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Background

◼ Artificial intelligence (AI) enabled by deep neural networks (DNNs) has

made significant breakthroughs.

◼However, the large amount of memory access incur memory wall issue.

◼Compute-in-memory is a promising technique to solve this problem.
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Background

◼Nevertheless, despite the high macro-level energy efficiency, there

remain severe challenges to supporting large models on CIM.

◼ Several techniques have been developed to address this issue:

❑ Lightweight model (MobileNet, etc.)

❑ Layer-wise sparse pruning

❑ Weight quantization
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Background

◼ Lightweight model

❑MobileNet, ShuffleNet, ...

❑Challenging on analog-based CIM deployment due to lower redundancy.

◼ Sparse pruning

❑Unstructured sparsity methods: not well-suited for CIM arrays.

❑Structured sparsity methods: More feasible for energy-efficient CIM computations.

6

MobileNet Pruning



Background

◼ Lightweight model

❑MobileNet, ShuffleNet, ...

❑Challenging on analog-based CIM deployment due to lower redundancy.

◼ Sparse pruning

❑Unstructured sparsity methods: not well-suited for CIM arrays.

❑Structured sparsity methods: More feasible for energy-efficient CIM 

computations.

◼Quantization

❑Parameter-level approach

❑Vector-wise quantization: efficient 4-bit quantization over a wide range and 

delivers significant performance improvement on GPUs.

❑Challenges in irregular quantization scales
7
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Motivation

◼ Insight into low-bit quantization and bitwise structured sparsity in CIM:

❑Low-bit quantization can be modeled as a form of bitwise sparsity based on 8-bit

quantization

❑There is a dilemma between the quantization dynamic range and resolution.
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Motivation

◼ Insight into low-bit quantization and bitwise structured sparsity in CIM:

❑Accuracy drop due to reduced signal-noise rate (SNR) by lightweight quantized

model

❑There is a trade-off in energy efficiency and robustness between high-bitwidth

and low-bitwidth
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Motivation

◼We ask: is it possible to introduce robust zero-bit compression on 

CIM to deploy a highly efficient lightweight model?

❑ZEBRA is proposed with zero-bit patterns utilization and corresponding 

hardware-software co-optimization.
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Contributions

◼ The key contributions of this work ZEBRA:

❑A robust low-bitwidth data encoding method enabled by value-adaptive zero-bit

patterns.

❑A local computing unit supports multi-level input and weight multiplication.

❑Rich experiment results across application, macro, and system levels.
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Related Works

◼ Software-hardware co-optimization approaches for model compression

❑Quantization

❑Lightweight model

❑Sparsity utilization
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Related Works: Quantization

◼ Inference with integer weights and activations:

❑Dynamic quantization

❑Quantization-aware training (QAT)

❑Post-training quantization

15

Dynamic quantization QAT Post-training quantization

Scale

FP32

INT8

Scale

FP32

INT8

INT8

Scale

Update

Quantized

Training

Inference



Related Works: Lightweight Models

◼ Structure compress and weight reusing:

❑Depthwise separable convolution

❑Pointwise group convolution and channel shuffle

16

Bottleneck # of Para.:

Conv2d # of Para:

𝑁 ×𝑊 ×𝐻 + 𝑁2

𝑁2 ×𝑊 × 𝐻

NH

W

Avg Pool

1x1 Conv Shuffle 3x3 Conv



Related Works: Sparsity Utilization

◼ Zero-skipping and weight pruning

❑Unstructured sparsity: CIM-unfriendly.

❑Structured sparsity: specific circuit design.
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Proposed Design

◼Challenges and Opportunities in Deployment of Low-bitwidth

Quantized Neural Network on Compute-In-Memory (CIM):

❑Conflicts between high dynamic range and high resolution in low-bitwidth

quantization for highly efficient inference.

