 𝑢 are equivalent
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Edge weighting scheme

Influence of Pauli operator with large coefficient: Large

# of measurement basis covering 𝑃, 𝑄 with large coefficient: Large

Edge weighting scheme:
Give a large weight to edges in path corresponding to such measurement basis

Var 𝜈 =
1
𝑆

+
",F

𝛼"𝛼F𝑔 𝑃, 𝑄, 𝛽 Tr 𝑃𝑄𝜌 − Tr 𝐻𝜌 )

# of measurement basis covering 𝑃, 𝑄： Large
Small

Small
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Qubit ordering

DD for quantum measurements
•# of nodes: Depends on qubit order
BDD (representative DD)
•# of nodes: 
Depends on variable order (corresponds to qubit order)

Naïve algorithm for finding qubit order that minimizes # of nodes:
•Examine all qubit orders
•Time complexity: 𝑂(𝑛!)

Proposed method:
•Fast algorithm based on dynamic programming
(technique utilized in BDD variable ordering)
•Obtain the optimal ordering when ignoring the reduction by merging I-edges

Reduce # of nodes by qubit ordering
𝑞%

𝑞$

𝑞&

𝑞'
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Divide DD

# of nodes in upper part:
Independent from lower part qubit order

# of nodes in lower part:
Independent from upper part qubit order

𝑄 = {𝑞G, 𝑞), … , 𝑞!} (𝑞*: Qubits in a DD)

Optimal qubit order: Examine all combinations of 𝑆

Assumption:
Ignore the reduction by merging I-edges

Problem of finding optimal qubit order:
We can separate upper part and lower part

𝑣% 𝑣$ 𝑣(

𝐻% 𝐻$ 𝐻(

𝐻

Upper

Lower
𝑄 ∖ 𝑆

𝑆 ⊆ 𝑄
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# of boundary nodes

𝑣% 𝑣$ 𝑣(

𝐻% 𝐻$ 𝐻(

𝐻

Upper

Lower

Boundary nodes

Information for finding optimal qubit order:
•Set of qubits 𝑆 
•# of boundary nodes

# of boundary nodes:	
Constant regardless of	𝑆

𝑄 ∖ 𝑆

𝑆 ⊆ 𝑄
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Master Profile Chart(MPC)
( ∅ , 1)

( 1 , 3) ( 2 , 3) ( 3 , 3) ( 4 , 3)

( 1, 2 , 2) ( 1, 3 , 5) ( 1, 4 , 5) ( 2, 3 , 5) ( 2, 4 , 5) ( 3, 4 , 2)

( 1, 2, 3 , 3) ( 1, 2, 4 , 3) ( 1, 3, 4 , 3) ( 2, 3, 4 , 3)

( 1, 2, 3, 4 , 1)

Root node

Terminal node

Data of nodes:•Set of qubits 𝑆
 •# of boundary nodes

Edge: Transition of 𝑆
Path: Corresponds to qubit order
Path weight: # of nodes in DD
(Node weight: # of boundary nodes)

Finding qubit order that minimize # nodes = Finding minimum weighted path

Breadth fast search can solve this problem
Time complexity: Exponential to # of qubits
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Experimental results

Molecule Encode Terms
CS [4] Existing DD-based [21] Proposed
Vari. Node Edge Vari. Node Edge Vari.

LiH (12-qubit) JW 751 266 166 271 11.3 74 137 8.28
Parity 778 760 215 429 31.2 172 316 36.7
BK 765 163 290 521 29.6 167 300 44.1

BeH2 (14-qubit) JW 796 1792 319 484 123 177 297 314
Parity 831 3524 375 702 635 266 468 697
BK 833 2273 336 545 561 226 390 3597

H2O (14-qubit) JW 1302 4789 389 682 1444 220 397 1474
Parity 1332 11209 540 1065 3552 229 492 5660
BK 1333 26004 476 864 5325 265 487 9481

Proposed methods: Reduce DD size without compromising accuracy

[4] S. Aaronson, “Shadow tomography of quantum states,” 2020.
[21] S. Hillmich, et. al, “Decision diagrams for quantum measurements with shallow circuits,” 2021.

Comparison of existing method with proposed method
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Conclusion

DD based quantum measurement:
•High accuracy
•Scalability issue regarding DD size

Proposed methods:
•Relax condition of equivalent nodes
•Edge weighting scheme
•Qubit ordering optimization

Experimental results:
•Demonstrate proposed methods can reduce DD size without 
compromising accuracy 


