Design of Aging-Robust Clonable PUF Using an Insulator-Based ReRAM for Organic Circuits

Kunihiro Oshima¹, Kazunori Kuribara², and Takashi Sato¹

¹ Graduate School of Informatics, Kyoto University

² National Institute of Advanced Industrial Science and Technology

KYOTO UNIVERSITY

Outline

Background

Organic Thin-Film Transistors and PUFs

- Proposed PUF
 - Evaluations
 - Conclusion

Low-Voltage Organic Thin-Film Transistor (OTFT)

 Promising device for flexible circuits
 Film or paper substrates are available owing to low temperature processes.

OTFTs on a glass substrate

3

Biosensor systems, artificial skin, ... process sensitive personal data.

To prevent the use of counterfeit chips and data theft, an authentication circuit will be essential.

Physically unclonable function (PUF)

Authentication circuit

using physical variability of transistor characteristics

Stable device characteristics are needed

Especially, clonable PUF (CPUF) provides

authentication without the CRP database.

OTFT Characteristic Degradation in PUFs

5

 $I_{\rm D}$ - $V_{\rm GS}$ characteristic degradation in a p-type OTFT due to bias voltage application.

- OTFT characteristics degrade rapidly.
 - PUF responses change due to the degradation.
 - Ex) Delay-increase in ring oscillator PUF and $V_{\rm th}$ -shift in current mirror PUF cause errors.

Objectives of the Proposed PUF

Store the CRPs within the novel ReRAM devices.

Low fabrication cost:

 Manufacturable through the OTFT fabrication process without any cost overhead.

□ <u>Robustness</u>:

Independent on the OTFT characteristic degradation.

CPUF operation:

The CRPs are duplicatable only during manufacturing.

Outline

- Background
- Proposed PUF

Circuit Schematics, Device Structures, and Circuit Operations

- Evaluations
- Conclusion

The Circuit Structure of the Proposed PUF

- CRPs are generated
 by the SRAM and
 written to the ReRAMs
 - during manufacturing.

Circuit schematic

- A novel ReRAM is used for storing CRPs.
- **Pseudo-CMOS logic is adopted in the SRAM.**
- p-types are exclusively used due to
 - unstable characteristics of n-types.

Device Structures

• The OTFTs and the proposed ReRAMs share common metal and metal-oxide layer stacks

Manufacturable in the common process with OTFTs

Bottom-gate top-contact OTFT The proposed ReRAM

Read Operation of the Proposed PUF

- V_{DD}=2.5 V Voltages are applied V_{WL}=0.0 V as shown in the right figure: V_{out} is obtained by the impedance ratio V_{SS}=0.0 V between the highlighted devices. Vout **Read operation** \Box The ReRAM exhibits 1 G Ω or 40 Ω , of the proposed PUF while the OTFT on-resistance is about $1 M\Omega$.
 - $\rightarrow \underline{V_{out}} = V_{\underline{DD}} \text{ (if } R_{\underline{ReRAM}} = 1 G\Omega, \text{ not antifused);}$ otherwise, $V_{\underline{out}} = V_{\underline{SS}}$.

Write Operation of the Proposed PUF

Write operation of the proposed PUF

The SRAM outputs 5.0 V or 2.0 V.

Only high voltage 5 V antifuses the ReRAM.

After writing, the SRAM will be discarded.

Outline

- Background
- Proposed PUF
- **Evaluations**
 - Device Characteristics,

Performance of SRAMs as an Entropy Source,

and PUF Cell Stability

Conclusion

OTFT Characteristics in the Write Operation

-2.5 V $\leq V_{GS} \leq 0.5$ V, equal to V_{GS} during the read operation

-5.0 V $\leq V_{GS} \leq 0.5$ V, equal to V_{GS} during the write operation

• The OTFT can operate without an insulator antifuse even under the write operation.

Read and write operations are feasible.

OTFT Characteristics for the Pseudo-CMOS

The EXT-EXT layout is used in the pull-down networks.

The large leakage current stabilizes the pull-down output.

The EXT-ENC layout is suitable for the other parts of circuits.

Operation of the Pseudo-CMOS NOT Gate

Pseudo-CMOS NOT gates

with two pull-down OTFT layouts are compared.

• The EXT-EXT layout provides stable pull-down V_{out} .

Operation of the Pseudo-CMOS SRAM Cell

Butterfly curves of a SRAM with different V_{DD} values.

V_{DD}≈3.0 V provides a balanced butterfly curve.

 \Box High V_{DD} induces a biased entropy source.

 \rightarrow (V_{DD}, V_{SS})=(5.0 V, 2.0 V) is applied in SRAMs,

while V_{SS} in memory cells is set to 0.0 V.

Pseudo-CMOS SRAM as an Entropy Source

considered in the simulations.

SRAM output histogram with sample size 1000.

Circuit simulations indicate that

SRAMs can generate random responses in the PUF

as demonstrated in existing works [A-C].

[A] J. Guajardo, et al., *in Proc. CHES*, pp. 63—80, 2007.
[B] S. Pandey, et al., *in Proc. ATS*, pp. 55—60, 2016.
[C] A. Vijayakumar, et al., *J. Low Power Electron. Appl.*, 7 (1), p. 2, 2017.

ReRAM Device Characteristics

- The ReRAM provides <u>high 0/1 resistance ratio.</u>
 - \square ~1 G Ω at "0" logic; ~40 Ω at "1" logic

Write and read operations are realized.

CPUF Cell stability

Measured CPUF output voltages for 28 weeks.

The CPUF cells can store the response data

for half a year.

Outline

- Background
- Proposed PUF
- Evaluations
- Conclusion

Conclusion

OTFT-based PUF is proposed.

Using the proposed ReRAM realizes

<u>CPUF operation and robust response storing</u> <u>without additional fabrication cost overhead.</u>

- The evaluation results show that
 - Devices, and circuit components can work under CPUF operations,
 - The proposed PUF can operate at least for half a year.