❑Noise injected due to non-ideal factors or malicious attackers in CIM can result

in significant accuracy degradation.
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Proposed Design

◼ Insight: low-bitwidth quantization can be viewed as a form of structured

sparsity by fixing specific bit locations as ‘0’.

◼ There is a tradeoff between the dynamic range and the resolution of 

quantized parameters:

❑ Higher dynamic range

❑ Higher resolution
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Proposed Design: Value-Adaptive Patterns

◼Option I: Selecting between a high dynamic range pattern and a high-

resolution pattern:

❑ High dynamic range for large values

❑ High resolution for small values

21

W3 W2 W1 W0

Pattern

Selection

Raw Data

0 W3 0W2 0W1 0W0

0W20 W30 W10 W0

248163264

Option I: S = 4

1

0:

1:

Scaling (S)
High dynamic range pattern

High resolution pattern



Proposed Design: Value-Adaptive Patterns

◼Option II: Alternating zero-bit patterns

❑ Merge high dynamic range and high resolution in both patterns.

❑ Scaling of the same bit is reduced from 4x to 2x.
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Proposed Design: Signed Binary Encoding

◼ Two possible implementations:

❑ 2’s complement encoding:

❑ Signed binary encoding (this work):
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Proposed Design: Value-Adaptive Patterns

◼ Proposed value-adaptive sparsity patterns based on 8-bit quantization
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Proposed Design: Multi-Level Local Computing

◼Macrostructure:

❑Handling low-bitwidth weights of value-adaptive zero-patterns
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Proposed Design: Multi-Level Local Computing

◼Multi-level signed input unit circuits (ML-SIU):

❑ Handling multi-level activations with value-adaptive zero-bit patterns.

❑ Representing signed value ‘0’ with common-mode voltage.
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Proposed Design: Multi-Level Local Computing

◼Detailed structure and operation diagram of the proposed ML-LCU:

❑ Weights bit (W)

❑ Pattern selection bit (P): select between two different patterns

❑ The partial sum result is involved with the global bit line by C1 and C2.
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Benchmark

◼ Experiment setup:

29

Software Setup

Custom Emulator

Model

Module Wrapper

Hardware setup

Cadence Virtuoso
Datasets

Quantizer Executor

TSMC 28nm HPC Process

CircuitLayout

SPICE Simulation

Param.



Benchmark

◼Quantization noise analysis:

❑ Typical weight distribution on VGG-8 and MobileNetV2

❑ Noise introduced by:

◆ 4-bit / log2

◆ this work
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Benchmark

◼ Accuracy comparison on various datasets and models:

❑ Achieves <1% accuracy drop in VGG-8 and <3% accuracy drop in MobileNetV2.

❑ Compared with ~3x accuracy loss of the same bitwidth 4-bit quantization.
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Benchmark

◼ Insights provided by robustness study:

❑Low-bitwidth quantization is more sensitive to disturbances.

❑Shrinking the dynamic range of quantization results in more outliers
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Benchmark

◼Macro-level performance comparison

❑ 20% higher parameter density

❑ 3.1x higher energy efficiency

❑ 2.9x higher area efficiency
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Discussion

◼Compared with the original 4-bit quantization.

❑Area overhead: 37%

◆2 extra bits: pattern selection and sign bits

◆ML-LCU and ML-SIU

❑Energy efficiency overhead: 2%

◆1.8~1.9x ML-LCU and ML-SIU energy overhead

◼ Future work: Reconfigurable ZEBRA:

❑Multiple options

❑Hybrid encoding scheme
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Conclusion

◼ Proposed ZEBRA architecture

❑High-robustness charge-domain CiM architecture

❑Value-adaptive zero-bit patterns

❑Dealing with the bottleneck of deploying a low-redundancy NN on analog CIM.

◼ Features:

❑Capability of tolerating noise due to mismatches, non-ideal interfaces, noise, etc.

❑2.9X higher area efficiency and 3.1X higher energy efficiency.
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Thank You
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