

ZEBRA: A Zero-Bit Robust-Accumulation Compute-In-Memory Approach for Neural Network Acceleration Utilizing Different Bitwise Patterns

<u>Yiming Chen</u>¹, Guodong Yin¹, Hongtao Zhong¹, Mingyen Lee¹, Huazhong Yang¹, Sumitha George², Vijaykrishnan Narayanan³, and <u>Xueqing Li^{1†}</u>

¹Tsinghua University, ²North Dakota State University, ³Pennsylvania State University †Email: xueqingli@tsinghua.edu.cn

- Background
- Motivation
- Related Works
- Proposed Design
- Benchmark
- Conclusion

Outline

Background

- Motivation
- Related Works
- Proposed Design
- Benchmark
- Conclusion

Artificial intelligence (AI) enabled by deep neural networks (DNNs) has made significant breakthroughs.

However, the large amount of memory access incur memory wall issue.
 Compute-in-memory is a promising technique to solve this problem.

Nevertheless, despite the high macro-level energy efficiency, there remain severe challenges to supporting large models on CIM.

- Several techniques have been developed to address this issue:
 - Lightweight model (MobileNet, etc.)
 - Layer-wise sparse pruning
 - Weight quantization

NILS

- Lightweight model
 - □ MobileNet, ShuffleNet, ...
 - Challenging on analog-based CIM deployment due to lower redundancy.
- Sparse pruning
 - Unstructured sparsity methods: not well-suited for CIM arrays.
 - Structured sparsity methods: More feasible for energy-efficient CIM computations.

Pruning

- Lightweight model
 - □ MobileNet, ShuffleNet, ...
 - Challenging on analog-based CIM deployment due to lower redundancy.
- Sparse pruning
 - Unstructured sparsity methods: not well-suited for CIM arrays.
 - Structured sparsity methods: More feasible for energy-efficient CIM computations.

Quantization

- Parameter-level approach
- Vector-wise quantization: efficient 4-bit quantization over a wide range and delivers significant performance improvement on GPUs.
- Challenges in irregular quantization scales

Outline

Background

Motivation

- Related Works
- Proposed Design
- Benchmark
- Conclusion

Motivation

Insight into low-bit quantization and bitwise structured sparsity in CIM:
Low-bit quantization can be modeled as a form of bitwise sparsity based on 8-bit quantization

There is a dilemma between the quantization dynamic range and resolution.

Dilemma between dynamic range and bit-error cost in low-bitwidth CIM

Motivation

Insight into low-bit quantization and bitwise structured sparsity in CIM:
Accuracy drop due to reduced signal-noise rate (SNR) by lightweight quantized model

There is a trade-off in energy efficiency and robustness between high-bitwidth and low-bitwidth

Dilemma between energy efficiency and robustness

Motivation

We ask: is it possible to introduce robust zero-bit compression on CIM to deploy a highly efficient lightweight model?

ZEBRA is proposed with zero-bit patterns utilization and corresponding hardware-software co-optimization.

Contributions

■ The **key contributions** of **this work ZEBRA**:

- A robust low-bitwidth data encoding method enabled by value-adaptive zero-bit patterns.
- □ A local computing unit supports multi-level input and weight multiplication.
- Rich experiment results across application, macro, and system levels.

- Background
- Motivation

Related Works

- Proposed Design
- Benchmark
- Conclusion

Related Works

Software-hardware co-optimization approaches for model compression

Quantization

-0.6

-7

Quant.

- Lightweight model
- □ Sparsity utilization

15

Related Works: Quantization

Inference with integer weights and activations:

- Dynamic quantization
- Quantization-aware training (QAT)
- Post-training quantization

Related Works: Lightweight Models

Structure compress and weight reusing:
Depthwise separable convolution

Pointwise group convolution and channel shuffle

Related Works: Sparsity Utilization

Zero-skipping and weight pruning
 Unstructured sparsity: CIM-unfriendly.
 Structured sparsity: specific circuit design.

CIM-unfriendly Unstructured sparsity

Structured sparsity

Weights pruning

Pruned

- Background
- Motivation
- Related Works
- Proposed Design
- Benchmark
- Conclusion

Proposed Design

Challenges and Opportunities in Deployment of Low-bitwidth Quantized Neural Network on Compute-In-Memory (CIM):

- **Conflicts** between **high dynamic range** and **high resolution** in low-bitwidth quantization for highly efficient inference.
- Noise injected due to non-ideal factors or malicious attackers in CIM can result in significant accuracy degradation.

