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Background

B Artificial intelligence (Al) enabled by deep neural networks (DNNSs) has
made significant breakthroughs.

B However, the large amount of memory access incur memory wall issue.

B Compute-in-memory is a promising technigue to solve this problem.
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Background

B Nevertheless, despite the high macro-level energy efficiency, there
remain severe challenges to supporting large models on CIM.

B Several technigues have been developed to address this issue:
4 Lightweight model (MobileNet, etc.)

J Layer-wise sparse pruning | Model Size =] Model Para. # X JPara. Size
d Weight quantization
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Background

M Lightweight model
dMobileNet, ShuffleNet, ...
Challenging on analog-based CIM deployment due to lower redundancy.
B Sparse pruning
dUnstructured sparsity methods: not well-suited for CIM arrays.
Structured sparsity methods: More feasible for energy-efficient CIM computations.
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Background

J
J

J
J

B Quantization
dParameter-level approach

dVector-wise guantization: efficient 4-bit quantization over a wide range and
delivers significant performance improvement on GPUSs.

dChallenges in irregular quantization scales
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Motivation

B Insight into low-bit quantization and bitwise structured sparsity in CIM:
dLow-bit quantization can be modeled as a form of bitwise sparsity based on 8-bit

guantization

dThere is a dilemma between the quantization dynamic range and resolution.
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Motivation

B Insight into low-bit quantization and bitwise structured sparsity in CIM:
JAccuracy drop due to reduced signal-noise rate (SNR) by lightweight quantized

model

dThere is a trade-off in energy efficiency and robustness between high-bitwidth

and low-bitwidth
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Motivation

B We ask: is it possible to introduce robust zero-bit compression on
CIM to deploy a highly efficient lightweight model?

JZEBRA is proposed with zero-bit patterns utilization and corresponding
hardware-software co-optimization.
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Contributions

B The key contributions of this work ZEBRA:

A robust low-bitwidth data encoding method enabled by value-adaptive zero-bit
patterns.

A local computing unit supports multi-level input and weight multiplication.
Rich experiment results across application, macro, and system levels.
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Related Works

B Software-hardware co-optimization approaches for model compression
dQuantization
dLightweight model

L Sparsity utilization
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Related Works: Quantization

B Inference with integer weights and activations:
dDynamic quantization
dQuantization-aware training (QAT)
L Post-training quantization
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Related Works: Lightweight Models

B Structure compress and weight reusing:

dDepthwise separable convolution

dPointwise group convolution and channel shuffle

Hliﬂg@ +%

Bottleneck # of Para.: N x W X H + N2

Conv2d # of Para:N?2 x W x H

> Avg Pool

» 1x1 Conv

Shuffle
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Related Works: Sparsity Utilization

B Zero-skipping and weight pruning
dUnstructured sparsity: CIM-unfriendly.
L Structured sparsity: specific circuit design.

CIM-unfriendly

Unstructured sparsity Structured sparsity

Pruned

Weights pruning
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Proposed Design

B Challenges and Opportunities in Deployment of Low-bitwidth
Quantized Neural Network on Compute-In-Memory (CIM):

dConflicts between high dynamic range and high resolution in low-bitwidth
guantization for highly efficient inference.

dNoise injected due to non-ideal factors or malicious attackers in CIM can result
In significant accuracy degradation.
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Proposed Design

B Insight: low-bitwidth quantization can be viewed as a form of structured
sparsity by fixing specific bit locations as ‘0'.

B There Is a tradeoff between the dynamic range and the resolution of

guantized parameters:
 Higher dynamic range
1 Higher resolution
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Proposed Design: Value-Adaptive Patterns

B Option |: Selecting between a high dynamic range pattern and a high-
resolution pattern:
1 High dynamic range for large values
[ High resolution for small values
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Proposed Design: Value-Adaptive Patterns

B Option Il: Alternating zero-bit patterns
1 Merge high dynamic range and high resolution in both patterns.

 Scaling of the same bit is reduced from 4x to 2x.
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Proposed Design: Signed Binary Encoding
B Two possible implementations:

 2’s complement encoding:
 Signed binary encoding (this work):
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Proposed Design: Value-Adaptive Patterns

B Proposed value-adaptive sparsity patterns based on 8-bit quantization

Patter n Raw Data
Selection
IA1
0 W3 *(%* W2 »é* W1 *é—r WO »é—»
IAD » X1 » X1 > X1 4+—— X1
1 W3 »éa W2 »éa W1 »éq WO »éo
> XS » XS » XS 4—— xS
| | | |
MUX & ADCs
== 4-—-=-=-=-=-- +-—--—-=-=-- +-—-—-—-=-=-- +-;
1 <<4 <<3 <2 <<1
Op. | :
I I | oM | |
| LU/ I
or - 1
! <<6 <<4 <<? <<0 |,
Op. Il | ] !
I U I

1
0 Mul — 1

<

1
1 Mul — 1
Pattern LcC xg\
Selection

x1
0 Mul

xS-1

‘O’

XS
1 Mul
Pattern
Selection LCC

24



Proposed Design: Multi-Level Local Computing

B Macrostructure:
dHandling low-bitwidth weights of value-adaptive zero-patterns
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Proposed Design: Multi-Level Local Computing
B Multi-level signed input unit circuits (ML-SIU):
1 Handling multi-level activations with value-adaptive zero-bit patterns.
 Representing signed value ‘0" with common-mode voltage.
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Proposed Design: Multi-Level Local Computing
M Detailed structure and operation diagram of the proposed ML-LCU:
 Weights bit (W)
 Pattern selection bit (P): select between two different patterns
 The partial sum result is involved with the global bit line by C1 and C2.
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Benchmark

B Experiment setup:

Software Setup
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Benchmark

B Quantization noise analysis:
U Typical weight distribution on VGG-8 and MobileNetV2
1 Noise introduced by:

@ 4-bit / log?2
@ this work
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Benchmark

B Accuracy comparison on various datasets and models:
U Achieves <1% accuracy drop in VGG-8 and <3% accuracy drop in MobileNetV2.
O Compared with ~3x accuracy loss of the same bitwidth 4-bit quantization.

o
(6]
00]
o

94 25
% 93 %
G 92 © 70
3 g
S 91 S 65
< <
90 60
89 -
88 :
VGGS8 MobileNetV2 VGG8 MobileNetV?2
mFP32 mINT8 ®mINT4 = Option| = Option Il mFP32 mINT8 ®mINT4 = Option| = Option Il
CIFAR10 CIFAR100

31



Benchmark

M Insights provided by robustness study:
dLow-bitwidth quantization is more sensitive to disturbances.

A Shrinking the dynamic range of quantization results in more outliers

CIFAR-10 Accuracy on

MobileNetV2 (%)
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Robustness enhancement on CIFAR-10 with MobileNet (4-8-8)
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Benchmark

B Macro-level performance comparison

4 20% higher parameter density
 3.1x higher energy efficiency
 2.9x higher area efficiency

2\

Low-bitwidth robustness CiM

)

High-bitwidth parameters

Charge-domain CIM Methodologies

Metrics Baseline® ZEBRA ZEBRA
asetine Option 1 Option 11
Process 28 nm CMOS
Area of LCC (um?) 1.04 3.58 2.17
Macro area (mm*) 0.32 0.36 0.34
Precision (I-W) 4-4 8-8 8-8 8-8
Parameter density
(M/mznz) 0.97 0.50 0.58 0.61
Energy efficiency”
(TOPS/W) 65.4 15.9 64.3 64.6
Area efficiency®
(GOPS/mm?) 390 95.25 346 367
Accuracy® under noise | 80.1% 94.2% 93.7% 93.3%
SNR Robustness No Yes Yes Yes
VGG-8 support © © ©
MobileNet support @ @ @ @
Robustness @ @ © @

% Charge-domain local computing cell with 16 SRAM rows [18], [26]

b OP is defined with the precision of the same column
© Accuracy is obtained based on MobileNetV2 (4-8) under a variance of 0.03LSB 3 3



Outline

Conclusion

34



Discussion

B Compared with the original 4-bit quantization.
Area overhead: 37%
€2 extra bits: pattern selection and sign bits
& ML-LCU and ML-SIU
dEnergy efficiency overhead: 2%
€1.8~1.9x ML-LCU and ML-SIU energy overhead

B Future work: Reconfigurable ZEBRA:

dMultiple options
dHybrid encoding scheme
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Conclusion

B Proposed ZEBRA architecture
dHigh-robustness charge-domain CiM architecture
dValue-adaptive zero-bit patterns
dDealing with the bottleneck of deploying a low-redundancy NN on analog CIM.
B Features:
L Capabillity of tolerating noise due to mismatches, non-ideal interfaces, noise, etc.
12.9X higher area efficiency and 3.1X higher energy efficiency.
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