Proposed Design

- Insight: low-bitwidth quantization can be viewed as a form of structured sparsity by fixing specific bit locations as '0'.
- There is a tradeoff between the dynamic range and the resolution of quantized parameters:
 - Higher dynamic range
 - □ Higher resolution

Higher resolution

Proposed Design: Value-Adaptive Patterns

Option I: Selecting between a high dynamic range pattern and a highresolution pattern:

- □ High dynamic range for large values
- □ High resolution for small values

High dynamic range pattern

High resolution pattern

Proposed Design: Value-Adaptive Patterns

Option II: Alternating zero-bit patterns

- Merge high dynamic range and high resolution in both patterns.
- □ Scaling of the same bit is reduced from 4x to 2x.

Merge high dynamic range & high resolution in both

Proposed Design: Signed Binary Encoding

Two possible implementations:

□ 2's complement encoding:

□ Signed binary encoding (this work):

NILS

Proposed Design: Value-Adaptive Patterns

Proposed value-adaptive sparsity patterns based on 8-bit quantization

NILS

Proposed Design: Multi-Level Local Computing

Macrostructure:

□ Handling low-bitwidth weights of value-adaptive zero-patterns

Proposed Design: Multi-Level Local Computing

Multi-level signed input unit circuits (ML-SIU):

- □ Handling multi-level activations with value-adaptive zero-bit patterns.
- Representing signed value '0' with common-mode voltage.

Proposed Design: Multi-Level Local Computing

Detailed structure and operation diagram of the proposed ML-LCU:
 Weights bit (W)

Pattern selection bit (P): select between two different patterns

□ The partial sum result is involved with the global bit line by C1 and C2.

- Background
- Motivation
- Related Works
- Proposed Design
- Benchmark
- Conclusion

Experiment setup:

Quantization noise analysis:

- □ Typical weight distribution on VGG-8 and MobileNetV2
- □ Noise introduced by:
 - ◆ 4-bit / log2
 - this work

Accuracy comparison on various datasets and models:
Achieves <1% accuracy drop in VGG-8 and <3% accuracy drop in MobileNetV2.</p>

□ Compared with ~3x accuracy loss of the same bitwidth 4-bit quantization.

Insights provided by robustness study:

Low-bitwidth quantization is more sensitive to disturbances.

Shrinking the dynamic range of quantization results in more outliers

Noise Normalized to Weight Deviation (LSD)

Robustness enhancement on CIFAR-10 with MobileNet (4-8-8)

Macro-level performance comparison

20% higher parameter density
3.1x higher energy efficiency
2.9x higher area efficiency

Low-bitwidth robustness CiM

 High-bitwidth parameters

Metrics	Charge-domain CIM Methodologies			
	Baseline ^a		ZEBRA Option I	ZEBRA Option II
Process	28 nm CMOS			
Area of LCC (μ m ²)	1.04		3.58	2.17
Macro area (mm ²)	0.32		0.36	0.34
Precision (I-W)	4-4	8-8	8-8	8-8
Parameter density (M/mm ²)	0.97	0.50	0.58	0.61
Energy efficiency ^b (TOPS/W)	65.4	15.9	64.3	64.6
Area efficiency ^b (GOPS/mm ²)	390	95.25	346	367
Accuracy ^c under noise	80.1%	94.2%	93.7%	93.3%
SNR Robustness	No	Yes	Yes	Yes
VGG-8 support		\odot	\odot	\odot
MobileNet support		\odot	\odot	\odot
Robustness		\odot	\odot	\odot

^{a.} Charge-domain local computing cell with 16 SRAM rows [18], [26]

^{b.} OP is defined with the precision of the same column

^{c.} Accuracy is obtained based on MobileNetV2 (4-8) under a variance of 0.03LSB **33**

Outline

- Background
- Motivation
- Related Works
- Proposed Design
- Benchmark
- Conclusion

Discussion

Compared with the original 4-bit quantization.

- Area overhead: 37%
 - 2 extra bits: pattern selection and sign bits
 - ML-LCU and ML-SIU
- Energy efficiency overhead: 2%
 - ◆1.8~1.9x ML-LCU and ML-SIU energy overhead
- Future work: Reconfigurable ZEBRA:
 - Multiple options
 - □ Hybrid encoding scheme

Conclusion

Proposed ZEBRA architecture

- □ High-robustness charge-domain CiM architecture
- □ Value-adaptive zero-bit patterns
- Dealing with the bottleneck of deploying a low-redundancy NN on analog CIM.

Features:

Capability of tolerating noise due to mismatches, non-ideal interfaces, noise, etc.
 2.9X higher area efficiency and 3.1X higher energy efficiency.

Thank You

Yiming Chen¹, Guodong Yin¹, Hongtao Zhong¹, Mingyen Lee¹, Huazhong Yang¹, Sumitha George², Vijaykrishnan Narayanan³, and Xueqing Li^{1†}

¹Tsinghua University, ²North Dakota State University, ³Pennsylvania State University †Email: xueqingli@tsinghua.edu.cn